|
|
Электронная библиотека механико-математического факультета Московского государственного университета
|
|
|
|
 |
| Результат поиска |
Поиск книг, содержащих: Bifurcation
| Книга | Страницы для поиска | | Sornette D. - Critical phenomena in natural sciences | | | Becker K.H., Dörfler M. - Dynamical Systems and Fractals : Computer Graphics Experiments with Pascal | 39, 46, 54 | | Arrowsmith D.K., Place C.M. - Dynamical systems. Differential equations, maps and chaotic behaviour | 212 | | Acheson David - From calculus to chaos | 138 | | Saad Y. - Numerical Methods for Large Eigenvalue Problems | 315 | | Crisfield M.A. - Non-Linear Finite Element Analysis of Solids and Structures. Vol. 2: Advanced Topics | 355 | | Stein E. (ed.), Ramm E. - Error-controlled adaptive finite elements in solid mechanics | 2, 110, 160, 236, 314 | | Korsch H.J., Jodl H.-J. - Chaos: A Program Collection for the PC | 22, 24, 42, 62, 80, 152, 299 | | Zienkiewicz O.C., Taylor L.R. - The finite element method (vol. 2, Solid mechanics) | 22 | | Benson D. - Mathematics and music | 258 | | Goldstein H., Poole C., Safko J. - Classical mechanics | 454, 484, 505, 513, 514 | | Kundu P.K., Cohen I.R. - Fluid mechanics | 487 | | Nayfeh A.H., Mook D.T. - Nonlinear Oscillations | 65, 70, 75, 158, 494 | | Murdock J. - Perturbations: Theory and Methods | 15, 18, 94, 129 | | Drazin P. - Introduction to Hydrodynamic Stability | 7, 10, 11 | | Lee G.H.W., Chu V.H. - Turbulent Jets and Plumes : A Lagrangian Approach | 272 | | Taberling P. (ed.), Cardoso O. (ed.) - Turbulence: a tentative dictionary | 68-70 | | Chorin A., Marsden J. - A Mathematical Introduction to Fluid Mechanics | 99, 100 | | Peters E.E. - Chaos and Order in the Capital Markets | 123, 196, 231 | | Brin M., Stuck G. - Introdution to dynamical system | 183 | | Debnath L. - Nonlinear water waves | 464, 466, 467 | | Debnath L., Mikusinski P. - Introduction to Hilbert Spaces with Applications | 465 | | Gupta M.M., Jin L., Homma N. - Static and dynamic neural networks | 334 | | Hale J.K., Magalhaes L.T., Oliva W. - Dynamics in Infinite Dimensions | 65 | | Hall G.R., Lee - Continuous dynamical systems | 75 | | Carr J. - Applications of Centre Manifold Theory | 11-12, 40-41, 43, 47, 50, 52-53, 55-59, 82, 84-85, 94, 127, 131, 134-135 (see also 'Hopf bifurcation') | | Chipot M., Quittner P. - Handbook of Differential Equations: Stationary Partial Differential Equations, Vol. 3 | 446 | | Strauss W.A. - Partial Differential Equations: An Introduction | 379-383 | | Ott E. - Chaos in dynamical systems | 44 | | Smith P. - Explaining chaos | 62 | | Gleick J. - Chaos. Making a new science | 71, 73, 74-75,76, 78, 128, 173, 204-205,211, 215,223, 265,305 | | Itoh K., Fukayama A. - Transport and Structural Formation in Plasmas | 15 | | Weickert J. - Visualization and Processing of Tensor Fields: Proceedings of the Dagstuhl Workshop | 231, 237, 238, 253 | | Devaney R.L. - An introduction to chaotic dynamical systems | 28, 80 | | Finch S.R. - Mathematical constants | 66, 311 | | Holden A.V. - Chaos | 41 | | Jones R.M. - Mechanics of composite materials | 302 | | Delves L.M. (ed.), Walsh J. (ed.) - Numerical Solution of Integral Equations | 218, 219 | | Fiedler B. - Global Bifurcation of Periodic Solutions with Symmetry | see also 'B-point', 'Flip', 'Flip-flop', 'Flop', 'Freezing', 'Hopf, E.', 'Jug-handle', 'Ljapunov - Schmidt', 'Period', 'Periodic', 'Saddle-node', 'Torus', 'Stationary', 'Symmetry breaking', 'Type' | | Cantwell B.J., Crighton D.G. (Ed), Ablowitz M.J. (Ed) - Introduction to Symmetry Analysis | 325, 330, 335, 339, 348, 352 | | Schroeder M.R. - Schroeder, Self Similarity: Chaos, Fractals, Power Laws | 117, 269, 271 | | Chaisson E.J. - Cosmic Evolution: The Rise of Complexity in Nature | 53-55 | | Nitecki Z. (ed), Robinson C. (ed) - Global Theory of Dynamical Systems | 14, 16, 20, 21 | | Greenberg M.D. - Advanced engineering mathematics | 368 | | Gerstner W., Kistler W.M. - Spiking Neuron Models | 86 | | Sparrow C. - The Lorenz equations: bifurcation, chaos, and strange attractors | 6, 7, 9, 16, 20, 22, 23, 39, 40, 42, 50-75, 91-93, 99, 106, 107, 115, 118, 139, 149, 154, 161-172, 179, 183-191, 208, 210, 218-220 | | Stakgold I. - Green's Functions and Boundary Value Problems | see "Branching" | | Holden A.V. - Chaos | 41 | | Haake F. - Quantum signatures of chaos | 318 | | Hilborn R.C. - Chaos and nonlinear dynamics | 166-171 | | Libai A., Simmonds J.G. - The Nonlinear Theory of Elastic Shells | 124, 125, 133, 136, 271, 272, 302, 303, 306n, 317, 318, 320, 355, 356 | | Struwe M., Rappoport M. - Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems | 164 ff. | | Sanders J.A., Verhulst F. - Averaging methods in nonlinear dynamical systems | 153, 155, 157, 167, 172 | | Atkinson D., Johnson P.W. - Exercises in Quantum Field Theory: A Self-Contained Book of Questions and Answers | 209 | | Landau L.D., Lifschitz E.M. - Fluid Mechanics. Vol. 6 | 109 | | Ascher U.M., Russell R.D., Mattheij R.M. - Numerical Solution of Boundary Value Problems for Ordinary Differential Equations | 490 | | Mattheij R.M.M., Molenaar J. - Ordinary Differential Equations in Theory and Practice (Classics in Applied Mathematics) (No. 43) | 152, 372 | | Zieschang H. - Surfaces and Planar Discontinuous Groups | 69, 179 | | Sattinger D.H., Weaver O.L. - Lie groups and algebras with applications to physics, geometry, and mechanics | 201 | | Cowan B. - Topics In Statistical Mechanics | 198 | | Poole Jr.C.P., Owens F.J. - Introduction to Nanotechnology | 299-302 | | Dresselhaus M.S., Dresselhaus G., Avouris Ph. - Carbon nanotubes | 302, 308, 310, 313 | | Nicolis G., Prigogine I. - Self-organization in nonequilibrium systems | 71, 83 | | Seul M., O'Gorman L., Sammon M.J. - Practical algorithms for image analysis. Description, examples, and code | 181 | | Holmes P., Lumley J.L., Berkooz G. - Turbulence, Coherent Structures, Dynamical Systems and Symmetry | 7, 9-12, 31, 174-187 | | Bogaevski V.T., Povzner A. - Algebraic Methods In Nonlinear Perturbation Theory | 98 | | Prigogine I. - From being to becoming: time and complexity in the physical sciences. | 103, 105, 109-110, 116, 147, 204 | | Grasman J. - Asymptotic methods for relaxation oscillations and applications | 194 | | Nash C. - Differential Topology and Quantum Field Theory | 198 | | van der Giessen E., Wu T. Y. - Advances in Applied Mechanics, Volume 34 | 5, 13, 14, 357, 361, 372, 390, 392, 393, 395-397, 413 | | Mullin T. - The nature of chaos | 11-13 | | Blanchard P., Devaney R.L. - Differential Equations | 96-107 | | Roads С.(ed.) - Musical signal processing | 216 | | Astfalk G. - Applications on Advanced Architecture Computers | 94, 97, 98, 100 | | Sattinger D.H. - Group Theoretic Methods in Bifurcation Theory | 4, 31, 40, 51 | | Akhmediev N., Ankiewicz A. - Dissipative Solitons | 117, 124, 320, 438 | | Krizek M., Somer L., Luca F. - 17 Lectures on Fermat Numbers: From Number Theory to Geometry | 182, 184 | | Wriggers P. - Computational Contact Mechanics | 389 | | Gumowski I., Mira Ch. - Recurrences and Discrete Dynamic Systems | 6, 21, 36, 33, 40, 94, 115, 129, 136, 146, 187, 196 | | Awrejcewicz J., Andrianov I.V., Manevitch L.I. - Asymptotic Approaches in Nonlinear Dynamics: New Trends and Applications | 93-95, 100, 260 | | Haken H. - Synergetics: an introduction | 110, 126 | | Gallavotti G. - Foundations of fluid mechanics | 251 | | Devaney R.L., Keen L. - Chaos and Fractals: The Mathematics Behind the Computer Graphics | 7 | | Murdock J.A. - Perturbations: Theory and Methods (Classics in Applied Mathematics) | 15, 18, 94, 129 | | Renardy M. - Mathematical Analysis of Viscoelastic Flows (Classics in Applied Mathematics) | 67-71 | | Stakgold I. - Green's functions and boundary value problems | see Branching | | Ercolani N.M., Gabitov I.R., Levermore C.D. - Singular limits of dispersive waves | 39-40, 48, 305, 306, 309, 311 | | Lauterborn W., Kurz T. - Coherent optics | 201 | | Lauterborn W., Kurz T. - Coherent optics | 201 | | Rubinstein I. - Electro-diffusion of ions | 125, 157, 213, 220, 235 | | Hirsch M.W., Smale S. - Differential Equations, Dynamical Systems, and Linear Algebra | 227, 255 | | Hackbusch W. - Multi-Grid Methods and Applications | 269f | | Hobbie R., Roth B. - Intermediate Physics for Medicine and Biology, | 266 | | Friedlander S.(ed.), Serre D.(ed.) - Handbook of Mathematical Fluid Dynamics | 445, 473 | | Reithmeier E. - Periodic Solutions of Nonlinear Dynamical Systems: Numerical Computation, Stability, Bifurcation and Transition to Chaos | 3, 7, 47, 53, 66 | | Schaaf R. - Global Solution Branches of Two Point Boundary Value Problems | iii | | Streater R.F. - Statistical Dynamics: A Stochastic Approach to Nonequilibrium Thermodynamics | 127 | | Greiner W. - Classical mechanics. Systems of particles and hamiltonian dynamics | 452 | | Zeidler E. - Oxford User's Guide to Mathematics | 289, 444, 801 | | Pier J.-P. - Mathematical Analysis during the 20th Century | 247 | | Hassani S. - Mathematical Methods: for Students of Physics and Related Fields | 757 | | Kloeden P/, Platen E., Schurz H. - Numerical solution of SDE through computer experiments | 255, 262 | | Wang D. (ed.), Zheng Z. (ed.) - Differential Equations with Symbolic Computations | 1, 121 | | Lemaitre J., Desmorat R. - Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures | 66 | | Meyer K.R. - Periodic Solutions of the N-Body Problem | 98-100 | | Takeuchi Y., Iwasa Y., Sato K. - Mathematics for Life Science and Medicine | 21, 90 | | Ruelle D. - Elements of Differentiable Dynamics and Bifurcation Theory | see also "Specific bifurcations" | | Greenberg M. - Advanced engineering mathematics | 368 | | Cercignani C. - Rarefied Gas Dynamics | 246 | | Lord E., Wilson C. - The Mathematical Description of Shape and Form (Mathematics and Its Applications) | 105 | | Davies P. - The New Physics | 311, 334, 338-339, 343 | | Bangerth W., Rannacher R. - Adaptive Finite Element Methods for Differential Equations | 75 |
|
|
 |
 |
|