|
Электронная библиотека механико-математического факультета Московского государственного университета
|
|
|
|
Результат поиска |
Поиск книг, содержащих: Dominated Convergence Theorem
Книга | Страницы для поиска | Kedlaya K.S., Poonen B., Vakil R. - The William Lowell Putnam Mathematical Competition 1985-2000: Problems, Solutions, and Commentary | 236, 283 | Bartle R.G. - The Elements of Integration | 44, 75 | Taylor M.E. - Partial Differential Equations. Basic theory (vol. 1) | 471 | Bartle R.G. - The Elements of Real Analysis | 359 | Taylor M.E. - Partial Differential Equations. Qualitative studies of linear equations (vol. 2) | 334 | Hunter J.K., Nachtergaele B. - Applied Analysis | 348 | Gray R.M. - Probability, Random Processes and Ergodic Properties | 78 | Rudin W. - Principles of Mathematical Analysis | 155, 167, 321 | Reed M., Simon B. - Methods of Modern mathematical physics (vol. 1) Functional analysis | 17, 24 | Evans L.C. - Partial Differential Equations | 134, 154, 211, 412, 452, 510, 606, 648 | Meyn S.P., Tweedie R.L. - Markov Chains and Stochastic Stability | 518 | Apostol T.M. - Mathematical Analysis | 270 | Olver F.W.J. - Asymptotics and Special Functions | 54 | Hewitt E., Ross K.A. - Abstract Harmonic Analysis (Vol. 1) | 181-182 | Rudin W. - Real and Complex Analysis | 26, 28, 181 | Porter D., Stirling D.S.G. - Integral equations: a practical treatment, from spectral theory to applications | 360 | Hewitt E., Ross K.A. - Abstract Harmonic Analysis (Vol. 2) | 181-182 I | Vaeth M. - Volterra and integral equations of vector functions | 81 | Folland J.B. - Real Analysis: Modern Techniques and Their Applications | 54 | Loeve M. - Probability Theory (part 2) | 126, 72 | Govindarajulu Z. - Sequential Statistics | 197 | Adams R.A. - Sobolev Spaces | 17 | Heikkila S., Lakshmikantham V. - Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations | 4 | Curtain R.F., Pritchard A.J. - Functional Analysis in Modern Applied Mathematics | 90 | Halmos P.R. - Hilbert Space Problem Book | Prefrase, 148, 228 | Kurtz D.S., Swartz C.W. - Theories of Integration | 110, 187, 239 | Wise G.L., Hall E.B. - Counterexamples in Probability and Real Analysis | 104, 151, 199 | Falconer K.J. - Techniques in Fractal Geometry | 12 | Loeve M. - Probability Theory (part 1) | 126 | Reed M., Simon B. - Methods of Modern mathematical physics (vol. 3) Scattering theory | 17, 24 | Berberian S.K. - Fundamentals of Real Analysis | 176 | Pytlak R. - Numerical Methods for Optimal Control Problems with State Constraints | 15 | Malliaris A.G., Brock W.A. - Stochastic methods in economics and finance | 10, 59 | Reed M., Simon B. - Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 17, 24 | Naber G.L. - Topology, Geometry and Gauge Fields | 276 | Gudder S.P. - Stochastic methods in quantum mechanics | 24 | Reed M., Simon B. - Methods of Modern mathematical physics (vol. 4) Analysis of operators | $17^1$, $24^1$ | Shreve S.E. - Stochastic Calculus for Finance 2 | 27 | Lang S. - Real Analysis | 273, 314 | Bichteler K. - Integration - a functional approach | 55, 104 | Rudin W. - Real and complex analysis | 26, 180 | Dieudonne J.A. - Treatise on Analysis, Vol. 2 | 13.8 | Bachman G., Beckenstein E. - Fourier And Wavelet Analysis | 44, 172 | Weir A.J. - Lebesgue Integration and Measure | 106, 109, 113 | Strichartz R.S. - The way of analysis | 625, 666, 670 | Berger M., Cole M. (translator) - Geometry I (Universitext) | 0.6 | Hu S.-T. - Elements of real analysis | 105, 294 | Billingsley P. - Probability and Measure | 72, 213, 214, 16.6, 21.21, 348 | Reed M., Simon B. - Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness | 17, 24 | Wheeden R.L., Zygmund A. - Measure and integral. An introduction to real analysis | 71, 76, 173 | Steele M.J. - Stochastic Calculus and Financial Applications | 278 | Ash R.B., Doléans-Dade C.A. - Probability and Measure Theory | 50, 100, 223 | Emanuel Parzen - Stochastic processes (Classics in Applied Mathematics) | 128,218, 251 | Lang S. - Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 141, 184, 210 | Durrett R. - Probability: Theory and Examples | 16, 49, 264, 468 | Barut A.O., Raczka R. - Theory of Group Representations and Applications | 639 | Rao M.M., Swift R.J. - Probability Theory With Applications | 13 | Bridges D.S. - Foundations Of Real And Abstract Analysis | 104 | Browder A. - Mathematical Analysis: An Introduction | 230 | Goffman C., Pedrick G. - First course in functional analysis | 127 | Gleason A. - Fundamentals of Abstract Analysis | 206 | Semadini Z. - Banach Spaces of Continuous Functions. Vol. 1 | 329 | Hille E. - Methods in classical and functional analysis | 136, 240 | Dym H., McKean H.P. - Fourier Series and Integrals | 10 | Lukacs E. - Characterisic functions | 199, 201 | McShane E.J., Botts T.A. - Real Analysis | 140 | Gelbaum B.R. - Problems in Real and Complex Analysis | s 1.2. 147 | Kuttler K.L. - Modern Analysis | 143, 487 | Bachman G. - Elements of Abstract Harmonic Analysis | 16 | Walters P. - An introduction to ergodic theory | 8 | Ash R. - Basic probability theory | 231 | Bennett C., Sharpley R.C. - Interpolation of Operators | 16 | Bickel P., Doksum K. - Mathematical statistics | 514 | Dunford N., Schwartz J., Bade W.G. - Linear operators. Part 2 | III.8.7 (124), III.6.16 (151), IV.10.10 (828) | Bear H.S. - A Primer of Lebesgue Integration | 68, 123 | Naber G.L. - Topology, Geometry and Gauge Fields | 276 | Salmhofer M. - Renormalization: an introduction | 62 | Dym H., McKean H. - Fourier Series and Integrals (Probability & Mathematical Statistics Monograph) | 10 | Dunford N., Schwartz J.T., Bade W.G. - Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs) | III.3.7 124, III.6.16 151, IV.10.10 328 | Cheney W. - Analysis for Applied Mathematics | 406 | Morrison T.M. - Functional Analysis: An Introduction to Banach Space Theory | 14, 35, 58 |
|
|
|
|
|