Документ взят из кэша поисковой машины. Адрес оригинального документа : http://genphys.phys.msu.su/rus/edu/kvant/II_2/STAT2/_private/StatFeu.htm
Дата изменения: Mon Dec 8 23:22:26 2003
Дата индексирования: Sun Feb 3 06:25:50 2013
Кодировка: Windows-1251
Статистика фотоотсчетов ФЭУ

Статистика фотоотсчетов ФЭУ

Статистика фотоотсчетов ФЭУ

В этой работе мы будем рассматривать появление импульсов на выходе фотоэлектронного умножителя (ФЭУ), работающего в режиме счета фотонов, как случайный процесс, включающий большое число событий. Нас будет интересовать число импульсов n на выходе ФЭУ за некоторое время τ (время накопления). Предположим, что мы регистрируем в среднем 10 импульсов в секунду. Повторим процесс измерений N раз. Всегда ли мы будем иметь 10 отсчетов и с какой вероятностью мы можем получить другой результат?

Пусть в среднем  на фотокатод попадает n фотонов в единицу времени. Покажем, что вероятность  того, что за время τ будет зарегистрировано n фотонов, определяется распределением Пуассона. Для этого разделим мысленно временной интервал τ на большое число малых dt. Вследствие случайного характера процессов  фото-  и вторичной электронной эмиссии вероятность появления импульса на выходе ФЭУ (фотоотсчета) в течение любого из интервалов dt не зависит от его появления в другие интервалы dt. Интервал dt возьмем настолько малым, что вероятность появления фотона за это время очень мала. Например, учитывая что в среднем за 1/ n  секунд на фотокатод падает одна частица, возьмем  dt=0.001/ n . Таким образам в каждом интервале dt производится независимое испытание на появление частицы, а число испытаний, N=τ/dt. При этом среднее значение n= n τ<<N, а вероятность р n/N=0.001<<1. Следовательно, применимо распределение Пуассона.

Следует учитывать, однако, что ответ на вопрос какое распределение имеет место в действительности может дать только эксперимент.