|
Электронная библиотека механико-математического факультета Московского государственного университета
|
|
|
|
Результат поиска |
Поиск книг, содержащих: Euler - Lagrange equation
Книга | Страницы для поиска | Agarwal R.P. - Difference Equations and Inequalities. Theory, Methods and Applications. | 783, 784 | Evans L.C. - Partial Differential Equations | 434, 450 | Acheson David - From calculus to chaos | 111 | Olver P.J. - Equivalence, Invariants and Symmetry | 223, 242, 245, 285, 323, 337, 340 | Cox D., Katz S. - Mirror symmetry and algebraic geometry | 412-414, 418, 421, 422, 424 | Kevorkian J., Cole J.D. - Multiple Scale and Singular Perturbation Methods | 74, 80, 81 | Lee J.M. - Riemannian Manifolds: an Introduction to Curvature | 101 | Nayfeh A.H. - Perturbation Methods | 216, 217, 218, 220, 222 | Goldstein H., Poole C., Safko J. - Classical mechanics | 45, 64, 65, 319, 354 | Debnath L. - Nonlinear water waves | 196-198, 317 | Bryant R., Griffiths P., Grossman D. - Exterior differential systems and Euler-Lagrange PDEs | vii, viii, 7, 10, 72, 99, 151, 156 | Debnath L. - Nonlinear Partial Differential Equations for Scientists and Engineers | 100-102, 104, 109, 276 | Safran S.A. - Statistical thermodynamics on surfaces, interfaces and membranes | 81, 87, 117, 170, 171 | Murnaghan F.D. - The calculus of variations | 10, 65, 73, 82, 83 | Carmona R. - Practical Time-Frequency Analysis | 283 | Chipot M., Quittner P. - Handbook of Differential Equations: Stationary Partial Differential Equations, Vol. 3 | 556 | Polyanin A., Manzhirov A.V. - Handbook of Mathematics for Engineers and Scientists | 767 | Debnath L. - Linear Partial Differential Equations for Scientists and Engineers | 9, 629, 633, 634, 646 | Dacorogna B. - Direct Methods in the Calculus of Variations | 3, 111, 117, 119, 126-131, 137, 138, 141-144, 146-148, 155, 159, 178, 191 | Jahn J. - Introduction to the Theory of Nonlinear Optimization | 48 | Roman P. - Introduction to quantum field theory | 20 | Hertrich-Jeromin U. - Introduction to Mobius Differential Geometry | 129 | Reed M., Simon B. - Methods of Modern mathematical physics (vol. 3) Scattering theory | 278 | Choquet-Bruhat Y., Dewitt-Morette C., Dillard-Bleick M. - Analysis, manifolds and physics (vol. 1) | 171 | Pytlak R. - Numerical Methods for Optimal Control Problems with State Constraints | 2, 3 | Newman J.R. - The World of Mathematics, Volume 2 | 889 | Besse A.L. - Einstein Manifolds | 122 | Chaikin P.M., Lubensky T.C. - Principles of condensed matter physics | 301-302, 485, 538, 597, 671 | Gompper G., Schick M. - Self-Assembling Amphiphilic Systems | 81, 87, 98 | Kohno T. - Conformal Field Theory and Topology | 1 | McDuff D., Salamon D. - Introduction to Symplectic Topology | 12, 13, 15, 16, 277, 285, 287 | Jahne B. - Digital Image Processing | 445, 455 | Carmo M.P. - Differential geometry of curves and surfaces | 365 | Pedregal P. - Introduction to Optimization | 141 | Maimistov A.I., Basharov A.M. - Nonlinear optical waves | 244, 305, 394, 395, 405 | Poisson E. - A relativists toolkit | 6, 7, 120, 121, 128 | Stakgold I. - Green's Functions and Boundary Value Problems | 524 | Newman J.R. (ed.) - The World of Mathematics, Volume 4 | 889 | Chan T., Shen J. - Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods | 178, 224, 284, 293 | Fulling S. - Aspects of Quantum Field Theory in Curved Spacetime | 1, 68, 117-118 | Griffits D. - Introduction to elementary particles | 344-345 | Sernelius B.E. - Surface Modes in Physics | 248 | Perkins D.H. - Particle Astrophysics | 65 | Zee A. - Quantum field theory in a nutshell | 13, 74, 424, 434 | Shore S.N. - The Tapestry of Modern Astrophysics | 76 | Pfeiler W. - Alloy Physics: A Comprehensive Reference | 402 | Halzen F., Martin A.D. - Quarks and Leptons: An Introductory Course in Modern Particle Physics | 312 | van der Giesen E. (Editor), Wu T.Y. (Editor) - Solid Mechanics, Volume 36 | 21 | Straumann N. - General relativity and relativistic astrophysics | see 'Variational principle' | Manton N., Sutcliffe P. - Topological solitons | 16, 25 | Fordy A.P., Wood J.C. (eds.) - Harmonic maps and integrable systems | 130 | Riley, Hobson - Mathematical Methods for Physics and Engineering | 835-836 | Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. - Analysis, manifolds and physics. Part I. | 171 | Agarwal R.P., O'Regan D., Grace S.R. - Oscillation Theory for Second Order Linear, Half-Linear | 94 | Dickey L.A. - Soliton Equations and Hamiltonian Systems | 30 | Atkins P. - Molecular Quantum Mechanics | 48 | Bornemann F. - Homogenization in Time of Singularly Perturbed Mechanical Systems (Lecture Notes in Mathematics, 1687) | 18, 51 | Hristev R.M. - The artificial neural network book | 176 | Chaikin P., Lubensky T. - Principles of condensed matter physics | 301-2, 485, 538, 597, 671 | Mielke A. - Hamiltonian and Lagrangian Flows on Center Manifolds: With Applications to Elliptic Variational Problems | 96 | Feher L. (ed.), Stipsicz A. (ed.), Szenthe J. (ed.) - Topological quantum field theories and geometry of loop spaces | 97 | Ram-Mohan R. - Finite Element and Boundary Element Applications in Quantum Mechanics | 13 | Stakgold I. - Green's functions and boundary value problems | 524 | Greiner W., Reinhardt J. - Field quantization | 5, 32, 33, 57, 118, 149, 152, 172 | Donoghue W.F. - Distributions and Fourier transforms | 97 | Saito Y. - Statistical physics of crystal growth | 11 | Lemons D.S. - Perfect form: Variational principles, methods, and applications in elementary physics | 22-23, 27-28 | Mathews J., Walker R.L. - Mathematical methods of physics | 324 | Anderssen R.S., de Hoog F.R., Lukas M.A. - The application and numerical solution of integral equations | 154, 165 | Atkins P.W., Friedman R.S. - Molecular Quantum Mechanics | 485 | Francis D Murnaghan - The calculus of variations | 10, 65, 73, 82, 83 | Milonni P.W. - The quantum vacuum: introduction to quantum electrodynamics | 362 | Moriyasu K. - An Elementary Primer for Gauge Theory | 16 | Zeidler E. - Applied Functional Analysis: Applications to Mathematical Physics | 125 | Vafa C., Zaslow E. - Mirror symmetry | 170 | Bluman G.W. - Similarity Methods for Differential Equations | 117 | Greiner W. - Classical mechanics. Systems of particles and hamiltonian dynamics | 355 | Zeidler E. - Oxford User's Guide to Mathematics | 419, 431, 443, 477, 910 | Fuchs M., Seregin G. - Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids | 147 | Hassani S. - Mathematical Methods: for Students of Physics and Related Fields | 729-731, 734-736, 738, 739 | Wang D. (ed.), Zheng Z. (ed.) - Differential Equations with Symbolic Computations | 309, 313 | Lee A. - Mathematics Applied to Continuum Mechanics | see "Euler equation" | Groesen E., Molenaar J. - Continuum Modeling in the Physical Sciences (Monographs on Mathematical Modeling and Computation) | 149, 154 | Morii T., Lim C., Mukherjee S. - The physics of the standard model and beyond | 34 | Nahin P.J. - When Least Is Best: How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible | 145, 231-242, 248-250, 252-257, 260-262, 359-360, see also "Beltrami's identity" | Friedman A., Littman W. - Industrial Mathematics: A Course in Solving Real-World Problems | 93, 95 | Blanchard P., Bruening E. - Mathematical Methods in Physics: Distributions, Hilbert Space Operators, and Variational Method | 376, 401 | Kleinert H. - Gauge fields in condensed matter (part 2) | 106, 108, 290 | Zorich V.A., Cooke R. - Mathematical analysis II | 91 | Cheney W. - Analysis for Applied Mathematics | 155 | Zorich V. - Mathematical Analysis | 91 | Stamatescu I., Seiler E. - Approaches to Fundamental Physics | 99 | Choquet-Bruhat Y., Dewitt-Morette C. - Analysis, manifolds and physics | 171 | Mathews J., Walker R.L. - Mathematical Methods of Physics | 324 |
|
|
|
|
|