Документ взят из кэша поисковой машины. Адрес оригинального документа : http://kodomo.fbb.msu.ru/hg/allpy/annotate/f8bd7c469fcf/allpy/base.py
Дата изменения: Unknown
Дата индексирования: Sun Mar 2 07:05:22 2014
Кодировка:
allpy: allpy/base.py annotate

allpy

annotate allpy/base.py @ 287:f8bd7c469fcf

Clean reimplementation of allpy.base.Alignment.from_fasta Also changed interface of fasta.parse_file Added allpy.util with currently one function unzip -- the reverse of zip builtin
author Daniil Alexeyevsky <me.dendik@gmail.com>
date Thu, 16 Dec 2010 01:12:06 +0300
parents cf6cdc3b7ec5
children 9c68d8eab8f5
rev   line source
me@261 1 import sys
me@261 2 import os
me@262 3 import os.path
me@261 4 from tempfile import NamedTemporaryFile
me@262 5 import urllib2
me@261 6
me@261 7 import config
me@284 8 import fasta
me@261 9 from graph import Graph
me@262 10 from Bio.PDB.DSSP import make_dssp_dict
me@260 11 import data.codes
me@260 12
me@260 13 class MonomerType(object):
me@260 14 """Class of monomer types.
me@260 15
me@260 16 Each MonomerType object represents a known monomer type, e.g. Valine,
me@260 17 and is referenced to by each instance of monomer in a given sequence.
me@260 18
me@260 19 - `name`: full name of monomer type
me@260 20 - `code1`: one-letter code
me@260 21 - `code3`: three-letter code
me@260 22 - `is_modified`: either of True or False
me@260 23
me@260 24 class atributes:
me@260 25
me@260 26 - `by_code1`: a mapping from one-letter code to MonomerType object
me@260 27 - `by_code3`: a mapping from three-letter code to MonomerType object
me@260 28 - `by_name`: a mapping from monomer name to MonomerType object
me@260 29 - `instance_type`: class of Monomer objects to use when creating new
me@260 30 objects; this must be redefined in descendent classes
me@260 31
me@260 32 All of the class attributes MUST be redefined when subclassing.
me@260 33 """
me@260 34
me@260 35 by_code1 = {}
me@260 36 by_code3 = {}
me@260 37 by_name = {}
me@260 38 instance_type = None
me@260 39
me@260 40 def __init__(self, name="", code1="", code3="", is_modified=False):
me@260 41 self.name = name.capitalize()
me@260 42 self.code1 = code1.upper()
me@260 43 self.code3 = code3.upper()
me@260 44 self.is_modified = bool(is_modified)
me@260 45 if not is_modified:
me@260 46 self.by_code1[self.code1] = self
me@260 47 self.by_code3[code3] = self
me@260 48 self.by_name[name] = self
me@260 49 # We duplicate distinguished long names into MonomerType itself,
me@260 50 # so that we can use MonomerType.from_code3 to create the relevant
me@260 51 # type of monomer.
me@260 52 MonomerType.by_code3[code3] = self
me@260 53 MonomerType.by_name[name] = self
me@260 54
me@260 55 @classmethod
me@260 56 def _initialize(cls, type_letter, codes=data.codes.codes):
me@260 57 """Create all relevant instances of MonomerType.
me@260 58
me@260 59 `type_letter` is either of:
me@260 60
me@260 61 - 'p' for protein
me@260 62 - 'd' for DNA
me@260 63 - 'r' for RNA
me@260 64
me@260 65 `codes` is a table of monomer codes
me@260 66 """
me@260 67 for type, code1, is_modified, code3, name in codes:
me@260 68 if type == type_letter:
me@260 69 cls(name, code1, code3, is_modified)
me@260 70
me@260 71 @classmethod
me@260 72 def from_code1(cls, code1):
me@260 73 """Return monomer type by one-letter code."""
me@260 74 return cls.by_code1[code1.upper()]
me@260 75
me@260 76 @classmethod
me@260 77 def from_code3(cls, code3):
me@260 78 """Return monomer type by three-letter code."""
me@260 79 return cls.by_code3[code3.upper()]
me@260 80
me@260 81 @classmethod
me@260 82 def from_name(cls, name):
me@260 83 """Return monomer type by name."""
me@260 84 return cls.by_name[name.capitalize()]
me@260 85
me@260 86 def instance(self):
me@260 87 """Create a new monomer of given type."""
me@260 88 return self.instance_type(self)
me@260 89
me@260 90 def __eq__(self, other):
me@260 91 if hasattr(other, "type"):
me@260 92 return self is other.type
me@260 93 return self is other
me@260 94
me@260 95 class Monomer(object):
me@260 96 """Monomer object.
me@260 97
me@260 98 attributes:
me@260 99
me@260 100 - `type`: type of monomer (a MonomerType object)
me@260 101
me@282 102 class attributes:
me@282 103
me@282 104 - `monomer_type`: either MonomerType or one of it's subclasses, it is used
me@282 105 when creating new monomers. It SHOULD be redefined when subclassing
me@282 106 Monomer.
me@260 107 """
me@260 108 monomer_type = MonomerType
me@260 109
me@260 110 def __init__(self, type):
me@260 111 self.type = type
me@260 112
me@260 113 @classmethod
me@260 114 def from_code1(cls, code1):
me@260 115 return cls(cls.monomer_type.by_code1[code1.upper()])
me@260 116
me@260 117 @classmethod
me@260 118 def from_code3(cls, code3):
me@260 119 return cls(cls.monomer_type.by_code3[code3.upper()])
me@260 120
me@260 121 @classmethod
me@260 122 def from_name(cls, name):
me@260 123 return cls(cls.monomer_type.by_name[name.capitalize()])
me@260 124
me@260 125 def __eq__(self, other):
me@260 126 if hasattr(other, "type"):
me@260 127 return self.type is other.type
me@260 128 return self.type is other
bnagaev@239 129
bnagaev@239 130 class Sequence(list):
me@274 131 """Sequence of Monomers.
bnagaev@243 132
me@274 133 This behaves like list of monomer objects. In addition to standard list
me@274 134 behaviour, Sequence has the following attributes:
me@270 135
me@274 136 * name -- str with the name of the sequence
me@274 137 * description -- str with description of the sequence
me@274 138 * source -- str denoting source of the sequence
me@266 139
me@274 140 Any of them may be empty (i.e. hold empty string)
me@275 141
me@275 142 Class attributes:
me@282 143
me@275 144 * monomer_type -- type of monomers in sequence, must be redefined when
me@275 145 subclassing
me@274 146 """
me@270 147
me@275 148 monomer_type = Monomer
me@270 149
me@275 150 name = ''
me@275 151 description = ''
me@275 152 source = ''
me@275 153
me@275 154 def __init__(self, sequence=[], name=None, description=None, source=None):
me@275 155 super(Sequence, self).__init__(sequence)
me@275 156 if hasattr(sequence, 'name'):
me@275 157 vars(self).update(vars(sequence))
me@275 158 if name:
me@275 159 self.name = name
me@275 160 if description:
me@275 161 self.description = description
me@275 162 if source:
me@275 163 self.source = source
me@270 164
me@262 165 def __str__(self):
me@275 166 """Returns sequence in one-letter code."""
me@275 167 return ''.join(monomer.code1 for monomer in self)
me@270 168
me@273 169 @classmethod
me@273 170 def from_string(cls, string, name='', description=''):
me@273 171 """Create sequences from string of one-letter codes."""
me@273 172 monomer = cls.monomer_type.from_code1
me@273 173 monomers = [monomer(letter) for letter in string]
me@273 174 return cls(monomers, name, description)
me@262 175
me@284 176 @classmethod
me@284 177 def from_fasta(cls, file):
me@284 178 """Read sequence from FASTA file.
me@286 179
me@284 180 File must contain exactly one sequence.
me@284 181 """
me@284 182 sequences = fasta.parse_file(file)
me@284 183 assert len(sequences) == 1
me@287 184 name, description = sequences.keys()[0]
me@284 185 return cls(sequences[header], name, description, file.name)
me@284 186
me@287 187 class Alignment(list):
me@282 188 """Alignment.
me@270 189
me@282 190 Behaves like a list of Columns.
bnagaev@249 191 """
bnagaev@249 192
me@287 193 sequence_type = Sequence
me@287 194 """Type of sequences to create in alignment.
me@287 195
me@287 196 SHOULD be redefined when subclassing"""
bnagaev@249 197
me@287 198 def __init__(self):
me@287 199 """Initialize empty alignment."""
me@287 200 super(Alignment, self).__init__()
bnagaev@249 201
me@287 202 self.sequences = []
me@287 203 """Ordered list of sequences in alignment."""
me@282 204
me@287 205 def add_gapped_line(self, line, name='', description='', source=''):
me@287 206 """Add row from a line of one-letter codes and gaps."""
me@287 207 Sequence = cls.sequence_type
me@287 208 not_gap = lambda (i, char): char != "-"
me@287 209 no_gaps = line.replace("-", "")
me@287 210 sequence = Sequence(no_gaps, name, description, source)
me@287 211 for i, (j, char) in enumerate(filter(not_gap, enumerate(line))):
me@287 212 self[j][seq] = sequence[i]
me@287 213 self.sequences.append(sequence)
me@287 214
me@287 215 @classmethod
me@287 216 def from_fasta(cls, file):
me@287 217 """Create new alignment from FASTA file."""
me@287 218 self = cls()
me@287 219 for ((name, description), body) in fasta.parse_file(file):
me@287 220 self.add_gapped_line(body, name, description)
me@287 221 return self
bnagaev@249 222
bnagaev@249 223 def length(self):
me@287 224 """Return width, ie length of each sequence with gaps."""
bnagaev@249 225 return max([len(line) for line in self.body.values()])
bnagaev@249 226
bnagaev@249 227 def height(self):
bnagaev@249 228 """ The number of sequences in alignment (it's thickness). """
bnagaev@249 229 return len(self.body)
bnagaev@249 230
bnagaev@249 231 def identity(self):
bnagaev@249 232 """ Calculate the identity of alignment positions for colouring.
bnagaev@249 233
bnagaev@249 234 For every (row, column) in alignment the percentage of the exactly
bnagaev@249 235 same residue in the same column in the alignment is calculated.
me@270 236 The data structure is just like the Alignment.body, but istead of
bnagaev@249 237 monomers it contains float percentages.
bnagaev@249 238 """
bnagaev@249 239 # Oh, God, that's awful! Absolutely not understandable.
bnagaev@249 240 # First, calculate percentages of amino acids in every column
bnagaev@249 241 contribution = 1.0 / len(self.sequences)
bnagaev@249 242 all_columns = []
bnagaev@249 243 for position in range(len(self)):
bnagaev@249 244 column_percentage = {}
bnagaev@249 245 for seq in self.body:
bnagaev@249 246 if self.body[seq][position] is not None:
bnagaev@249 247 aa = self.body[seq][position].code
bnagaev@249 248 else:
bnagaev@249 249 aa = None
bnagaev@249 250 if aa in allpy.data.amino_acids:
bnagaev@249 251 if aa in column_percentage.keys():
bnagaev@249 252 column_percentage[aa] += contribution
bnagaev@249 253 else:
bnagaev@249 254 column_percentage[aa] = contribution
bnagaev@249 255 all_columns.append(column_percentage)
bnagaev@249 256 # Second, map these percentages onto the alignment
bnagaev@249 257 self.identity_percentages = {}
bnagaev@249 258 for seq in self.sequences:
bnagaev@249 259 self.identity_percentages[seq] = []
bnagaev@249 260 for seq in self.identity_percentages:
bnagaev@249 261 line = self.identity_percentages[seq]
bnagaev@249 262 for position in range(len(self)):
bnagaev@249 263 if self.body[seq][position] is not None:
bnagaev@249 264 aa = self.body[seq][position].code
bnagaev@249 265 else:
bnagaev@249 266 aa = None
bnagaev@249 267 line.append(all_columns[position].get(aa))
bnagaev@249 268 return self.identity_percentages
bnagaev@249 269
bnagaev@249 270 @staticmethod
bnagaev@249 271 def from_sequences(*sequences):
bnagaev@249 272 """ Constructs new alignment from sequences
me@270 273
me@270 274 Add None's to right end to make equal lengthes of alignment sequences
bnagaev@249 275 """
bnagaev@249 276 alignment = Alignment()
bnagaev@249 277 alignment.sequences = sequences
bnagaev@249 278 max_length = max(len(sequence) for sequence in sequences)
bnagaev@249 279 for sequence in sequences:
bnagaev@249 280 gaps_count = max_length - len(sequence)
bnagaev@249 281 alignment.body[sequence] = sequence.monomers + [None] * gaps_count
bnagaev@249 282 return alignment
me@270 283
bnagaev@249 284 def save_fasta(self, out_file, long_line=70, gap='-'):
bnagaev@249 285 """ Saves alignment to given file
me@270 286
bnagaev@249 287 Splits long lines to substrings of length=long_line
me@270 288 To prevent this, set long_line=None
bnagaev@249 289 """
bnagaev@249 290 block.Block(self).save_fasta(out_file, long_line=long_line, gap=gap)
me@270 291
bnagaev@249 292 def muscle_align(self):
bnagaev@249 293 """ Simple align ths alignment using sequences (muscle)
me@270 294
bnagaev@249 295 uses old Monomers and Sequences objects
bnagaev@249 296 """
bnagaev@249 297 tmp_file = NamedTemporaryFile(delete=False)
bnagaev@249 298 self.save_fasta(tmp_file)
bnagaev@249 299 tmp_file.close()
bnagaev@249 300 os.system("muscle -in %(tmp)s -out %(tmp)s" % {'tmp': tmp_file.name})
bnagaev@249 301 sequences, body = Alignment.from_fasta(open(tmp_file.name))
bnagaev@249 302 for sequence in self.sequences:
bnagaev@249 303 try:
bnagaev@249 304 new_sequence = [i for i in sequences if sequence==i][0]
bnagaev@249 305 except:
bnagaev@249 306 raise Exception("Align: Cann't find sequence %s in muscle output" % \
bnagaev@249 307 sequence.name)
bnagaev@249 308 old_monomers = iter(sequence.monomers)
bnagaev@249 309 self.body[sequence] = []
bnagaev@249 310 for monomer in body[new_sequence]:
bnagaev@249 311 if not monomer:
bnagaev@249 312 self.body[sequence].append(monomer)
bnagaev@249 313 else:
bnagaev@249 314 old_monomer = old_monomers.next()
bnagaev@249 315 if monomer != old_monomer:
bnagaev@249 316 raise Exception("Align: alignment errors")
bnagaev@249 317 self.body[sequence].append(old_monomer)
bnagaev@249 318 os.unlink(tmp_file.name)
me@270 319
bnagaev@249 320 def column(self, sequence=None, sequences=None, original=None):
bnagaev@249 321 """ returns list of columns of alignment
me@270 322
bnagaev@249 323 sequence or sequences:
me@282 324 * if sequence is given, then column is (original_monomer, monomer)
me@282 325 * if sequences is given, then column is (original_monomer, {sequence: monomer})
me@282 326 * if both of them are given, it is an error
me@282 327
bnagaev@249 328 original (Sequence type):
me@282 329 * if given, this filters only columns represented by original sequence
bnagaev@249 330 """
bnagaev@249 331 if sequence and sequences:
bnagaev@249 332 raise Exception("Wrong usage. read help")
bnagaev@249 333 indexes = dict([(v, k) for( k, v) in enumerate(self.sequences)])
bnagaev@249 334 alignment = self.body.items()
bnagaev@249 335 alignment.sort(key=lambda i: indexes[i[0]])
bnagaev@249 336 alignment = [monomers for seq, monomers in alignment]
bnagaev@249 337 for column in zip(*alignment):
bnagaev@249 338 if not original or column[indexes[original]]:
bnagaev@249 339 if sequence:
bnagaev@249 340 yield (column[indexes[original]], column[indexes[sequence]])
bnagaev@249 341 else:
me@270 342 yield (column[indexes[original]],
bnagaev@249 343 dict([(s, column[indexes[s]]) for s in sequences]))
me@270 344
bnagaev@249 345 def secstr(self, sequence, pdb_chain, gap='-'):
bnagaev@249 346 """ Returns string representing secondary structure """
bnagaev@249 347 return ''.join([
me@270 348 (sequence.pdb_secstr[pdb_chain][m] if sequence.secstr_has(pdb_chain, m) else gap)
bnagaev@249 349 for m in self.body[sequence]])
bnagaev@249 350
bnagaev@249 351 class Block(object):
me@261 352 """ Block of alignment
me@270 353
me@261 354 Mandatory data:
me@266 355
me@261 356 * self.alignment -- alignment object, which the block belongs to
me@261 357 * self.sequences - set of sequence objects that contain monomers
me@261 358 and/or gaps, that constitute the block
me@261 359 * self.positions -- list of positions of the alignment.body that
me@261 360 are included in the block; position[i+1] is always to the right from position[i]
me@270 361
me@261 362 Don't change self.sequences -- it may be a link to other block.sequences
me@270 363
me@261 364 How to create a new block:
me@282 365
me@261 366 >>> import alignment
me@261 367 >>> import block
me@261 368 >>> proj = alignment.Alignment(open("test.fasta"))
me@261 369 >>> block1 = block.Block(proj)
me@261 370 """
me@270 371
me@261 372 def __init__(self, alignment, sequences=None, positions=None):
me@261 373 """ Builds new block from alignment
me@270 374
me@261 375 if sequences==None, all sequences are used
me@261 376 if positions==None, all positions are used
me@261 377 """
me@261 378 if sequences == None:
me@261 379 sequences = set(alignment.sequences) # copy
me@261 380 if positions == None:
me@261 381 positions = range(len(alignment))
me@261 382 self.alignment = alignment
me@261 383 self.sequences = sequences
me@261 384 self.positions = positions
me@270 385
me@261 386 def save_fasta(self, out_file, long_line=70, gap='-'):
me@270 387 """ Saves alignment to given file in fasta-format
me@270 388
me@261 389 No changes in the names, descriptions or order of the sequences
me@261 390 are made.
me@261 391 """
me@261 392 for sequence in self.sequences:
me@261 393 alignment_monomers = self.alignment.body[sequence]
me@261 394 block_monomers = [alignment_monomers[i] for i in self.positions]
me@261 395 string = ''.join([m.type.code1 if m else '-' for m in block_monomers])
me@261 396 save_fasta(out_file, string, sequence.name, sequence.description, long_line)
me@270 397
me@270 398 def geometrical_cores(self, max_delta=config.delta,
me@270 399 timeout=config.timeout, minsize=config.minsize,
me@261 400 ac_new_atoms=config.ac_new_atoms,
me@261 401 ac_count=config.ac_count):
me@261 402 """ Returns length-sorted list of blocks, representing GCs
me@270 403
me@282 404 * max_delta -- threshold of distance spreading
me@282 405 * timeout -- Bron-Kerbosh timeout (then fast O(n ln n) algorithm)
me@282 406 * minsize -- min size of each core
me@282 407 * ac_new_atoms -- min part or new atoms in new alternative core
me@282 408 current GC is compared with each of already selected GCs if
me@282 409 difference is less then ac_new_atoms, current GC is skipped
me@261 410 difference = part of new atoms in current core
me@282 411 * ac_count -- max number of cores (including main core)
me@261 412 -1 means infinity
me@282 413
me@261 414 If more than one pdb chain for some sequence provided, consider all of them
me@270 415 cost is calculated as 1 / (delta + 1)
me@282 416
me@261 417 delta in [0, +inf) => cost in (0, 1]
me@261 418 """
me@261 419 nodes = self.positions
me@261 420 lines = {}
me@261 421 for i in self.positions:
me@261 422 for j in self.positions:
me@261 423 if i < j:
me@261 424 distances = []
me@261 425 for sequence in self.sequences:
me@261 426 for chain in sequence.pdb_chains:
me@261 427 m1 = self.alignment.body[sequence][i]
me@261 428 m2 = self.alignment.body[sequence][j]
me@261 429 if m1 and m2:
me@261 430 r1 = sequence.pdb_residues[chain][m1]
me@261 431 r2 = sequence.pdb_residues[chain][m2]
me@261 432 ca1 = r1['CA']
me@261 433 ca2 = r2['CA']
me@261 434 d = ca1 - ca2 # Bio.PDB feature
me@261 435 distances.append(d)
me@261 436 if len(distances) >= 2:
me@261 437 delta = max(distances) - min(distances)
me@261 438 if delta <= max_delta:
me@261 439 lines[Graph.line(i, j)] = 1.0 / (1.0 + max_delta)
me@261 440 graph = Graph(nodes, lines)
me@261 441 cliques = graph.cliques(timeout=timeout, minsize=minsize)
me@261 442 GCs = []
me@261 443 for clique in cliques:
me@261 444 for GC in GCs:
me@261 445 if len(clique - set(GC.positions)) < ac_new_atoms * len(clique):
me@261 446 break
me@261 447 else:
me@261 448 GCs.append(Block(self.alignment, self.sequences, clique))
me@261 449 if ac_count != -1 and len(GCs) >= ac_count:
me@261 450 break
me@261 451 return GCs
me@270 452
me@261 453 def xstring(self, x='X', gap='-'):
me@261 454 """ Returns string consisting of gap chars and chars x at self.positions
me@270 455
me@261 456 Length of returning string = length of alignment
me@261 457 """
me@261 458 monomers = [False] * len(self.alignment)
me@261 459 for i in self.positions:
me@261 460 monomers[i] = True
me@261 461 return ''.join([x if m else gap for m in monomers])
me@270 462
me@261 463 def save_xstring(self, out_file, name, description='', x='X', gap='-', long_line=70):
me@261 464 """ Save xstring and name in fasta format """
me@261 465 save_fasta(out_file, self.xstring(x=x, gap=gap), name, description, long_line)
me@270 466
me@261 467 def monomers(self, sequence):
me@261 468 """ Iterates monomers of this sequence from this block """
me@261 469 alignment_sequence = self.alignment.body[sequence]
me@261 470 return (alignment_sequence[i] for i in self.positions)
me@270 471
me@261 472 def ca_atoms(self, sequence, pdb_chain):
me@261 473 """ Iterates Ca-atom of monomers of this sequence from this block """
me@261 474 return (sequence.pdb_residues[pdb_chain][monomer] for monomer in self.monomers())
me@270 475
me@261 476 def sequences_chains(self):
me@261 477 """ Iterates pairs (sequence, chain) """
me@261 478 for sequence in self.alignment.sequences:
me@261 479 if sequence in self.sequences:
me@261 480 for chain in sequence.pdb_chains:
me@261 481 yield (sequence, chain)
me@270 482
me@261 483 def superimpose(self):
me@261 484 """ Superimpose all pdb_chains in this block """
me@261 485 sequences_chains = list(self.sequences_chains())
me@261 486 if len(sequences_chains) >= 1:
me@261 487 sup = Superimposer()
me@261 488 fixed_sequence, fixed_chain = sequences_chains.pop()
me@261 489 fixed_atoms = self.ca_atoms(fixed_sequence, fixed_chain)
me@261 490 for sequence, chain in sequences_chains:
me@261 491 moving_atoms = self.ca_atoms(sequence, chain)
me@261 492 sup.set_atoms(fixed_atoms, moving_atoms)
me@261 493 # Apply rotation/translation to the moving atoms
me@261 494 sup.apply(moving_atoms)
me@270 495
me@261 496 def pdb_save(self, out_file):
me@270 497 """ Save all sequences
me@270 498
me@261 499 Returns {(sequence, chain): CHAIN}
me@261 500 CHAIN is chain letter in new file
me@261 501 """
me@261 502 tmp_file = NamedTemporaryFile(delete=False)
me@261 503 tmp_file.close()
me@270 504
me@261 505 for sequence, chain in self.sequences_chains():
me@261 506 sequence.pdb_save(tmp_file.name, chain)
me@261 507 # TODO: read from tmp_file.name
me@261 508 # change CHAIN
me@261 509 # add to out_file
me@270 510
me@261 511 os.unlink(NamedTemporaryFile)
bnagaev@239 512
me@260 513 # vim: set ts=4 sts=4 sw=4 et: