Документ взят из кэша поисковой машины. Адрес оригинального документа : http://lib.mexmat.ru/books/39504
Дата изменения: Unknown
Дата индексирования: Sun Apr 10 19:19:27 2016
Кодировка: Windows-1251
Kurland B.F., Heagerty P.J. - Directly parameterized regression conditioning on being alive: analysis of longitudinal data truncated by deaths :: Электронная библиотека попечительского совета мехмата МГУ
 
Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Kurland B.F., Heagerty P.J. - Directly parameterized regression conditioning on being alive: analysis of longitudinal data truncated by deaths
Kurland B.F., Heagerty P.J. - Directly parameterized regression conditioning on being alive: analysis of longitudinal data truncated by deaths

Читать книгу
бесплатно

Скачать книгу с нашего сайта нельзя

Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Directly parameterized regression conditioning on being alive: analysis of longitudinal data truncated by deaths

Авторы: Kurland B.F., Heagerty P.J.

Аннотация:

For observational longitudinal studies of geriatric populations, outcomes such as disability or cognitive functioning are often censored by death. Statistical analysis of such data may explicitly condition on either vital status or survival time when summarizing the longitudinal response. For example a patternmixture model characterizes the mean response at time t conditional on death at time S = s (for s > t), and thus uses future status as a predictor for the time t response. As an alternative, we define regression conditioning on being alive as a regression model that conditions on survival status, rather than a specific survival time. Such models may be referred to as partly conditional since the mean at time t is specified conditional on being alive (S > t), rather than using finer stratification (S = s for s > t). We show that naive use of standard likelihood-based longitudinal methods and generalized estimating equations with non-independence weights may lead to biased estimation of the partly conditional mean model. We develop a taxonomy for accommodation of both dropout and death, and describe estimation for binary longitudinal data that applies selection weights to estimating equations with independence working correlation. Simulation studies and an analysis of monthly disability status illustrate potential bias in regression methods that do not explicitly condition on survival.


Язык: en

Рубрика: Биология/

Тип: Статья

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 2005

Количество страниц: 18

Добавлена в каталог: 20.11.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2016
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте