Книга | Страницы для поиска |
Kadison R.V., Ringrose J.R. - Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory | 221 |
Taylor M.E. - Partial Differential Equations. Basic theory (vol. 1) | 203, 215 |
Bartle R.G. - The Elements of Real Analysis | 183 ff. |
Hunter J.K., Nachtergaele B. - Applied Analysis | 40 |
Grinstead C.M., Snell J.L. - Introduction to Probability | 315 |
Ito K. - Encyclopedic Dictionary of Mathematics. Vol. 2 | 336.A |
Apostol T.M. - Mathematical Analysis | 322 |
Hoffman J.D. - Numerical Methods for Engineers and Scientists | 191 |
Henrici P. - Applied and Computational Complex Analysis (Vol. 2) | 207 |
Rudin W. - Real and Complex Analysis | 304, 397 |
Conway J.B. - Functions of One Complex Variable | 263 |
Benson D. - Mathematics and music | 401 |
Katznelson Y. - Introduction to Harmonic Analysis | 15 |
Folland J.B. - Real Analysis: Modern Techniques and Their Applications | 141, 318 |
Pugovecki E. - Quantum mechanics in hilbert space | 157 |
Debnath L., Mikusinski P. - Introduction to Hilbert Spaces with Applications | 17 |
Behnke H., Bachmann F., Fladt K. - Fundamentals of Mathematics, Volume III: Analysis | 28, 207, 215, 366 |
Halmos P.R. - Hilbert Space Problem Book | Prefrase, 33, 126, 137, 165, 246 |
Shafarevich I.R., Kostrikin A.I. (ed.) - Basic Notions of Algebra | 170 |
Milnor J.W. - Topology from the Differentiable Viewpoint | 13 |
Debnath L. - Linear Partial Differential Equations for Scientists and Engineers | 223 |
Prugovecki E. - Quantum Mechanics in Hilbert Space | 157 |
Murty M.R. - Problems in Analytic Number Theory | 172 |
Gohberg I., Goldberg S. - Basic Operator Theory | 28 |
Dugunji J. - Topology | 282 |
Berberian S.K. - Fundamentals of Real Analysis | 361 |
Pugh C.C. - Real Mathematical Analysis | 217 |
Lange K. - Optimization | 110-111 |
Boothby W.M. - An introduction to differentiable manifolds and riemannian geometry | 197 |
Khuri A.I. - Advanced calculus with applications in statistics | 403 |
Rickart C.E. - General Theory of Banach Algebras | 124 |
Lang S.A. - Undergraduate Analysis | 287 |
Boas R.P. - A Primer of Real Functions | 132, 267 |
Szekeres P. - A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 337 |
Ito K. - Encyclopedic Dictionary of Mathematics | 336.A |
Taylor J.C. - An Introduction to Measure and Probability | 175 |
Rudin W. - Real and complex analysis | 312, 387 |
Stakgold I. - Green's Functions and Boundary Value Problems | 113, 120, 240, 284, 289 |
Kadison R.V., Ringrose J.R. - Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | 221 |
Strichartz R.S. - The way of analysis | 184, 296, 297, 301, 305, 543 |
Hu S.-T. - Elements of real analysis | 226 |
Feller W. - Introduction to probability theory and its applications (Volume II) | 223 |
Billingsley P. - Probability and Measure | 82, 26.19 |
Corduneanu C., Gheorghiu N., Barbu V. - Almost Periodic Function | 216 |
Kincaid D., Cheney W. - Numerical analysis: mathematics of scientific computing | 288, 289 |
Wheeden R.L., Zygmund A. - Measure and integral. An introduction to real analysis | 238 |
Olver P.J., Shakiban C. - Applied linear. algebra | 271 |
Young R.M. - Excursions in Calculus: An Interplay of the Continuous and the Discrete | 275-282 |
Krantz S.G. - Handbook of Real Variables | 111 |
Kreyszig E. - Advanced engineering mathematics | 797 |
Simmons G.F. - Introduction to topology and modern analysis | 154, 161 |
Zeidler E. - Nonlinear Functional Analysis and Its Applications: Part 1: Fixed-Point Theorems | 770 |
Ash R.B. - Real Variables with Basic Metric Space Topology | 134-137 |
Saxe K. - Beginning functional analysis | 22 |
Boothby W.M. - An Introduction to Differentiable Manifolds and Riemannian Geometry | 197 |
Widder D.V. - The Laplace transform | 153, 189 |
Farin G. - Curves and surfaces for computer aided geometric design | 77 |
Bridges D.S. - Foundations Of Real And Abstract Analysis | 212 |
Ortega J. M. - Iterative Solution of Nonlinear Equations in Several Variables | 171, 172 |
Goffman C., Pedrick G. - First course in functional analysis | 32 |
Kreyszig E. - Introductory functional analysis with applications | 280 |
Hille E. - Methods in classical and functional analysis | 99 |
Kazarinoff N. - Analytic inequalities | 52 |
Courant R., John F. - Introduction to Calculus and Analysis. Volume 1 | 569, 608 |
Stewart G.W. - Afternotes on Numerical Analysis | 176 |
Lang S. - Undergraduate analysis | 287 |
Bhatia R. - Fourier Series (Mathematical Association of America Textbooks) | 25, 53 |
Bridges D.S. - Computability: A mathematical sketchbook | 70, 72 |
Stakgold I. - Green's functions and boundary value problems | 113, 120, 240, 284, 289 |
Hewitt E., Stromberg K. - Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 96 |
Varga R.S. - Scientific Computations on Mathematical Problems and Conjectures | 1 |
Loomis L.H., Sternberg S. - Advanced calculus | 304 |
Kuttler K. - Notes for Partial Differrential Equations | 71 |
Behnke H., Bachmann F., Fladt K. - Fundamentals of mathematics. Volume III. Analysis | 28, 207, 215, 366 |
Zeidler E. - Applied Functional Analysis: Applications to Mathematical Physics | 84 |
Cohen G.L. - A Course in Modern Analysis and Its Applications | 193, 202, 205, 209 |
Williams D. - Probability with Martingales | (7.4) |
Gohberg I., Goldberg S., Kaashoek M. - Classes of linear operators. (volume 2) | 420 |
John F. - Partial Differential Equations | 211 |
Burden R.L., Faires J.D. - Numerical analysis | 96 |
Gohberg I., Goldberg S., Kaashoek M. - Classes of linear operators. (volume 1) | 420 |
Young D.M., Gregory R.T. - A Survey of Numerical Mathematics, Volume 2 | 308 |
Stakgold I. - Boundary value problems of mathematical physics | 27, 115 |