Документ взят из кэша поисковой машины. Адрес оригинального документа : http://kodomo.fbb.msu.ru/hg/allpy/file/88631907f23d/allpy/graph.py
Дата изменения: Unknown
Дата индексирования: Sat Mar 1 19:44:21 2014
Кодировка:
allpy: 88631907f23d allpy/graph.py

allpy

view allpy/graph.py @ 306:88631907f23d

Allow user to specify gap characters when parsing alignment
author Daniil Alexeyevsky <me.dendik@gmail.com>
date Thu, 16 Dec 2010 19:24:22 +0300
parents 73f9779491ef
children 799a60f2c70a
line source
1 # -*- coding: utf-8 -*-
3 from datetime import datetime, timedelta
4 from copy import copy
6 class TimeoutError(Exception):
7 pass
11 class Graph(object):
12 """ Undirected weighted graph
14 Data:
15 nodes -- set of elements
16 lines -- {line: cost}.
17 line is frozenset([e1, e2])
18 cost is float in (0, 1] or 1 (if all lines are equal)
20 >>> g = Graph(set([1,2,3]), {frozenset([1,2]): 1})
21 >>> g.fast_cliques()
22 Fast algorithm started
23 [frozenset([1, 2]), frozenset([3])]
24 >>> g = Graph(set([1,2,3]), {frozenset([1,2]): 1, frozenset([1,1]): 1})
25 >>> g.fast_cliques()
26 Fast algorithm started
27 [frozenset([1, 2]), frozenset([3])]
28 >>> g = Graph(set([1,2,3,4]), {frozenset([1,2]): 0.98, frozenset([1,3]): 0.98,
29 ... frozenset([2,3]): 0.1, frozenset([1,1]): 1})
30 >>> g.fast_cliques()
31 Fast algorithm started
32 [frozenset([1, 2, 3]), frozenset([4])]
33 >>> g.bron_kerbosh()
34 Bron and Kerbosh algorithm started
35 [frozenset([1, 2, 3]), frozenset([4])]
36 >>> g.cliques()
37 Bron and Kerbosh algorithm started
38 [frozenset([1, 2, 3])]
39 """
41 def __init__(self, nodes=None, lines=None):
42 if not nodes:
43 nodes = set()
44 if not lines:
45 lines = dict()
46 self.nodes = set(nodes) # copy
47 self.lines = {}
48 for line, cost in lines.items():
49 if len(line) == 2 and line.issubset(self.nodes):
50 self.lines[line] = cost
52 @staticmethod
53 def line(k1, k2):
54 """ Construct object, representing line of graph """
55 return frozenset([k1, k2])
57 def bounded(self, k1, k2):
58 """ Return if these two nodes of the graph are bounded with line """
59 return k1 == k2 or Graph.line(k1, k2) in self.lines
61 def count_one(self, node):
62 """ Returns number of connections of this node """
63 return len([node1 for node1 in self.nodes if self.bounded(node, node1)]) - 1
65 def cost_one(self, node):
66 """ Returns sum of costs of all connections of this node """
67 return sum([self.lines.get(Graph.line(node, node1), 0)
68 for node1 in self.nodes if node != node1])
70 def count_all(self):
71 """ Returns {node: number of connections of this node} """
72 c = dict([(node, 0) for node in self.nodes])
73 for line in self.lines:
74 for node in line:
75 c[node] += 1
76 return c
79 def drop_node(self, node):
80 """ Remove node and all involved lines """
81 for node1 in self.nodes:
82 self.lines.pop(Graph.line(node, node1), None)
83 self.nodes.discard(node)
85 def add_node(self, node, parent_graph):
86 """ Add node and corresponding lines from parent_graph
88 Added lines should be contained in self graph
89 (takes care of hanging lines)
90 """
91 self.nodes.add(node)
92 for node1 in self.nodes:
93 line = Graph.line(node, node1)
94 if line in parent_graph.lines:
95 self.lines[line] = parent_graph.lines[line]
97 def drop_nodes(self, nodes):
98 """ Run drop_node for each of given nodes
100 Returns if nodes was not empty (ugly beauty)
101 """
102 for node in nodes:
103 self.drop_node(node)
104 return bool(nodes)
106 def drop_if_count(self, minsize):
107 """ Run drop_node for each node, that has less than minsize lines """
108 while True:
109 if not self.drop_nodes([node for (node, count)
110 in self.count_all().items() if count < minsize]):
111 break
113 def bron_kerbosh(self, timeout=-1, minsize=1):
114 """ Bron and Kerboch algorithm implementation
116 returns list of cliques
117 clique is frozenset
118 if timeout=-1, it means infinity
119 if timeout has happened, raises TimeoutError
121 lava flow
122 """
123 print 'Bron and Kerbosh algorithm started'
124 cliques = []
126 depth = 0
127 list_candidates = [copy(self.nodes)]
128 list_used = [set()]
129 compsub = []
131 start_time = datetime.now()
132 timeout_timedelta = timedelta(timeout)
134 while True: # ????????...
135 if depth == -1:
136 break # ??????! ?????? ???????????????? (????????????????) ????????????????
137 candidates = copy(list_candidates[depth])
138 used = copy(list_used[depth])
139 if not candidates: # ???????? candidates ???? ??????????
140 depth -= 1
141 if compsub:
142 compsub.pop()
143 continue
145 # ?? used ???? ???????????????? ??????????????, ?????????????????????? ???? ?????????? ?????????????????? ???? candidates
146 # (?????? ???? used ???? ?????????????????? ???????? ???? ?? 1 ???? candidates)
147 used_candidates = False
149 for used1 in used:
150 for candidates1 in candidates:
151 if not self.bounded(used1, candidates1):
152 break
153 else:
154 used_candidates = True
156 if used_candidates:
157 depth -= 1
159 if compsub:
160 compsub.pop()
161 continue
163 # ???????????????? ?????????????? v ???? candidates ?? ?????????????????? ???? ?? compsub
164 v = candidates.pop()
165 candidates.add(v)
166 compsub.append(v)
167 # ?????????????????? new_candidates ?? new_used, ???????????? ???? candidates ?? used ??????????????, ???? ?????????????????????? ?? v
168 # (???? ????????, ???????????????? ???????????? ?????????????????????? ?? v)
169 new_candidates = set()
170 for candidates1 in candidates:
171 if self.bounded(candidates1, v) and candidates1 != v:
172 new_candidates.add(candidates1)
174 new_used = set()
175 for used1 in used:
176 if self.bounded(used1, v) and used1 != v:
177 new_used.add(used1)
179 # ?????????????? v ???? candidates ?? ???????????????? ?? used
180 list_candidates[depth].remove(v)
181 list_used[depth].add(v)
182 # ???????? new_candidates ?? new_used ??????????
183 if not new_candidates and not new_used:
184 # compsub ??? ??????????
185 if len(compsub) >= minsize:
186 cliques.append(frozenset(compsub))
187 else:
188 # ?????????? ???????????????????? ???????????????? bron_kerbosh(new_candidates, new_used)
189 depth += 1
191 # TIMEOUT check start
192 if timeout != -1:
193 if datetime.now() - start_time > timeout_timedelta:
194 raise TimeoutError
195 # TIMEOUT check end
197 if depth >= len(list_candidates):
198 list_candidates.append(set())
199 list_used.append(set())
201 list_candidates[depth] = copy(new_candidates)
202 list_used[depth] = copy(new_used)
204 continue
206 # ?????????????? v ???? compsub
207 if compsub:
208 compsub.pop()
210 return cliques
213 def fast_cliques(self, minsize=1):
214 """ returns list of cliques
216 clique is frozenset
217 """
218 print 'Fast algorithm started'
219 cliques = []
221 while True:
222 graph = Graph(self.nodes, self.lines)
223 for clique in cliques:
224 graph.drop_nodes(clique)
225 if not graph.nodes:
226 break
228 while True:
229 # drop nodes, while its is possible
230 if len(graph.nodes) == 1:
231 break
232 c = graph.count_all()
233 min_count = min(c.values())
234 bad_nodes = [node for (node, count) in c.items() if count == min_count]
235 if len(bad_nodes) == len(graph.nodes) and min_count != 0:
236 break
238 costs = dict([(node, graph.cost_one(node)) for node in bad_nodes])
239 min_cost = min(costs.values())
240 for node, cost in costs.items():
241 if cost == min_cost:
242 graph.drop_node(node)
243 break
245 while True:
246 # add nodes, while its is possible
247 candidats = {}
248 for node in self.nodes:
249 c = len([i for i in graph.nodes if self.bounded(node, i)])
250 if c == len(self.nodes):
251 graph1 = Graph(graph.nodes, graph.lines)
252 graph1.add_node(node, self)
253 candidats[node] = graph1.cost_one(node)
254 if not candidats:
255 break
257 max_cost = max(candidats.values())
258 node = [node for (node, cost) in candidats.items() if cost == max_cost][0]
259 graph.add_node(node, self)
261 cliques.append(frozenset(graph.nodes))
263 return cliques
266 def cliques(self, timeout=-1, minsize=1):
267 """ returns length-sorted list of cliques
269 clique is frozenset
271 can change self!
273 try to execute bron_kerbosh
274 if it raises TimeoutError, executes fast_cliques
275 """
277 self.drop_if_count(minsize)
279 try:
280 cliques = self.bron_kerbosh(timeout, minsize)
281 cliques.sort(key=lambda clique: len(clique), reverse=True)
282 except TimeoutError:
283 cliques = self.fast_cliques(minsize)
284 return cliques
286 if __name__ == "__main__":
287 import doctest
288 doctest.testmod()