| Книга | Страницы для поиска |
| Guillemin V., Pollack A. - Differential topology | 13, 19, 56 |
| Taylor M.E. - Partial Differential Equations. Basic theory (vol. 1) | 11, 33, 54 |
| Hunter J.K., Nachtergaele B. - Applied Analysis | 380, 393 |
| van der Dries L. - Tame topology and O-minimal structures | 112 |
| Rudin W. - Principles of Mathematical Analysis | 221 |
| Reed M., Simon B. - Methods of Modern mathematical physics (vol. 1) Functional analysis | 367 |
| Keisler H.J. - Elementary calculus | 386 |
| Evans L.C. - Partial Differential Equations | 106, 197, 198, 591, 592, 632 |
| Olver P.J. - Equivalence, Invariants and Symmetry | 12, 275, 423 |
| Donaldson K., Kronheimer P.B. - Geometry of Four-Manifolds | 419 |
| Coutinho S.C. - A primer of algebraic D-modules | 28 |
| Eisenbud D. - Commutative algebra with a view toward algebraic geometry | 180, 184, 208 |
| Rudin W. - Real and Complex Analysis | 173 |
| Lee J.M. - Introduction to Smooth Manifolds | 105 |
| Millman R.S., Parker G.D. - Elements of Differential Geometry | 202 |
| Williamson R.E., Crowell R.H., Trotter H.F. - Calculus of vector functions | 201, 210, 417 |
| Edwards H. - Advanced Calculus: A Differential Forms Approach | 454 (Ex. 14, 15) |
| Estep D.J. - Practical Analysis in One Variable | 183, 186, 444 |
| Hall G.R., Lee - Continuous dynamical systems | 78, 79, 93 |
| Sagan H. - Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 353, 371 |
| Milnor J.W. - Topology from the Differentiable Viewpoint | 4, 8 |
| Searcid M. - Metric Spaces | 210 |
| Pugh C.C. - Real Mathematical Analysis | 152, 289 |
| Choquet-Bruhat Y., Dewitt-Morette C., Dillard-Bleick M. - Analysis, manifolds and physics (vol. 1) | 90 |
| Lange K. - Optimization | 58-59 |
| Boothby W.M. - An introduction to differentiable manifolds and riemannian geometry | 41-46 |
| Devaney R.L. - An introduction to chaotic dynamical systems | 172 |
| Reed M., Simon B. - Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 367 |
| Khuri A.I. - Advanced calculus with applications in statistics | 280, 305 |
| Platonov V., Rapinchuk A. - Algebraic groups and number theory | 110 |
| Poeschel J. - Inverse Spectral Theory | 142 |
| Rudin W. - Functional analysis | 252 |
| Intriligator M.D., Arrow K.J. - Handbook of Mathematical Economics (vol. 4) | 1965 |
| Brickell F., Clark R.S. - Differentiable Manifolds | 13, 63 |
| Hale J.K., Kocak H. - Dynamics and Bifurcations | 541 |
| Morita S. - Geometry of differential forms | 5, 6 |
| Singer I.M., Thorpe J.A. - Lecture Notes on Elementary Topology and Geometry | 119 |
| Golubitsky M., Guillemin V. - Stable Mappings and Their Singularities | 2 |
| Carmo M.P. - Differential geometry of curves and surfaces | 131 |
| Morita Sh. - Geometry of Differential Forms | 5, 6 |
| O'Neill B. - Elementary differential geometry | 39, 161-162 |
| Sheil-Small T. - Complex polynomials | 61 |
| Aubin T. - Nonlinear Analysis on Manifolds: Monge-Ampere Equations | 72 |
| Strichartz R.S. - The way of analysis | 171, 571, 592 |
| Bamberg P.G., Sternberg Sh. - A Course in Mathematics for Students of Physics: Volume 1 | 230-237 |
| O'Neill B. - Semi-Riemannian Geometry: With Applications to Relativity | 10 |
| Dubrovin B.A., Fomenko A.T. - Modern Geometry - Methods and Applications: The Geometry of Surfaces, Transformation Groups and Fields | 6 |
| Munkres J.R. - Analysis on manifolds | 69 |
| Stetter H. J. - Numerical polynomial algebra | 10 |
| Kuttler K. - Calculus, Applications and Theory | 150 |
| Bamberg P.G., Sternberg S. - A Course in Mathematics for Students of Physics, Vol. 1 | 230-7 |
| Bhaya A., Kaszkurewicz E. - Control Perspectives on Numerical Algorithms and Matrix Problems | 45 |
| Hormander L. - The analysis of linear partial differential operators I | 9 |
| Gilmore R. - Lie Groups, Lie Algebras and Some of Their Applications | 36 |
| Marsden J., Weinstein A. - Calculus unlimited | 106 |
| Oprea J. - Differential Geometry and Its Applications | 90 |
| Narasimhan R. - Analysis on Real and Complex Manifolds | 18, 65 |
| Anderson G.A., Granas A. - Fixed Point Theory | 59 |
| Boothby W.M. - An Introduction to Differentiable Manifolds and Riemannian Geometry | 41-46 |
| Bishop R.L., Crittenden R.J. - Geometry of manifolds | 11 |
| Moerdijk I., Reyes G.E. - Models for smooth infinitesimal analysis | 297 |
| de Souza P.N., Silva J.-N. - Berkeley Problems in Mathematics | 241-243, 254-256, 268, 341 |
| Browder A. - Mathematical Analysis: An Introduction | 192, 257 |
| Morita S. - Geometry of Differential Forms | 5, 6 |
| Ortega J. M. - Iterative Solution of Nonlinear Equations in Several Variables | 125, 131 |
| Brickell F., Clark R.S. - Differentiable manifolds | 13, 63 |
| Hermann R. - Differential geometry and the calculus of variations | 28 |
| Argyros I. - Computational Theory of Iterative Methods | 217 |
| Duistermaat J.J, Kolk J.A.C. - Distributions: theory and applications | 78 |
| Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. - Analysis, manifolds and physics. Part I. | 90 |
| Serre J.-P. - Lie Algebras and Lie Groups | 73, 83 |
| Gelbaum B.R. - Problems in Real and Complex Analysis | s 7.3. 377 |
| Porteous I.R. - Clifford Algebras and the Classical Groups | 211 |
| Taylor M.E. - Partial Differential Equations. Nonlinear Equations (vol. 3) | 97 |
| Carroll R.W. - Mathematical physics | 230 |
| Kuttler K.L. - Modern Analysis | 71, 84 |
| Silverman J. - The arithmetic of dynamical systems | 115, 144 |
| de Leon M., Rodrigues P.R. - Methods of differential geometry in analytical mechanics | 4 |
| Hsiung C.-C. - A first course in differential geometry | 44 |
| Tuynman G.M. - Supermanifolds and Supergroups: Basic Theory | 121 |
| Hirsch M.W., Smale S. - Differential Equations, Dynamical Systems, and Linear Algebra | 337 |
| Kuttler K. - Notes for Partial Differrential Equations | 63 |
| Frankel T. - The geometry of physics: an introduction | 29 |
| Arnold V.I. - Ordinary Differential Equations | 39 |
| Vidyasagar M. - Nonlinear systems analysis | 377 |
| Spivak M. - Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus | 35 |
| Greub W., Halperin S., Vanstone R. - Connections, curvature, and cohomology. Volume 1 | 12 |
| Ruelle D. - Elements of Differentiable Dynamics and Bifurcation Theory | 141-142 |
| Milnor J.W., Stasheff J.D. - Characteristic Classes. (Am-76), Vol. 76 | 5, 116 |
| Frankel T. - The geometry of physics: An introduction | 29 |
| Hestenes D., Sobczyk G. - Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics (Fundamental Theories of Physics) | 269, 270 |
| Schutz B. - Geometrical Methods in Mathematical Physics | 9, 35, 49 |
| Klingenberg W. - A Course in Differential Geometry (Graduate Texts in Mathematics) | 6 |
| Sagle A. A. - Introduction to Lie groups and Lie algebras | 21, 70 |
| Choquet-Bruhat Y., Dewitt-Morette C. - Analysis, manifolds and physics | 90 |
| Griffiths P., Harris J. - Principles of algebraic geometry | 18 |