Topological monodromy as an obstruction to Hamiltonization of nonholonomic systems: Pro or contra?
Journal of Geometry and Physics, 2015, vol. 87, pp. 61-75
Abstract
pdf (754.64 Kb)
The phenomenon of a topological monodromy in integrable Hamiltonian and nonholonomic systems is discussed. An efficient method for computing and visualizing the monodromy is developed. The comparative analysis of the topological monodromy is given for the rolling ellipsoid of revolution problem in two cases, namely, on a smooth and on a rough plane. The first of these systems is Hamiltonian, the second is nonholonomic. We show that, from the viewpoint of monodromy, there is no difference between the two systems, and thus disprove the conjecture by Cushman and Duistermaat stating that the topological monodromy gives a topological obstruction for Hamiltonization of the rolling ellipsoid of revolution on a rough plane.
Bolsinov A. V., Kilin A. A., Kazakov A. O., Topological monodromy as an obstruction to Hamiltonization of nonholonomic systems: Pro or contra? , Journal of Geometry and Physics, 2015, vol. 87, pp. 61-75
Topology and Bifurcations in Nonholonomic Mechanics
Russian Journal of Nonlinear Dynamics, 2015, vol. 11, no. 4, pp. 735?762
Abstract
pdf (561.73 Kb)
This paper develops topological methods for qualitative analysis of the behavior of nonholonomic dynamical systems. Their application is illustrated by considering a new integrable system of nonholonomic mechanics, called a nonholonomic hinge. Although this system is nonholonomic, it can be represented in Hamiltonian form with a Lie ?Poisson bracket of rank 2. This Lie ? Poisson bracket is used to perform stability analysis of fixed points. In addition, all possible types of integral manifolds are found and a classification of trajectories on them is presented.
Bizyaev I. A., Bolsinov A. V., Borisov A. V., Mamaev I. S., Topology and Bifurcations in Nonholonomic Mechanics, Russian Journal of Nonlinear Dynamics, 2015, vol. 11, no. 4, pp. 735?762
Geometrisation of Chaplygin's reducing multiplier theorem
Nonlinearity, 2015, vol. 28, no. 7, pp. 2307?2318
Abstract
pdf (164.17 Kb)
We develop the reducing multiplier theory for a special class of nonholonomic
dynamical systems and show that the non-linear Poisson brackets naturally
obtained in the framework of this approach are all isomorphic to the Lie–Poisson $e$(3)-bracket. As two model examples, we consider the Chaplygin ball
problem on the plane and the Veselova system. In particular, we obtain an
integrable gyrostatic generalisation of the Veselova system.
Bolsinov A. V., Borisov A. V., Mamaev I. S., Geometrisation of Chaplygin's reducing multiplier theorem, Nonlinearity, 2015, vol. 28, no. 7, pp. 2307?2318
Topology and Bifurcations in Nonholonomic Mechanics
International Journal of Bifurcation and Chaos, 2015, vol. 25, no. 10, 1530028, 21 pp.
Abstract
pdf (616.56 Kb)
This paper develops topological methods for qualitative analysis of the behavior of nonholonomic
dynamical systems. Their application is illustrated by considering a new integrable system of
nonholonomic mechanics, called a nonholonomic hinge. Although this system is nonholonomic,
it can be represented in Hamiltonian form with a Lie–Poisson bracket of rank two. This Lie–Poisson bracket is used to perform stability analysis of fixed points. In addition, all possible
types of integral manifolds are found and a classification of trajectories on them is presented.
Bizyaev I. A., Bolsinov A. V., Borisov A. V., Mamaev I. S., Topology and Bifurcations in Nonholonomic Mechanics, International Journal of Bifurcation and Chaos, 2015, vol. 25, no. 10, 1530028, 21 pp.
Geometrization of the Chaplygin reducing-multiplier theorem
Russian Journal of Nonlinear Dynamics, 2013, vol. 9, no. 4, pp. 627-640
Abstract
pdf (373.67 Kb)
This paper develops the theory ofšthe reducing multiplier for ašspecial class ofšnonholonomic dynamical systems, when the resulting nonlinear Poisson structure isšreduced tošthe Lie?Poisson bracket ofšthe algebra $e(3)$. Asšanšillustration, the Chaplygin ball rolling problem and the Veselova system are considered. Inšaddition, anšintegrable gyrostatic generalization ofšthe Veselova system isšobtained.
Bolsinov A. V., Borisov A. V., Mamaev I. S., Geometrization of the Chaplygin reducing-multiplier theorem, Russian Journal of Nonlinear Dynamics, 2013, vol. 9, no. 4, pp. 627-640
Topological monodromy in nonholonomic systems
Russian Journal of Nonlinear Dynamics, 2013, vol. 9, no. 2, pp. 203-227
Abstract
pdf (890.26 Kb)
The phenomenon ofšaštopological monodromy inšintegrable Hamiltonian and nonholonomic systems isšdiscussed. Anšefficient method for computing and visualizing the monodromy isšdeveloped. The comparative analysis ofšthe topological monodromy isšgiven for the rolling ellipsoid ofšrevolution problem inštwo cases, namely, onšašsmooth and onšašrough plane. The first ofšthese systems isšHamiltonian, the second isšnonholonomic. Wešshow that, from the viewpoint ofšmonodromy, there isšnošdifference between the two systems, and thus disprove the conjecture byšCushman and Duistermaat stating that the topological monodromy gives aštopological obstruction for Hamiltonization ofšthe rolling ellipsoid ofšrevolution onšašrough plane.
Bolsinov A. V., Kilin A. A., Kazakov A. O., Topological monodromy in nonholonomic systems, Russian Journal of Nonlinear Dynamics, 2013, vol. 9, no. 2, pp. 203-227
Rolling of a Ball without Spinning on a Plane: the Absence of an Invariant Measure in a System with a Complete Set of Integrals
Regular and Chaotic Dynamics, 2012, vol. 17, no. 6, pp. 571-579
Abstract
pdf (402.12 Kb)
In the paper we consider a system of a ball that rolls without slipping on a plane. The ball is assumed to be inhomogeneous and its center of mass does not necessarily coincide with its geometric center. We have proved that the governing equations can be recast into a system of six ODEs that admits four integrals of motion. Thus, the phase space of the system is foliated by invariant 2-tori; moreover, this foliation is equivalent to the Liouville foliation encountered in the case of Euler of the rigid body dynamics. However, the system cannot be solved in terms of quadratures because there is no invariant measure which we proved by finding limit cycles.
Bolsinov A. V., Borisov A. V., Mamaev I. S., Rolling of a Ball without Spinning on a Plane: the Absence of an Invariant Measure in a System with a Complete Set of Integrals, Regular and Chaotic Dynamics, 2012, vol. 17, no. 6, pp. 571-579
The Bifurcation Analysis and the Conley Index in Mechanics
Regular and Chaotic Dynamics, 2012, vol. 17, no. 5, pp. 457-478
Abstract
pdf (614.32 Kb)
The paper is devoted to the bifurcation analysis and the Conley index in Hamiltonian dynamical systems. We discuss the phenomenon of appearance (disappearance) of equilibrium points under the change of the Morse index of a critical point of a Hamiltonian. As an application of these techniques we find new relative equilibria in the problem of the motion of three point vortices of equal intensity in a circular domain.
Bolsinov A. V., Borisov A. V., Mamaev I. S., The Bifurcation Analysis and the Conley Index in Mechanics, Regular and Chaotic Dynamics, 2012, vol. 17, no. 5, pp. 457-478
Rolling without spinning of a ball on a plane: absence of an invariant measure in a system with a complete set of first integrals
Russian Journal of Nonlinear Dynamics, 2012, vol. 8, no. 3, pp. 605-616
Abstract
pdf (328.96 Kb)
Inšthe paper wešconsider ašsystem ofšašball that rolls without slipping onšašplane. The ball isšassumed tošbešinhomogeneous and its center ofšmass does not necessarily coincide with its geometric center. Wešhave proved that the governing equations can bešrecast into ašsystem ofšsix ODEs that admits four integrals ofšmotion. Thus, the phase space ofšthe system isšfoliated byšinvariant 2-tori; moreover, this foliation isšequivalent tošthe Liouville foliation encountered inšthe case ofšEuler ofšthe rigid body dynamics. However, the system cannot bešsolved inšterms ofšquadratures because there isšnošinvariant measure which wešproved byšfinding limit cycles.
Bolsinov A. V., Borisov A. V., Mamaev I. S., Rolling without spinning of a ball on a plane: absence of an invariant measure in a system with a complete set of first integrals, Russian Journal of Nonlinear Dynamics, 2012, vol. 8, no. 3, pp. 605-616
Hamiltonization of Nonholonomic Systems in the Neighborhood of Invariant Manifolds
Regular and Chaotic Dynamics, 2011, vol. 16, no. 5, pp. 443-464
Abstract
pdf (425.83 Kb)
The problem of Hamiltonization of nonholonomic systems, both integrable and non-integrable, is considered. This question is important in the qualitative analysis of such systems and it enables one to determine possible dynamical effects. The first part of the paper is devoted to representing integrable systems in a conformally Hamiltonian form. In the second part, the existence of a conformally Hamiltonian representation in a neighborhood of a periodic solution is proved for an arbitrary (including integrable) system preserving an invariant measure. Throughout the paper, general constructions are illustrated by examples in nonholonomic mechanics.
Bolsinov A. V., Borisov A. V., Mamaev I. S., Hamiltonization of Nonholonomic Systems in the Neighborhood of Invariant Manifolds, Regular and Chaotic Dynamics, 2011, vol. 16, no. 5, pp. 443-464
The bifurcation analysis and the Conley index in mechanics
Russian Journal of Nonlinear Dynamics, 2011, vol. 7, no. 3, pp. 649-681
Abstract
pdf (782.35 Kb)
The paper isšconcerned with the use ofšbifurcation analysis and the Conley index inšHamiltonian dynamical systems. Wešgive the proof ofšthe theorem onšthe appearance (disappearance) ofšfixed points inšthe case ofšthe Morse index change. New relative equilibria inšthe problem ofšthe motion ofšpoint vortices ofšequal intensity inšašcircle are found.
Bolsinov A. V., Borisov A. V., Mamaev I. S., The bifurcation analysis and the Conley index in mechanics, Russian Journal of Nonlinear Dynamics, 2011, vol. 7, no. 3, pp. 649-681
Topology and stability of integrable systems
Russian Mathematical Surveys, 2010, vol. 65, no. 2, pp. 259?318
Abstract
pdf (1.12 Mb)
In this paper a general topological approach is proposed for the study of stability of periodic solutions of integrable dynamical systems with two degrees of freedom. The methods developed are illustrated by examples of several integrable problems related to the classical Euler–Poisson equations, the motion of a rigid body in a fluid, and the dynamics of gaseous expanding ellipsoids. These topological methods also enable one to find non-degenerate periodic solutions of integrable systems, which is especially topical in those cases where no general solution (for example, by separation of variables) is known.
Bolsinov A. V., Borisov A. V., Mamaev I. S., Topology and stability of integrable systems, Russian Mathematical Surveys, 2010, vol. 65, no. 2, pp. 259?318
Hamiltonisation of non-holonomic systems in the neighborhood of invariant manifolds
Russian Journal of Nonlinear Dynamics, 2010, vol. 6, no. 4, pp. 829-854
Abstract
pdf (398.78 Kb)
Hamiltonisation problem for non-holonomic systems, both integrable and non-integrable, isšconsidered. This question isšimportant for qualitative analysis ofšsuch systems and allows one tošdetermine possible dynamical effects. The first part isšdevoted tošthe representation ofšintegrable systems inšašconformally Hamiltonian form. Inšthe second part, the existence ofšašconformally Hamiltonian representation inšašneighbourhood ofšašperiodic solution isšproved for anšarbitrary measure preserving system (including integrable). General consructions are always illustrated byšexamples from non-holonomic mechanics.
Bolsinov A. V., Borisov A. V., Mamaev I. S., Hamiltonisation of non-holonomic systems in the neighborhood of invariant manifolds, Russian Journal of Nonlinear Dynamics, 2010, vol. 6, no. 4, pp. 829-854
Compatible Poisson Brackets on Lie Algebras
Mathematical Notes, 2002, vol. 72, no. 1, pp. 10-30
Abstract
pdf (244.55 Kb)
We discuss the relationship between the representation of an integrable system as an $L-A$-pair with a spectral parameter and the existence of two compatible Hamiltonian representations of this system. We consider examples of compatible Poisson brackets on Lie algebras, as well as the corresponding integrable Hamiltonian systems and Lax representations.
Lie algebras in vortex dynamics and celestial mechanics — IV
Regular and Chaotic Dynamics, 1999, vol. 4, no. 1, pp. 23-50
Abstract
pdf (1.16 Mb)
1.Classificaton of the algebra of $n$ vortices on a plane
2.Solvable problems of vortex dynamics
3.Algebraization and reduction in a three-body problem
The work [13] introduces a naive description of dynamics of point vortices on a plane in terms of variables of distances and areas which generate Lie–Poisson structure. Using this approach a qualitative description of dynamics of point vortices on a plane and a sphere is obtained in the works [14,15]. In this paper we consider more formal constructions of the general problem of n vortices on a plane and a sphere. The developed methods of algebraization are also applied to the classical problem of the reduction in the three-body problem.
Citation:
Bolsinov A. V., Borisov A. V., Mamaev I. S., Lie algebras in vortex dynamics and celestial mechanics — IV, Regular and Chaotic Dynamics, 1999, vol. 4, no. 1, pp. 23-50