Документ взят из кэша поисковой машины. Адрес оригинального документа : http://kodomo.fbb.msu.ru/hg/allpy/annotate/578bc81d5e62/allpy/base.py
Дата изменения: Unknown
Дата индексирования: Sun Mar 2 07:05:21 2014
Кодировка:
allpy: allpy/base.py annotate

allpy

annotate allpy/base.py @ 303:578bc81d5e62

Added explanation for algorithm to add gapped line to base Alignment
author Daniil Alexeyevsky <me.dendik@gmail.com>
date Thu, 16 Dec 2010 19:08:16 +0300
parents b92bfa04395e
children 88631907f23d
rev   line source
me@261 1 import sys
me@261 2 import os
me@262 3 import os.path
me@261 4 from tempfile import NamedTemporaryFile
me@262 5 import urllib2
me@261 6
me@261 7 import config
me@284 8 import fasta
me@261 9 from graph import Graph
me@262 10 from Bio.PDB.DSSP import make_dssp_dict
me@260 11 import data.codes
me@260 12
me@260 13 class MonomerType(object):
me@260 14 """Class of monomer types.
me@260 15
me@260 16 Each MonomerType object represents a known monomer type, e.g. Valine,
me@260 17 and is referenced to by each instance of monomer in a given sequence.
me@260 18
me@260 19 - `name`: full name of monomer type
me@260 20 - `code1`: one-letter code
me@260 21 - `code3`: three-letter code
me@260 22 - `is_modified`: either of True or False
me@260 23
me@260 24 class atributes:
me@260 25
me@260 26 - `by_code1`: a mapping from one-letter code to MonomerType object
me@260 27 - `by_code3`: a mapping from three-letter code to MonomerType object
me@260 28 - `by_name`: a mapping from monomer name to MonomerType object
me@260 29 - `instance_type`: class of Monomer objects to use when creating new
me@260 30 objects; this must be redefined in descendent classes
me@260 31
me@260 32 All of the class attributes MUST be redefined when subclassing.
me@260 33 """
me@260 34
me@260 35 by_code1 = {}
me@260 36 by_code3 = {}
me@260 37 by_name = {}
me@260 38 instance_type = None
me@260 39
me@260 40 def __init__(self, name="", code1="", code3="", is_modified=False):
me@260 41 self.name = name.capitalize()
me@260 42 self.code1 = code1.upper()
me@260 43 self.code3 = code3.upper()
me@260 44 self.is_modified = bool(is_modified)
me@260 45 if not is_modified:
me@260 46 self.by_code1[self.code1] = self
me@260 47 self.by_code3[code3] = self
me@260 48 self.by_name[name] = self
me@260 49 # We duplicate distinguished long names into MonomerType itself,
me@260 50 # so that we can use MonomerType.from_code3 to create the relevant
me@260 51 # type of monomer.
me@260 52 MonomerType.by_code3[code3] = self
me@260 53 MonomerType.by_name[name] = self
me@260 54
me@260 55 @classmethod
me@260 56 def _initialize(cls, type_letter, codes=data.codes.codes):
me@260 57 """Create all relevant instances of MonomerType.
me@260 58
me@260 59 `type_letter` is either of:
me@260 60
me@260 61 - 'p' for protein
me@260 62 - 'd' for DNA
me@260 63 - 'r' for RNA
me@260 64
me@260 65 `codes` is a table of monomer codes
me@260 66 """
me@260 67 for type, code1, is_modified, code3, name in codes:
me@260 68 if type == type_letter:
me@260 69 cls(name, code1, code3, is_modified)
me@260 70
me@260 71 @classmethod
me@260 72 def from_code1(cls, code1):
me@260 73 """Return monomer type by one-letter code."""
me@260 74 return cls.by_code1[code1.upper()]
me@260 75
me@260 76 @classmethod
me@260 77 def from_code3(cls, code3):
me@260 78 """Return monomer type by three-letter code."""
me@260 79 return cls.by_code3[code3.upper()]
me@260 80
me@260 81 @classmethod
me@260 82 def from_name(cls, name):
me@260 83 """Return monomer type by name."""
me@260 84 return cls.by_name[name.capitalize()]
me@260 85
me@260 86 def instance(self):
me@260 87 """Create a new monomer of given type."""
me@260 88 return self.instance_type(self)
me@260 89
me@260 90 def __eq__(self, other):
me@260 91 if hasattr(other, "type"):
me@260 92 return self is other.type
me@260 93 return self is other
me@260 94
me@260 95 class Monomer(object):
me@260 96 """Monomer object.
me@260 97
me@260 98 attributes:
me@260 99
me@260 100 - `type`: type of monomer (a MonomerType object)
me@260 101
me@282 102 class attributes:
me@282 103
me@282 104 - `monomer_type`: either MonomerType or one of it's subclasses, it is used
me@282 105 when creating new monomers. It SHOULD be redefined when subclassing
me@282 106 Monomer.
me@260 107 """
me@260 108 monomer_type = MonomerType
me@260 109
me@260 110 def __init__(self, type):
me@260 111 self.type = type
me@260 112
me@260 113 @classmethod
me@260 114 def from_code1(cls, code1):
me@260 115 return cls(cls.monomer_type.by_code1[code1.upper()])
me@260 116
me@260 117 @classmethod
me@260 118 def from_code3(cls, code3):
me@260 119 return cls(cls.monomer_type.by_code3[code3.upper()])
me@260 120
me@260 121 @classmethod
me@260 122 def from_name(cls, name):
me@260 123 return cls(cls.monomer_type.by_name[name.capitalize()])
me@260 124
me@260 125 def __eq__(self, other):
me@260 126 if hasattr(other, "type"):
me@260 127 return self.type is other.type
me@260 128 return self.type is other
bnagaev@239 129
bnagaev@239 130 class Sequence(list):
me@274 131 """Sequence of Monomers.
bnagaev@243 132
me@274 133 This behaves like list of monomer objects. In addition to standard list
me@274 134 behaviour, Sequence has the following attributes:
me@270 135
me@274 136 * name -- str with the name of the sequence
me@274 137 * description -- str with description of the sequence
me@274 138 * source -- str denoting source of the sequence
me@266 139
me@274 140 Any of them may be empty (i.e. hold empty string)
me@275 141
me@275 142 Class attributes:
me@282 143
me@275 144 * monomer_type -- type of monomers in sequence, must be redefined when
me@275 145 subclassing
me@274 146 """
me@270 147
me@275 148 monomer_type = Monomer
me@270 149
me@275 150 name = ''
me@275 151 description = ''
me@275 152 source = ''
me@275 153
me@275 154 def __init__(self, sequence=[], name=None, description=None, source=None):
me@275 155 super(Sequence, self).__init__(sequence)
me@275 156 if hasattr(sequence, 'name'):
me@275 157 vars(self).update(vars(sequence))
me@275 158 if name:
me@275 159 self.name = name
me@275 160 if description:
me@275 161 self.description = description
me@275 162 if source:
me@275 163 self.source = source
me@270 164
me@262 165 def __str__(self):
me@275 166 """Returns sequence in one-letter code."""
me@275 167 return ''.join(monomer.code1 for monomer in self)
me@270 168
me@273 169 @classmethod
me@273 170 def from_string(cls, string, name='', description=''):
me@273 171 """Create sequences from string of one-letter codes."""
me@273 172 monomer = cls.monomer_type.from_code1
me@273 173 monomers = [monomer(letter) for letter in string]
me@273 174 return cls(monomers, name, description)
me@262 175
me@284 176 @classmethod
me@284 177 def from_fasta(cls, file):
me@284 178 """Read sequence from FASTA file.
me@286 179
me@284 180 File must contain exactly one sequence.
me@284 181 """
me@284 182 sequences = fasta.parse_file(file)
me@284 183 assert len(sequences) == 1
me@287 184 name, description = sequences.keys()[0]
me@284 185 return cls(sequences[header], name, description, file.name)
me@284 186
me@295 187 class Alignment(object):
me@295 188 """Alignment. It is a list of Columns."""
bnagaev@249 189
me@287 190 sequence_type = Sequence
me@289 191 """Type of sequences in alignment. SHOULD be redefined when subclassing."""
me@288 192
me@289 193 sequences = None
me@289 194 """Ordered list of sequences in alignment. Read, but DO NOT FIDDLE!"""
bnagaev@249 195
me@287 196 def __init__(self):
me@287 197 """Initialize empty alignment."""
me@287 198 super(Alignment, self).__init__()
me@287 199 self.sequences = []
me@295 200 self.columns = []
me@282 201
me@299 202 # Alignment modification methods
me@299 203 # ==============================
me@299 204
me@294 205 def append_sequence(self, sequence):
me@294 206 """Add sequence to alignment.
me@294 207
me@294 208 If sequence is too short, pad it with gaps on the right.
me@294 209 """
me@294 210 self.sequences.append(sequence)
me@294 211 for i, monomer in enumerate(sequence):
me@302 212 self.column_at(i)[sequence] = monomer
me@294 213
me@294 214 def append_gapped_line(self, line, name='', description='', source=''):
me@287 215 """Add row from a line of one-letter codes and gaps."""
me@287 216 Sequence = cls.sequence_type
me@287 217 not_gap = lambda (i, char): char != "-"
me@287 218 no_gaps = line.replace("-", "")
me@287 219 sequence = Sequence(no_gaps, name, description, source)
me@303 220 # The following line has some simple magic:
me@303 221 # 1. attach natural numbers to monomers
me@303 222 # 2. delete gaps
me@303 223 # 3. attach numbers again
me@303 224 # This way we have a pair of numbers attached to monomer:
me@303 225 # - it's position in alignment (the first attached number, j)
me@303 226 # - it's position in sequence (the second attached number, i)
me@287 227 for i, (j, char) in enumerate(filter(not_gap, enumerate(line))):
me@302 228 self.column_at(j)[seq] = sequence[i]
me@287 229 self.sequences.append(sequence)
me@287 230
me@302 231 def column_at(self, n):
me@302 232 """Return column by index. Create required new columns if required.
me@302 233
me@302 234 Do NOT use this method, unless you are sure it is what you want.
me@302 235 """
me@302 236 for i in range(len(self.columns), n + 1):
me@302 237 self.columns.append(Column())
me@302 238 return self.columns[n]
me@302 239
me@299 240 # Alignment IO methods
me@299 241 # ====================
me@299 242
me@287 243 @classmethod
me@287 244 def from_fasta(cls, file):
me@287 245 """Create new alignment from FASTA file."""
me@287 246 self = cls()
me@287 247 for ((name, description), body) in fasta.parse_file(file):
me@294 248 self.append_gapped_line(body, name, description)
me@287 249 return self
bnagaev@249 250
me@292 251 def to_fasta(self, file):
me@292 252 """Write alignment in FASTA file as sequences with gaps."""
me@292 253 def char(monomer):
me@292 254 if monomer:
me@292 255 return monomer.code1
me@292 256 return "-"
me@292 257 for row in self.rows_as_lists():
me@292 258 seq = row.sequence
me@292 259 line = "".join(map(char, row))
me@292 260 fasta.save_file(file, line, seq.name, seq.description)
me@292 261
me@299 262 # Data access methods for alignment
me@299 263 # =================================
me@299 264
me@299 265 def rows(self):
me@299 266 """Return list of rows (temporary objects) in alignment.
me@299 267
me@299 268 Each row is a dictionary of { column : monomer }.
me@299 269
me@299 270 For gap positions there is no key for the column in row.
me@299 271
me@299 272 Each row has attribute `sequence` pointing to the sequence the row is
me@299 273 describing.
me@299 274
me@299 275 Modifications of row have no effect on the alignment.
me@299 276 """
me@299 277 # For now, the function returns a list rather than iterator.
me@299 278 # It is yet to see, whether memory performance here becomes critical,
me@299 279 # or is random access useful.
me@299 280 rows = []
me@299 281 for sequence in self.sequences:
me@299 282 row = util.UserDict()
me@299 283 row.sequence = sequence
me@299 284 for column in self.columns:
me@299 285 if sequence in column:
me@299 286 row[column] = column[sequence]
me@299 287 rows.append(row)
me@299 288 return rows
me@299 289
me@299 290 def rows_as_lists(self):
me@299 291 """Return list of rows (temporary objects) in alignment.
me@299 292
me@299 293 Each row here is a list of either monomer or None (for gaps).
me@299 294
me@299 295 Each row has attribute `sequence` pointing to the sequence of row.
me@299 296
me@299 297 Modifications of row have no effect on the alignment.
me@299 298 """
me@299 299 rows = []
me@299 300 for sequence in self.sequences:
me@299 301 row = util.UserList()
me@299 302 row.sequence = sequence
me@299 303 for column in self.columns:
me@299 304 row.append(column.get(sequence))
me@299 305 rows.append(row)
me@299 306 return rows
me@299 307
me@299 308 def columns_as_lists(self):
me@299 309 """Return list of columns (temorary objects) in alignment.
me@299 310
me@299 311 Each column here is a list of either monomer or None (for gaps).
me@299 312
me@299 313 Items of column are sorted in the same way as alignment.sequences.
me@299 314
me@299 315 Modifications of column have no effect on the alignment.
me@299 316 """
me@299 317 columns = []
me@299 318 for column in self.columns:
me@299 319 col = []
me@299 320 for sequence in self.sequences:
me@299 321 col.append(column.get(sequence))
me@299 322 columns.append(col)
me@299 323 return columns
me@299 324
me@300 325 class Column(dict):
me@300 326 """Column of alignment.
me@300 327
me@300 328 Column is a dict of { sequence : monomer }.
me@300 329
me@300 330 For sequences that have gaps in current row, given key is not present in
me@300 331 the column.
me@300 332 """
me@300 333 pass
me@300 334
me@301 335 ## Unclean code follows
me@301 336
bnagaev@249 337 class Block(object):
me@261 338 """ Block of alignment
me@270 339
me@261 340 Mandatory data:
me@266 341
me@261 342 * self.alignment -- alignment object, which the block belongs to
me@261 343 * self.sequences - set of sequence objects that contain monomers
me@261 344 and/or gaps, that constitute the block
me@261 345 * self.positions -- list of positions of the alignment.body that
me@261 346 are included in the block; position[i+1] is always to the right from position[i]
me@270 347
me@261 348 Don't change self.sequences -- it may be a link to other block.sequences
me@270 349
me@261 350 How to create a new block:
me@282 351
me@261 352 >>> import alignment
me@261 353 >>> import block
me@261 354 >>> proj = alignment.Alignment(open("test.fasta"))
me@261 355 >>> block1 = block.Block(proj)
me@261 356 """
me@270 357
me@261 358 def __init__(self, alignment, sequences=None, positions=None):
me@261 359 """ Builds new block from alignment
me@270 360
me@261 361 if sequences==None, all sequences are used
me@261 362 if positions==None, all positions are used
me@261 363 """
me@261 364 if sequences == None:
me@261 365 sequences = set(alignment.sequences) # copy
me@261 366 if positions == None:
me@261 367 positions = range(len(alignment))
me@261 368 self.alignment = alignment
me@261 369 self.sequences = sequences
me@261 370 self.positions = positions
me@270 371
me@261 372 def save_fasta(self, out_file, long_line=70, gap='-'):
me@270 373 """ Saves alignment to given file in fasta-format
me@270 374
me@261 375 No changes in the names, descriptions or order of the sequences
me@261 376 are made.
me@261 377 """
me@261 378 for sequence in self.sequences:
me@261 379 alignment_monomers = self.alignment.body[sequence]
me@261 380 block_monomers = [alignment_monomers[i] for i in self.positions]
me@261 381 string = ''.join([m.type.code1 if m else '-' for m in block_monomers])
me@261 382 save_fasta(out_file, string, sequence.name, sequence.description, long_line)
me@270 383
me@270 384 def geometrical_cores(self, max_delta=config.delta,
me@270 385 timeout=config.timeout, minsize=config.minsize,
me@261 386 ac_new_atoms=config.ac_new_atoms,
me@261 387 ac_count=config.ac_count):
me@261 388 """ Returns length-sorted list of blocks, representing GCs
me@270 389
me@282 390 * max_delta -- threshold of distance spreading
me@282 391 * timeout -- Bron-Kerbosh timeout (then fast O(n ln n) algorithm)
me@282 392 * minsize -- min size of each core
me@282 393 * ac_new_atoms -- min part or new atoms in new alternative core
me@282 394 current GC is compared with each of already selected GCs if
me@282 395 difference is less then ac_new_atoms, current GC is skipped
me@261 396 difference = part of new atoms in current core
me@282 397 * ac_count -- max number of cores (including main core)
me@261 398 -1 means infinity
me@282 399
me@261 400 If more than one pdb chain for some sequence provided, consider all of them
me@270 401 cost is calculated as 1 / (delta + 1)
me@282 402
me@261 403 delta in [0, +inf) => cost in (0, 1]
me@261 404 """
me@261 405 nodes = self.positions
me@261 406 lines = {}
me@261 407 for i in self.positions:
me@261 408 for j in self.positions:
me@261 409 if i < j:
me@261 410 distances = []
me@261 411 for sequence in self.sequences:
me@261 412 for chain in sequence.pdb_chains:
me@261 413 m1 = self.alignment.body[sequence][i]
me@261 414 m2 = self.alignment.body[sequence][j]
me@261 415 if m1 and m2:
me@261 416 r1 = sequence.pdb_residues[chain][m1]
me@261 417 r2 = sequence.pdb_residues[chain][m2]
me@261 418 ca1 = r1['CA']
me@261 419 ca2 = r2['CA']
me@261 420 d = ca1 - ca2 # Bio.PDB feature
me@261 421 distances.append(d)
me@261 422 if len(distances) >= 2:
me@261 423 delta = max(distances) - min(distances)
me@261 424 if delta <= max_delta:
me@261 425 lines[Graph.line(i, j)] = 1.0 / (1.0 + max_delta)
me@261 426 graph = Graph(nodes, lines)
me@261 427 cliques = graph.cliques(timeout=timeout, minsize=minsize)
me@261 428 GCs = []
me@261 429 for clique in cliques:
me@261 430 for GC in GCs:
me@261 431 if len(clique - set(GC.positions)) < ac_new_atoms * len(clique):
me@261 432 break
me@261 433 else:
me@261 434 GCs.append(Block(self.alignment, self.sequences, clique))
me@261 435 if ac_count != -1 and len(GCs) >= ac_count:
me@261 436 break
me@261 437 return GCs
me@270 438
me@261 439 def xstring(self, x='X', gap='-'):
me@261 440 """ Returns string consisting of gap chars and chars x at self.positions
me@270 441
me@261 442 Length of returning string = length of alignment
me@261 443 """
me@261 444 monomers = [False] * len(self.alignment)
me@261 445 for i in self.positions:
me@261 446 monomers[i] = True
me@261 447 return ''.join([x if m else gap for m in monomers])
me@270 448
me@261 449 def save_xstring(self, out_file, name, description='', x='X', gap='-', long_line=70):
me@261 450 """ Save xstring and name in fasta format """
me@261 451 save_fasta(out_file, self.xstring(x=x, gap=gap), name, description, long_line)
me@270 452
me@261 453 def monomers(self, sequence):
me@261 454 """ Iterates monomers of this sequence from this block """
me@261 455 alignment_sequence = self.alignment.body[sequence]
me@261 456 return (alignment_sequence[i] for i in self.positions)
me@270 457
me@261 458 def ca_atoms(self, sequence, pdb_chain):
me@261 459 """ Iterates Ca-atom of monomers of this sequence from this block """
me@261 460 return (sequence.pdb_residues[pdb_chain][monomer] for monomer in self.monomers())
me@270 461
me@261 462 def sequences_chains(self):
me@261 463 """ Iterates pairs (sequence, chain) """
me@261 464 for sequence in self.alignment.sequences:
me@261 465 if sequence in self.sequences:
me@261 466 for chain in sequence.pdb_chains:
me@261 467 yield (sequence, chain)
me@270 468
me@261 469 def superimpose(self):
me@261 470 """ Superimpose all pdb_chains in this block """
me@261 471 sequences_chains = list(self.sequences_chains())
me@261 472 if len(sequences_chains) >= 1:
me@261 473 sup = Superimposer()
me@261 474 fixed_sequence, fixed_chain = sequences_chains.pop()
me@261 475 fixed_atoms = self.ca_atoms(fixed_sequence, fixed_chain)
me@261 476 for sequence, chain in sequences_chains:
me@261 477 moving_atoms = self.ca_atoms(sequence, chain)
me@261 478 sup.set_atoms(fixed_atoms, moving_atoms)
me@261 479 # Apply rotation/translation to the moving atoms
me@261 480 sup.apply(moving_atoms)
me@270 481
me@261 482 def pdb_save(self, out_file):
me@270 483 """ Save all sequences
me@270 484
me@261 485 Returns {(sequence, chain): CHAIN}
me@261 486 CHAIN is chain letter in new file
me@261 487 """
me@261 488 tmp_file = NamedTemporaryFile(delete=False)
me@261 489 tmp_file.close()
me@270 490
me@261 491 for sequence, chain in self.sequences_chains():
me@261 492 sequence.pdb_save(tmp_file.name, chain)
me@261 493 # TODO: read from tmp_file.name
me@261 494 # change CHAIN
me@261 495 # add to out_file
me@270 496
me@261 497 os.unlink(NamedTemporaryFile)
bnagaev@239 498
me@260 499 # vim: set ts=4 sts=4 sw=4 et: