|
Электронная библиотека Попечительского совета механико-математического факультета Московского государственного университета
|
|
|
|
|
Hillman J.A. - Alexander Ideals of Links |
|
|
Предметный указатель |
Adjoint map of a pairing, Adb 117
Alexander class, 119
Alexander ideals, 40
Alexander module, A(G), A(L) 40
Alexander module, truncated, 59
Alexander nullity, 42
Alexander polynomial, 40
Alexander polynomial, reduced, 102
Algebraic link 112
Annihilator ideal, Ann M 27
Augmentation of the Laurent polynomial ring, 11
BAILEY: theorem on presentations of link modules (u=2) 93
Blanchfield duality 120
Blanchfield pairing, , 121
BLANCHFIELD: theorem on symmetry of Alexander polynomials 84 119
Boundary concordance 124 150
Boundary concordance, 150
Boundary link 7
Boundary link, 141
Cartan - Leray spectral sequence 12
Chen group, Q(G;q) 50
Chen kernel G(') 63
COCHRAN: lemma on 43
Concordance 3
Conjugate module, 12
Conway identity 99
Cover, finite cyclic 113
Cover, maximal abelian, X' 10
Cover, maximal free, 13
Cover, total linking number, 101
CR0WELL: equivalence of corresponding group and module sequences 41
Cramer's Rule 28
CROWELL and BROWN: theorem on homology boundary links 67
CROWELL and STRAUSS: theorem on elementary ideals 49
Crowell exact sequence 40
CROWELL: theorem on splitting link module sequences 48
Divisorial hull, 29
Elementary ideal, 27
Equivariant (co)homology, 11
Exterior, link, X(L) 4
Fibred link 109
Group, Chen, Q(G;q) 50
Group, free metabelian, 67
Group, free, 8
Group, link, G(L) 4
Group, ribbon, H(R) 21
GUTIERREZ: characterization of trivial n-link 8
HEMPEL: lemma on unknotting by surgery 136
Hermitean pairing, (-) 117
Homology boundary link 8
Homology boundary link, (weak) 143
Hosokawa polynomial, 102
HOSOKAWA: characterization of reduced Alexander polynomial 103
I-equivalence 3
Ideal class 37
Involution of the Laurent polynomial ring, 11
Isotopy, local 3
KERVAIRE: characterization of n-link groups, 5
KIDWELL: theorem on divisibility of reduced Alexander polynomial 106
Knot 2
Laurent polynomial ring, 11
LEVINE: lemma on elementary ideals 32
Link exterior, X(L) 4
Link group, G(L) 4
Link module (Bailey) 93
Link module sequence (Crowell) 48
Link type 2
Link, 2
Link, boundary 7
| Link, homology boundary 8
Link, ribbon 16
Link-homotopy 4
Linking number 6
Linking pairing 118
Local isotopy 3
Longitude, longitudinal curve 6
MASSEY: theorem on completions of link module sequences 51
Mayer - Vietoris sequence for (homology) boundary link 14 12
Meridian, meridianal curve 5
Milnor signature 135
MILNOR: theorem on presentation of nilpotent quotients 10
monodromy 112
Murasugi nullity, 140
MURASUGI: theorem on Chen groups 58
MURASUGI: theorem on link-homotopy 98
Neutral linking pairing 118
NIELSEN: theorem on primitive elements in F(2) 79
Nilpotent quotient, 10
Normal closure, 'S' 5
Null concordant 3
Nullity, Alexander, 42
Nullity, Murasugi, 140
Nullity, reduced, 108
Orientation convention 2
Perfect pairing 117
Poincare' duality 12
Preabelian presentation 10
Primitive element of free group 79
Primitive pairing 117
Property r 18
Pseudozero 32
Rank 27
Reduced Alexander polynomial, 102
Reduced nullity, 108
Ribbon conjecture 17
Ribbon group, H(R) 21
Ribbon link 16
Ribbon map 16
ROLFSEN: theorem on isotopy of links 3
Seifert surface 7
Seifert surface, singular 8
SEIFERT:characterization of knot polynomial 91
Sesquilinear pairing 117
Short free resolution 27
Slice link 3
Slit 16
SMYTHE: conjecture on links with Alexander polynomial 0 54
SMYTHE: theorem on boundary links 8
Splittable link 5
STALLINGS: theorem on homology and nilpotent quotients 10
Steinitz - Fox - Smythe invariant, , 37
Sum of linking pairings 118
Surgery 17 136
Throughcut 16
Torres conditions 83
Torsion (sub-) module, 27
Total linking number cover, 101
Total linking number homomorphism 144
TRALDI: theorem on modulo 90
TRALDI: theorem on higher elementary ideals in link module sequences 49
TRALDI: theorem on higher elementary ideals of sublinks 86
Tristram signatures 135
Universal Coefficient spectral sequence 12
Wang sequence 101
Weak concordance 116
Wirtinger presentation 9
Witt equivalence 118
Witt group, 118
|
|
|
Реклама |
|
|
|
|
|
|