Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://ics.org.ru/upload/iblock/25b/ND_2015_v11_n4_07.pdf
Äàòà èçìåíåíèÿ: Tue Dec 29 14:42:49 2015
Äàòà èíäåêñèðîâàíèÿ: Sat Apr 9 23:59:11 2016
Êîäèðîâêà:
. 2015. . 11. 4. . 721­734. http://nd.ics.org.ru



: 62.529 MSC 2010: 93B18, 93B52


. . , . .
, . . , . , . : , , ,

05 2015 02 2015 . . ( 2) 15-08-09261-. . . ( 3) 14-19-01303. aka@rcd.ru 426034, , . , . , . 1 karavaev_yury@istu.ru . . . 426069, , . , . , . 7

. 2015. T. 11. 4. . 721­734


722

. . , . .

1.
, . [1­4]. [4­9] [10­12]. , , . (, , ) , , . , , . , , [13]. . , .

2.
. Rs , ( ). , . (), , (. . 1). , ( ) , . .
g aO b

e3 e1 C e2

. 1. .

. O -- () , , . C e1 e2 e3 -- , e1 , e2 , e3 , ,

. 2015. T. 11. 4. . 721­734




723

e1 , e3 . C (. . 1). ( ) C e1 e2 e3 . r = (x, y , 0), e1 e3 Q, , , , C e1 e2 e3 , 1 1 1 Q = 2 2 2 . 3 3 3 , N = {(r , ,, Q)} = R2 â T2 â SO(3). (2.1) F = v - Rs â = 0, v , -- . , «» [14­16]. « ­ » :
2 T = 1 ms v 2 + 1 Is 2 + 1 mb vb + 1 (, Ibc ), 2 2 2 2

U = -mb Rb g( , e3 ),

ms , Is -- , mb , Ibc = diag(Ibc1 ,Ibc1 ,Ibc3 ) -- , vb vb = v - Rb â e3 , = + e1 + e3 , (2.2)

Rb -- . ­ ( . [13]). [13], , , , : ¨ e3 ,Ib3 ( + e3 ) = K , ¨ e1 , Ib ( + e1 ) - mb Rb Rs e3 â ( â + â ) - e1 ,mb Rb Rs ( â ) â ( + e1 ) â e3 + e1 , â mb Rb Rs ( â ) â e3 +(Is + Ib ) + e1 Ib1 + e3 Ib3 + mb Rb g (e1 , â e3 ) = K , + (2.3) +

. 2015. T. 11. 4. . 721­734


724

. . , . .

¨ mb Rb Rs ( â + â ) â e3 +(Is + Ib ) + e1 Ib1 + e3 Ib3 - mb Rb Rs ( â ) â ¨ â ( + e1 ) â e3 +( + e1 ) â mb Rb Rs ( â ) â e3 + +(Is + Ib ) + e1 Ib1 + e3 Ib3 + mb Rb g â e3 = =R +R
s

¨ (ms + mb )Rs ( â + â ) - mb Rb ( + e1 ) â e3 â + ( + e1 ) â (ms + mb )Rs â - mb Rb ( + e1 ) â e3 â ,

s

= â ( + e1 ),
2 2 Ib = diag(Ib1 ,Ib1 ,Ib3 ) = diag(Ibc1 + mb Rb ,Ibc1 + mb Rb ,Ibc3 ) -- , K , K -- ( ), . (2.3) (2.1) ,

Q = Q + AQ, A 3 - 2 0 = - 3 0 1 2 - 1 0 ,

r = Q v,

(2.4)





0 0 0 A = 0 0 1. 0 -1 0

, (K = K = 0), , 2 = 1, : ­ F1 = ( + e3 , e3 ) = 3 + ; ­
2 E = 1 ms v 2 + 1 Is 2 + 1 mb vb + 1 (, Ibc ) - mb Rb g( , e3 ). 2 2 2 2

(2.5)

(2.6)

(2.3) ­ 1 . , , , . , -, .
, x = v (x) (x), div ((x)v (x)) = 0.
1

. 2015. T. 11. 4. . 721­734




725

2.1.
[13] , . , . (), [4, 13]. (). , . [13] , -- . , . , . , (), , . 0 . , , . 1. . [13], Is + Ib3 0 . (2.7) 0 = - Ib3 0 0 . ¨ (2.8) K = -Is . 2. . . . = (0, sin , cos ), = (t), (2.9) (0) = (T ) = 0, (0) = (T ) = 0. (2.10)

: K =
22 2 ¨ ¨ m2 Rb Rs cos2 + I0 Ib1 + mb Rb sin mb Rb Rs cos + gI0 b

mb Rb Rs cos - I0 ¨ mb Rb sin (g + Rs 2 ) - (mb Rb Rs cos - Ib1 ) . 1 = mb Rb Rs cos - I0

, (2.11)

. 2015. T. 11. 4. . 721­734


726

. . , . .

3. . v0 (2.3), (2.4) K = 0 K = 0: = ±e3 , = v0 e, Rs 1 v =- 0, Rs = 0 , (2.12) r = ±v0 Qe2 ,

cos 0 - sin 0 0 Q = sin 0 cos 0 0 , 0 0 ±1

0 -- , 0 -- , , OX . (2.12), , . . , , . , . 4. . (2.3) K = 0 K = 0: v0 , = Rs 3 =- = (sin , 0, cos ), = v0 v0 - e1 , Rs 3 (2.13)

2 2 -Rs ((ms + mb ) + mb Rb 1 ) - Rs 3 (mb Rb + 1 (Ib1 - Ib3 )) + Is v0 + mb Rb gRs 2 1 , Rs v0 Ib3 1

, v0 , -- . v0 , . , , . K K , . ( ) [5]. . , ( ) , . , .

. 2015. T. 11. 4. . 721­734




727

3.
. , 1, , . , . 2 .

(a)

(b)

. 2. (a) ; (b) .

( ): Rs = 0.150 , ms = 1.625 , Is = diag(25.27·10-3 , 20.73·10-3 , 25.27·10-3 ) · 2 . , , . , . Rr = 0.087 , mr = 2.46 Ir = 5.64 · 10-3 · 2 . ( ): mb = 3.25 , Ib = diag(31.88 · 10-3 , 30.59 · 10-3 , 8.76 · 10-3 ) · 2 . (t), (t), , , , (t), (t).

3.1.
, (t) .

. 2015. T. 11. 4. . 721­734


728

. . , . .



0, t < t1 = (t) = 1.57 · sin 3 1.57, t > t 1 0, t < t2 = (t) = 11.304 · sin 11.304, t >

0, t , t1 t t = 1.5, 1 , 2.6,
t - 13 2, t t t = 4.1, 2 2 3 15
2

(3.1)

(3.2)

t , 2

3. , ( ), .
1.5 1 0.5 0 0 1 1 2 3 4 2* 5 6 7 8 1* 2 2*

10 8 6 4 2 0 0 1 1 1* 2 2 3 4

5

6

7

8

. 3. (3.1), (3.2)

t [t1 ,t ] 1 . , (t) (3.1) . (t) . . t [t ,t2 ] () . 1 t [t2 ,t ] 2 , t > t . 2 , (3.1), (3.2) , 4 . , ( ) (2.13).

. 2015. T. 11. 4. . 721­734




729

660 600 500 2 400 300 1* 200 100 0 ­100 1 200 400 600 2* 660 640 620 600 580 560 540 520 500 480

­200
. 4. (3.1), (3.2); () -- , .

( ) . , , . (3.1), (3.2). , . , , 4 . , . , . 5. 200 ( ). 5, , ( = 73 ), , , . , 2 , .
.
2

. 2015. T. 11. 4. . 721­734


730

. . , . .

2000 1500 1000 500 0 500 2

2* 1000 1500 2000 2500 3000

. 5. .

, (2.13) . , . , , , , . .

3.2.
, (t) (t) , . , , , . : 0, t < t1 = 0, 2 (t) = 1.57 · sin t , t1 t t = 1.5, (3.3) 1 3 1.57, t > t , 1 0, t < t2 = 1.9, 2 11.304 · sin t - 19 , t2 t t = 3.4, 2 3 30 (3.4) (t) = 11.304, t < t t3 = 6.9, 2 2 11.304 · sin t - 23 , t t t = 8.4, 3 3 3 10 0, t > t . 3 6a. , (3.3), (3.4) -

. 2015. T. 11. 4. . 721­734




731

1.5 1 0.5 0 1

1*

2

2*

3

3*

1000 800 600 2 1* 400 y 200 0 ­200 1

2*

0

2

4 2*

6 3

8

10

10 5 0 1 0 1* 2 2

200 400 600 800 1000 1200 x 3 3*
(b)

3* 4
(a)

­400 10 ­600

6

8

. 6. (a) (b).

, 6b . : t [t1 ,t ], 1 , t [t ,t3 ], , 2 t > t . , 3 , t = t3 - t . 2 (3.3), (3.4), , 6b . , . 6b . t [t1 ,t3 ] (3.1), (3.2). (t [t3 ,t ]) ( 3 ), . t . 1. «» -- . , , . (3.3), (3.4), 6b. 2. «C» -- , t . . , . -

. 2015. T. 11. 4. . 721­734


732

. . , . .

700 600 500 400 300 200 100 0 ­100 ­200 1 0 2 1*

2* 3 3*

Y,

200

400 600 X,

800

1000

1200

. 7. t = 1 .

, t = 1 , 7. 3. «» -- . . ( ), ( ). t , 8.
1200 1000 800 y 600 400 200 0 c 200 b 400 x 600 a 800 1000

. 8. «» : (a) t = 0.1 , (b) t = 0.25 , () t = 0.4 .

. 2015. T. 11. 4. . 721­734




733

4.
, , [13], . 1. . , (, ). 2. . . 3. ( ), .

5.
. . , . . , . . .


[1] Chase R., Pandya A. A review of active mechanical driving principles of spherical robots // Robotics, 2012, vol. 1, no. 1, pp. 3­23. [2] Crossley V. A. A literature review on the design of spherical rolling robots. Pittsburgh, Pa., 2006. 6 pp. [3] Ylikorpi T., Suomela J. Ball-shaped robots // Climbing and walking robots: Towards new applications / H. Zhang (Ed.). Vienna: InTech, 2007. P. 235­256. . : ., . // : - - / . . , . . , . . . ­ : , 2013. . 29­50. [4] Karavaev Yu. L., Kilin A. A., The dynamics and control of a spherical robot with an internal omniwheel platform // Regul. Chaotic Dyn., 2015, vol. 20, no. 2, pp. 134­152. . : . ., . . // , 2015, . 11, 1, . 187­204. [5] . ., . . // , 2013, . 9, 3, . 507­520. [6] Svinin M., Bai Y., Yamamoto M. Dynamic mo del and motion planning for a pendulum-actuated spherical rolling robot // Pro c. of the 2015 IEEE Internat. Conf. on Robotics and Automation (ICRA), pp. 656­661. [7] Zhan Q. Motion planning of a spherical mobile robot // Motion and operation planning of robotic systems / G. Carbone, F. Gomez-Bravo (Eds.). Cham: Springer, 2015. P. 361­381. [8] Ga jbhiye S., Banavar R. N. Geometric mo deling and lo cal controllability of a spherical mobile robot actuated by an internal pendulum // Int. J. Robust Nonlinear Control, 2015. [9] Borisov A. V., Mamaev I. S. Two non-holonomic integrable problems tracing back to Chaplygin // Regul. Chaotic Dyn., 2012, vol. 17, no. 2, pp. 191­198.

. 2015. T. 11. 4. . 721­734


734

. . , . .

[10] Borisov A. V., Kilin A. A., Mamaev I. S. How to control Chaplygin's sphere using rotors // Regul. Chaotic Dyn., 2012, vol. 17, nos. 3­4, pp. 258­272. . : . ., . ., . . // , 2012, . 8, 2, . 289­307. [11] Borisov A. V., Kilin A. A., Mamaev I. S. How to control the Chaplygin ball using rotors: 2 // Regul. Chaotic Dyn., 2013, vol. 18, nos. 1­2, pp. 144­158. . : . ., . ., . . : 2 // , 2013, . 9, 1, . 59­76. [12] Morinaga A., Svinin M., Yamamoto M. A motion planning strategy for a spherical rolling robot driven by two internal rotors // IEEE Trans. on Robotics, 2014, vol. 30, no. 4, pp. 993­1002. [13] Kilin A. A., Pivovarova E. N., Ivanova T. B. Spherical robot of combined type: Dynamics and control // Regul. Chaotic Dyn., 2015, vol. 20, no. 6, pp. 716­728. [14] Koiller J., Ehlers K. M. Rubber rolling over a sphere // Regul. Chaotic Dyn., 2007, vol. 12, no. 2, pp. 127­152. [15] Borisov A. V., Kilin A. A., Mamaev I. S. The problem of drift and recurrence for the rolling Chaplygin ball // Regul. Chaotic Dyn., 2013, vol. 18, no. 6, pp. 832­859. . : . ., . ., . . // , 2013, . 9, 4, . 721­754. [16] Borisov A. V., Mamaev I. S., Bizyaev I. A. The hierarchy of dynamics of a rigid bo dy rolling without slipping and spinning on a plane and a sphere // Regul. Chaotic Dyn., 2013, vol. 18, no. 3, pp. 277­ 328. . : . ., . ., . . // , 2013, . 9, 2, . 141­202.

Experimental research of dynamic of spherical robot of combined type
Alexander A. Kilin1 , Yury L. Karavaev
1

2

Udmurt State University Universitetskaya 1, Izhevsk, 426034 Russia 2 M. T. Kalashnikov Izhevsk State Technical University Studencheskaya st. 7, Izhevsk, 426069, Russia 1 aka@rcd.ru, 2 karavaev_yury@istu.ru

This pap er presents the results of exp erimental investigations for the rolling of a spherical rob ot of combined typ e actuated by an internal wheeled vehicle with rotor on a horizontal plane. The control of spherical rob ot based on nonholonomic dynamical by means of gaits. We consider the motion of the spherical rob ot in case of constant control actions, as well as impulse control. A numb er of exp eriments have b een carried out confirming the imp ortance of rolling friction. MSC 2010: 93B18, 93B52 Keywords: spherical rob ot of combined typ e, dynamic mo del, control by means of gaits, rolling friction
Received November 05, 2015, accepted December 02, 2015 Citation: Rus. J. Nonlin. Dyn., 2015, vol. 11, no. 4, pp. 721­734 (Russian)

. 2015. T. 11. 4. . 721­734