Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://genphys.phys.msu.su/rus/diploma/diploma2012/Diplom_Tolmacheva.pdf
Äàòà èçìåíåíèÿ: Sun Sep 30 17:37:44 2012
Äàòà èíäåêñèðîâàíèÿ: Sun Feb 3 05:14:03 2013
Êîäèðîâêà:
. . .



TmNiO3 YbNiO3 57Fe

5 ..

: , .-. ..

­ 2012 .

1


......................................................................................................... I. RNiO3 (R = , Y) ( ) .............. 1.1. ................................................................. 1.2. ­ ...... 1.3. ............................................................................ II. ............................................... 2.1. ............................................................ 2.2. ........................................................... 2.3. ............... 2.3.1. ............ 2.3.2. ........................................................ 2.4. .................................... 2.4.1. MBF-1100 ....................................................... 2.4.2. ...................................................................... 2.4.3. .................................................................... III. TmNi0.9857Fe0.02O3 YbNi0.9857Fe0.02O3 ............... 3.1. ­ .................................................. 3.1.1. ........................................................ 3.1.2. ­ ..... 3.1.3. 57Fe ........................ 3.2. .............................................................. 3.2.1. ....... 3.2.2. 57Fe ....... . .............. ............................................................. 3 5 5 14 16 18 18 19 20 20 20 25 26 28 30 32 32 32 43 47 49 49 53 64 65

2


RNiO3 (R = , Y) . La Lu (R )
3 3+







RNiO .
N

­

(



)



- ( ), ( , ) Ni-O-Ni. , , . T < T



(3+)+

Ni1 Ni2, Ni + Ni
(3­)+

2Ni3+,
)

R3+. (T > T , . , RNiO . .
3
3




















, . TmNiO3, YbNiO3. , , . , . ­ 57Fe TmNiO3 YbNiO3 , . : - ,
57

Fe TmNiO3 YbNiO3

; - ; -
)



57Fe ( T -

( TN); - ; - 57Fe.

4


I. RNiO3 (R = , Y) ( ). 1.1. RNiO3 (R = Pr, Nd, Sm, Eu, Gd, Dy, Ho, Y) [1­4], (SXRD) (NPD) . SXRD NPD , . , . , RNiO3 (R = Pr, Nd) (. . Pbnm) (T),


RNiO3 (R = Sm, Eu, Gd, Dy, Ho, Y) = T .

, SXRD [1] , RNiO3 (R = Sm, Gd). HoNiO3, , . -,
5


- - ( , - ).
Ni
3+ 6 : t2 g e1 g











eg-. , -. , NiO6 , . , - RNiO3 - Ni3+­O2-. RNiO3 (R = Pr, Nd, Eu, Y) EXAFS. NdNiO3 EuNiO3 T > T




, PrNiO3 YNiO3 ­ . NdNiO3 , , ( T < T T < T
).




RNiO3. ,
3

RNiO3 (R = Pr, Nd, Eu) , RNiO P21/n. [5]

(R = Ho Lu) ,









RNiO3 (R = Pr, Nd, Eu, Sm). , SmNiO3 EuNiO3 (T
Ni


> TN)




, PrNiO3 NdNiO3 (T
Ni

= TN)

= TN.

6


[6] NdNiO3 . 2Ni3+ Ni(3+
)+









,

+ Ni
(3­)+





P21/n Pbnm,






.

. ,

T

, , . [4] RNiO3 (R = Ho, Er, Lu, Y) (SXRD) (NPD) . . , , Ni(1)O6 Ni(2)O6, , 60-80 , T


,

. . [7] YNiO3 (ESR) . YNiO3: (T


= 582), P21/n Pbnm,
)+

2Ni3+ Ni(3+ + Ni
(3­)+

( = 0.35)

, .
7


-1, - (T = 582 > TN). ESR ( < T


) , Ni2+.

, Ni4+ (IS) Ni4+ (S = 0, LS) Ni4+ (S = 1). [8] LaNiO
3





(. . R3c ) . , PrNiO3 NdNiO3, (. . Pbnm) (T < TN = T) (T > TN = T
)

.

RNiO3 (R = Sm Lu, Y) . R = Ho, Y, Er, Lu , T < T


(. . P21/n) [1]. Ni1 Ni2 [1]. [9, 10, 11],
57

Fe [11].

R = Sm, Eu, Dy, Gd [11]. , Ni1 Ni2 , .

8


[12] + ­ Ni(1) Ni(2). Ni
x+



« » (si), Nix+-Oi(ri) NiO6: si = exp [(r0-ri)/B], r0 = 1.686; B = 0.37. Ni(1) Ni(2) , Ni(1)O6 Ni(2)O6 . , . . , , 2Ni3+ Ni
(3+)+

+ Ni

(3­)+

.





, «» < T
,



, . , (R = Sm Lu, Y) TN < T < T




­ . .

9


Monoclinic space group P21/n (14) abc = = 90°, 90° Z=4 Wyckoff position R Ni1 Ni2 O1 O2 O3 4e 2d 2c 4e 4e 4e Site Symmetry 1 -1 -1 -1 -1 -1 Coordinates x,y,z; -x+1/2,y+1/2,-z+1/2; -x,-y,-z; x+1/2,-y+1/2,z+1/2 1/2,0,0; 0,1/2,1/2 1/2,0,1/2; 0,1/2,0 x,y,z; -x+1/2,y+1/2,-z+1/2; -x,-y,-z; x+1/2,-y+1/2,z+1/2 x,y,z; -x+1/2,y+1/2,-z+1/2; -x,-y,-z; x+1/2,-y+1/2,z+1/2 x,y,z; -x+1/2,y+1/2,-z+1/2; -x,-y,-z; x+1/2,-y+1/2,z+1/2

Orthorhombic space group Pbnm (62) abc = = = 90° Z=4 Wyckoff position R Ni O1 O2 4c 4b 4c 8d Site Symmetry .m. -1 .m. 1 Coordinates x,y,1/4; x+1/2,-y+1/2,3/4; -x,-y,3/4; -x+1/2,y+1/2,1/4 1/2,0,0; 0,1/2,0; 1/2,0,1/2; 0,1/2,1/2 x,y,1/4; x+1/2,-y+1/2,3/4; -x,-y,3/4; -x+1/2,y+1/2,1/4 x,y,z; x+1/2,-y+1/2,-z; -x,-y,z+1/2; -x+1/2,y+1/2,-z+1/2; -x,-y,-z; -x+1/2,y+1/2,z; x,y, -z+1/2; x+1/2,-y+1/2,z+1/2

Ni .

10


TmNiO3 YbNiO3 . 1.1 1.3 [1]. TmNiO3 YbNiO3. TmNiO3: a = 5.11453; b = 5.5038; c=7.3750; = 90°, = 90.115°, = 90°; . 1.1. TmNiO3 Tm Tm Tm Tm Ni1 Ni1 Ni2 Ni2 O1 O1 O1 O1 O2 O2 O2 O2 O3 O3 O3 O3 x 0.9797 0.5203 0.0203 0.4797 0.5000 0.0000 0.5000 0.0000 0.1046 0.3954 0.8954 0.6046 0.6996 0.8004 0.3004 0.1996 0.1833 0.3167 0.8167 0.6833 y 0.0754 0.5754 0.9246 0.4246 0.0000 0.5000 0.0000 0.5000 0.4666 0.9666 0.5334 0.0334 0.3106 0.8106 0.6894 0.1894 0.2020 0.7020 0.7980 0.2980 z 0.2503 0.2497 0.7497 0.7503 0.0000 0.5000 0.5000 0.0000 0.2448 0.2552 0.7552 0.7448 0.0505 0.4495 0.9495 0.5505 0. 9455 0.5545 0.0545 0.4455

(Ni1 Ni2) (O1, O2 O3) TmNiO3 . 1.2:

11


. 1.2. Ni1 Ni2 O1, O2 O3. R, å Ni1 ­ O1 1.9672 Ni1 - O2 2.0284 Ni1 ­ O3 2.0125 Ni2 ­ O1 1.8918 Ni2 - O2 1.9018 Ni2 ­ O3 1.9346

YbNiO3: a = 5.1298; b = 5.4996; c=7.3404; = 90°, = 90.125°, = 90°. . 1.3. YbNiO3 Yb Yb Yb Yb Ni1 Ni1 Ni2 Ni2 O1 O1 O1 O1 O2 O2 O2 O2 O3 O3 O3 O3 x 0.9796 0.5204 0.0204 0.4796 0.5000 0.0000 0.5000 0.0000 0.1074 0.3926 0.8926 0.6074 0.6950 0.8050 0.3050 0.1950 0.1827 0.3173 0.8173 0.6827 y 0.0764 0.5764 0.9236 0.4236 0.0000 0.5000 0.0000 0.5000 0.4637 0.9637 0.5363 0.0363 0.3123 0.8123 0.6877 0.1877 0.2008 0.7008 0.7992 0.2992 z 0.2496 0.2504 0.7504 0.7496 0.0000 0.5000 0.5000 0.0000 0.2453 0.2547 0.7547 0.7453 0.0524 0.4476 0.9476 0.5524 0.9446 0.5554 0.0554 0.4446

(Ni1 Ni2) (O1, O2 O3) YbNiO3 . 1.4:

12


. 1.4. Ni1 Ni2 O1, O2 O3 YbNiO3 R, å Ni1 ­ O1 1.9604 Ni1 - O2 2.0241 Ni1 ­ O3 2.0078 Ni2 ­ O1 1.8924 Ni2 - O2 1.9142 Ni2 ­ O3 1.9373

Ni d Ni1 Ni2 TmNiO3 YbNiO3 . 1.5. . 1.5. R Ni d Ni1 Ni2 TmNiO3 YbNiO3. TmNiO3 YbNiO3 , å 2.003 1.999 , å 1.909 1.916 d(Ni1), 10 1.68 1.61
-4

d(Ni2), 10 0.88 0.84

-4

13


1.2. ­ , RNiO3 (R = , Y), LaNiO3 [8], . , PrNiO3 NdNiO3, (TN = T
).

, RNiO3 (R = Sm Lu, Y) . T RNiO3 (. 1.1).
T, K 600 400 0 1.15 1.10 1.05 1.00 r(R3+) ( ) 0.95 P21/n Pbnm T


R3+



200

TN

. 1.1. (T) ­ (TN) R3+ [18]. [13], (|GS>) : |GS> =

t2g6eg1> + t2g6eg2L> (0 , 1), (2, 2)
14


. Ni3+(t2g6eg1), , - Mn3+(t2g3eg1) , eg-. , , RNiO3 , " " t2g6eg2L (L ­ ), : 2- + Ni3+ - + Ni2+. R = Lu - ( 1.1). , Ni(1)O6 Ni(2)O6. [1] , T < T 2Ni3+ Ni + Ni
(3-)+



,
3+





(3+)+









R

[1].
)

(T > T



, . , RNiO3 . . , .

15


1.3. RNiO3 (T
)



. (TN)


3

(R). , PrNiO3 NdNiO (T


= TN). , (T > TN).

(Sm Lu, Y), R3+ TN T


(T < TN). Ni1 Ni1 Ni2 (. 1.2). , , , . RNiO3 [15]. , , (NiO6) eg- Ni3+(t2g6eg1) G = c1d ± c1d
z2 x2-y2

± c2dz2 = c2d
1 x2-y2

x2-y2

. Ni1: t2g6d
1 z2

(c1 >> c2)

Ni2: t2g6d

(c1 << c2)

, . Ni1 Ni1 ( Ni2 Ni2), d
x2-y2/dz2-

,

.
16


Ni1 Ni2 (Ni1) (Ni2) d
x2-y2-

( xy)

(Ni2) (Ni1) dz2- ( z). Ni1­O­Ni2.

z

- Ni

3+

y x

. 1.2. RNiO3 (R = Pr, Nd, Sm). , [17] RNiO3 , , . , . Ni
3+













,

17


II. 2.1. RNiO3 (R = ) . , LaNiO3 1989 ., [19]. . [20]. , +3. CeNiO3 TbNiO3, , , (+3/+4). Ni(II) ( 1000o), , Ni(III) RNiO3 . "" (P 60 ) "", "" ­ ( 100 ) 1 ­ 2 . . - ( ). . TmNi
0.98

Fe0.02O3 YbNi

0.98

Fe0.02O3


18


.-. .. . Ni(II) 57Fe(III) (3) : (1-x)Ni
2+ (aq.)

(1-)nOH- + mOH

-

+ x57Fe3+

(aq.)

"(1-x)Ni(OH)n: x57Fe()m"

4000
57

Fe Ni0.9857Fe0.02O:
57

"(1-x)Ni(OH)n: x Fe()m"

t = 4000C

Ni

0.98

57

Fe0.02O + zH2O
0.98

R23 Ni (R = Tm, Yb) ~10 : R2O3 + Ni0.9857Fe0.02O + KClO3 2RNi °
t,P
0.98 57

Fe0.02O

KClO3 9000 60

Fe

0.02

O3: + KCl + 1/2O2.

. 2.2. 1101 . «» . 1024 . , - 4 , 256 . , ,
19


-Fe. SpectrRelax. (57Fe,
119

Sn,

121

Sb...),

, () , . , TmNiO3 YbNiO3 57Fe. 2.3. 2.3.1.

SpectrRelax, MSTools. . , : , , , , , .
n F - f (x j , b ) = w j (F j - f (x j , b ))2 = j (1) Sj j =1 j +1 {Fj} (j = 1, ..., n; n ­ ) ­ 2 n 2

F; f(xj,b) ­ F, xj b = {bk} (k = 1, ..., m; m ­ ); Sj ­ w j = 1/ S 2 ­ «» j
20


Fj. ( 2 ) ­ . 2 f ( x j , b) ,
f ( x j , b) bk

, .

2.3.2.





()





, .

, SpectrRelax, MSTools.. . , . , ,
2 2(a,p) , sp(a,p) ,

, :
2 2 2(a,p) = sp(a,p) + u (p) ,

(2)


t rs N - N j - D (a s ) p s k j s =1 k =1 jk , N j 2

(a,p) =

2 sp



n

(3)

j =1

21




2 u (p)

=

u
s s =1

t

r

s

k =1




l =1

r

s

s Tkl pls . s k

2

(4)

a ­ ; p - ; {Nj} ­ (j=1,2,...,n; n -
j ); {N } ­ ; {Nj} ­

; {D jk (a s )} ­ , s- (s=1,2,...,t; t ­ ); a s ­
s s- ; {p k } ­ s- (k = 1,2,...,rs; rs ­ s s- ); {Tkl } ­ ,

,
s ; { k } ­ ""

, ; us ­ .
2 u (p)

( )
s {p k } . s {us} "" { k } . s { k } , ""

. .

22


{D jk (a s )} , . :
6

D jk (a ) =

s


l =1

s Als Z(v j ;vkl , ks ) ,

(5)

s Z(v j ;vkl , ks ) ­ , ; vj ­

, j- ; A s , l
v
s kl

ks ­ , l-
s

s ks , k H n k .

ks S, ( ) ks :

ks = S + +

s k

s k

(6)

,

, " ", ..
s {p k } s, s, Hs s s-

:
ks = s k = s H n k s k s + (k - 1 )/(r s -1 ) s , s + (k - 1 )/(r s - 1 ) s , =H
s n

+ (k - 1 )/(r s - 1 ) H n ,

s

(7)

= s + (k - 1 )/(r s - 1 ) s .
s nk

s , ks , k , H

ks

s s s, s, H n , s s, s, H n , s

t rs.
23










s {p k }






s s N 0 ,c,v0 ;{A21 ,A31 , s ,s , s ,s ,H n , s s n

, s , s , s } . p

(8)

N(v) , t :
s s ( A21 A2 /A1 = A5 /A6 A31 A3 /A1 = A4 /A6 ),

(s,s), (s,s), (Hns,Hns) (s,s),
s ( s ), { k } . p


s {p k }

,











. {pk} x {, , Hn, } : - I=


k

pk ;

- ( ) x M(x)


k

xk pk /
max


k

pk ;

- () x - xmid; - D(x) M((x - x )2 ) ; - S(x) (D(x))1/ 2 ; -
p(x)

;

;
24


- M((x - x )3 )/S 3(x) ; - M((x - x )4 )/S 4(x) - 3 ,

"" {pk} . 1) ; 2) ; 3) () ; 4) ( ) .
2.4.









SpectrRelax :

TmNiO3 YbNiO3 , , ­ . , 4.8 640. , MBF-1100. 78 270 , 4,8 270 ­ .

25


2.4.1. MBF-1100

( ) , , , . , . - - Ni. . MBF-1100 . 2.1 2.2 . . 2.3 TR-55 MBF-1100.

. 2.1. MBF-1100
MBF-1100 TR-55:

­ - - 1100 K. ­ - < 110 °C. ­ - <5 %.
26


­ 14.4 57Co - < 1 %. ­ . ­ . ­ - 30 . ­ - 3 . ­ - 18 . ­ - 100 . ­ - 130 . ­ - ~1.5 .

. 2.2. MBF-1100
TR-55 MBF-1100:

­ - 1 °C. ­ - 1/0.1 °. ­ - 0.08 °/°.
27


­ - . ­ - 240 . ­ . ­ - 445 mm x 240 mm x 86 mm ­ - ~6 .

. 2.3. TR-55 MBF-1100
2.4.2.

- () 53 360 , < ±0,1 . 78 ­ 293 , 53 ­ 78 . . . , , , , .

28


. . 2.4.

. 2.4.
: :

­ (53 ­ 360) ­ 4,2 ­ (77,4 ­78) ­ 14 . ­ ­ 1.5 .

29


­ (53 ­360) ­ ±0,1 .
2.4.3.

Janis SHI (. . 2.5) 4°K 3.5 300°K.

. 2.5.

30


. -. , , . . . 2.5.

31


III. TmNi
0.98 57

Fe0.02O3 YbNi

0.98

57

Fe0.02O3

3.1. ­

(. 1.1), P21/n Pbnm,
57

2Ni3+ Ni

(3+)+

+ Ni

(3­)+

.

,

Fe Ni
57

TmNiO3 YbNiO3. , T , (Ni1 Ni2). , Ni TmNiO3 YbNiO3 57Fe. (. ) TmNi
57 0.99 Fe0.01O3

Fe,

YbNi

57 0.99 Fe0.01O3

300 620 .
3.1.1.

57Fe TmNiO3 YbNiO3 . 3.1 3.2 . , , , , .

32


TmNiO3:57Fe

295 K

520 K

400 K

525 K

450 K

560 K

500 K

600 K

510 K

620 K

-3

-2

-1

0 1 v, /

2

3

-3

-2

-1

0 1 v, /

2

3

. 3.1. 57Fe TmNiO3 P 21 / n Pbnm

33


YbNiO3:57Fe

298 K

540 K

350 K

560 K

440 K

580 K

500 K

600 K

520 K

620 K

-3

-2

-1

0 1 v, /

2

3

-3

-2

-1

0 1 v, /

2

3

. 3.2. 57Fe YbNiO3 P 21 / n Pbnm

34


, ( ) .
N < T







,





Fe1 Fe2 (. 3.3 3.4) c (1 2) (1 2) (. 3.1 3.2). ,
57

Fe

- . Fe1 Fe2 "+3". 1 2 Fe-O (Fe1O6) (Fe2O6). , Fe-O . , , Fe1 1 , (Ni1O6), Fe2 ­ (Ni2O6). , , (1) (1). , . , [1], , (Ni1O6) (Ni2O6).

35


N, % 100 99 98 100

TmNiO3:57Fe

Fe2 Fe1

295 K

Fe2

500 K
Fe1

99 98 100
Fe2

525 K
Fe1

99 98 100

560 K 99 98 -3 -2 -1 0 1 v, / 2 3

. 3.3. 57Fe TmNiO3 P 21 / n Pbnm

36


N, % 100 99

YbNiO3:57Fe

Fe2 Fe1

295 K

98 100
Fe2

540 K
Fe1

99

100
Fe2

560 K
Fe1

99

100 620 K 99

0 1 2 3 v, / . 3.4. 57Fe YbNiO3 P 21 / n Pbnm

-3

-2

-1

37


. 3.1. I, 57Fe TmNiO3 300 600
T, K Fe I, % , / , /

300 400 450 475 500 510 520 525 530 540 560 600 620

Fe1 Fe2 Fe1 Fe2 Fe1 Fe2 Fe1 Fe2 Fe1 Fe2 Fe1 Fe2 Fe1 Fe2 Fe1 Fe2 Fe1 Fe2 ­ ­ ­ ­

77,7 22,3 75,5 24,8 75,47 24,5 75,47 24,53 75,47 24,53 75,47 24,53 75,47 24,53 75,47 24,53 75,47 24,53 100 100 100 100

0,28 0,125 0,182 0 0,154 0 0,13 0 0,1032 0,016 0,0897 0,02 0,0814 0,013 0,0747 0,034 0,076 0,036 0,0541 0,0406 0,0118 -0,0065

0,156 0,0365 0,169 0,025 0,158 0,025 0,155 0,025 0,1647 0,077 0,1623 0,093 0,1627 0,094 0,1543 0,113 0,1572 0,118 0,1502 0,1518 0,1499 0,1489

38


. 3.2 I, 57Fe YbNiO3 300 600
T, K Fe I, % , / , /

300 350 400 440 460 480 500 520 540 560 580 600 620

Fe1 Fe2 Fe1 Fe2 Fe1 Fe2 Fe1 Fe2 Fe1 Fe2 Fe1 Fe2 Fe1 Fe2 Fe1 Fe2 Fe1 Fe2 Fe1 Fe2 Fe1 Fe2 -

79,9 20,1 80,9 19,1 80 20 80 20 80 20 80 20 80 20 80 20 80 20 80 20 80 20 100 100

0,2775 0,1131 0,23665 0,0696 0,1931 0,02385 0,1705 -0,0016 0,1555 -0,0111 0,133 -0,0265 0,1315 -0,0386 0,005 -0,0497 0,005 -0,017 0,057 0,022 0,054 0,033 0,0365 0,0171

0,1618 0,025 0,169 0,025 0,16275 0,025 0,16905 0,025 0,1626 0,025 0,1645 0,025 0,1665 0,025 0,173 0,025 0,164 0,062 0,164 0,129 0,16 0,138 0,166 0,163

39


Ni1-O Ni2-O. (Ni1O6) Ni1-O , Ni3+(t2g6eg1), , - , . , Ni2-O g1-, - , , -. TmNi
57 0.99 Fe0.01O3 57

Fe Fe1 Fe2



YbNi

57 0.99 Fe0.01O3

,

. RNi0.98Fe0.02O3 R3+(. 3.5), , Tm Yb . Fe1 Fe2 ( 76%
TmNi0.9957Fe0.01O3 80% 20% YbNi
57 0.99 Fe0.01O3)

24%



, . 3.6 3.7, , 57Fe Ni1. (Ni1O6) (RNi (Ni1O6).
1-O

2.00 å) (Ni2O6) (R

Ni2-O

1.92 å),

(FeO6) (RFe-O 2.03 å) [24]

40


, / 0.4 0.3 0.2

RNi

0.98

57

Fe

0.02

O

3

, / 0.8 0.7 0.6

Fe(1)

Fe(2)

0.1
La Pr Nd

0.5
Sm Gd Eu Dy Er Lu Ho Tm Yb

0.0 -0.1 -0.2 -0.3 -0.4 1.2 1.15

0.4 0.3 0.2

Fe(1)


Fe(2)

0.1 0.0 0.95

1.1 1.05 o r(R3+), A

1

. 3.5. RNi0.98Fe0.02O3 R3+

,

57

Fe

Ni1 Ni2, .

41


I, % 100 80 60

TmNiO3:57Fe
IFe1 = 76 %
Fe1

IFe2 = 24 %
40 20 0 300 400 500 600 T,K . 3.6. 57Fe TmNiO3 Fe2

I, % 100 80 60 40 20 0

IFe1 = 80 %

YbNiO3:57Fe

Fe1

IFe2 = 20 %
Fe2

300

400 T,K

500

600

. 3.7. 57Fe YbNiO3
42


3.1.2. ­

57Fe ( 3.8 3.9) , , .
, /

TmNiO3:57Fe
Fe1

0.3

T

* IM

= 485 ± 5 TIM = 535 ± 3

0.2

0.1

Fe2

0

, /

0.4 Fe1 0.3 0.2 0.1 0 30 0 40 0 T, K 50 0 6 00

Fe2

. 3.8. 57Fe TmNiO3
43


, /

YbNiO3:57Fe
Fe1

0.3

T

* IM

= 530 ± 5

TIM = 590 ± 3

0.2

0.1 Fe2 0

, /

0.4 Fe1 0.3 0.2 0.1 0 3 00 400 T,K 500 600 Fe2

. 3.9. 57Fe YbNiO3 , 300 485 TmNi
57 0.99 Fe0.01O3 57 0.99 Fe0.01O3)

(530 YbNi

57Fe

, ,
57

Fe

. ,
44


. , . (485 ­ 535K TmNi 530 ­ 590K YbNi
57 0.99 Fe0.01O3) 57 0.99 Fe0.01O3







"" . Fe2, Fe3+, (Ni2O6) Fe1. , "" "" Fe1 Fe2, , . 535 TmNi YbNi
57 0.99 Fe0.01O3 57 0.99 Fe0.01O3

590

.

, , , 1 2 . , ( TmNi 535 K), YbNi
57 0.99 Fe0.01O3 57 0.99 Fe0.01O3

­T



= (485 ­

­T



= (530 ­ 590 K)).
57 0.98 Fe0.02O3

RNi

(R = Tm, Yb)


<
45




>



.

, , . , , . ,





Ni
(3-)+

Ni
(3+)+





,

T T

(. 3.10).

T << T
Ni



(3+)+

Ni

(3-)+

Ni(3-)+ + Ni

(3+)-

T > T

2Ni

3+

Ni

3+

Ni

3+

T >> T



. 3.10. 57Fe RNi0.9857Fe0.02O3 P21/n Pbnm T = T.
46


3.1.3. 57Fe

. 3.11 3.12 () TmNi :
57 0.99 Fe0.01O3

YbNi

57 0.99 Fe0.01O3.





S(T; D ) = S 0 f (T;
2W (T;
D

D

)

= S0 e
1

- 2W (T;

D

)

,

(9)

)

3 E = 2 2 mc k B

D0



x cth D x dx, 2T

(10)

E - -; m ­ ; c ­ ; kB ­ ; D - . DYNAMICS 300 620 S(T) T (T

)


57 0.99 Fe0.01O3

. , ­ 425 ± 27 K TmNi YbNi
57 0.99 Fe0.01O3.

402 ± 20 K

, , . 3.3. . 3.3. . TmNi YbNi
57 0.99 Fe0.01O3 57 0.99 Fe0.01O3 3

S0, / 0.0209±0.0005 0.02306±0.00067

D, K 426±27 402±20

47


Sn, / 0.020 0.015

TmNiO3:57Fe

f

1 0.8 0.6

0.010 0.4 0.005 0.000 300 400 T,K 500 600

D = 426 ± 27 K

0.2 0

. 3.11. 57Fe TmNiO3

Sn, / 0.020 0.015 0.010 0.005 0.000 300

YbNiO3:57Fe

f

1 0.8 0.6 0.4

D = 402 ± 20 K

0.2 0

400

T,K

500

600

. 3.12. 57Fe YbNiO3

48


3.2.

RNiO3 . TmNiO3 YbNiO3. . ( 78 ) ( 4.8 78) . , SpectrRelax. , TmNi
57 0.99 Fe0.01O3

YbNi

57 0.99 Fe0.01O3

.

3.2.1.

. 3.13, 3.14 3.15 TmNi
57 0.99 Fe0.01O3

YbNi

57 0.99 Fe0.01O3



. , He , T = 4.8. Fe3+. , 57Fe TmNiO3 YbNiO3 . , , , 130 .
49


TmNiO3:57Fe

4,8 K

120 K

40 K

130 K

78 K

140 K

100 K

150 K

-12

-8

-4

0 4 v, /

8

12 -12

-8

-4

0 4 v, /

8

12

. 3.13. c 57Fe TmNiO3

50


YbNiO3:57Fe

5K

80 K

25 K

90 K

40 K

100 K

60 K

110 K

-12

-8

-4

0 4 v, /

8

12 -12

-8

-4

0 4 v, /

8

12

. 3.14. 57Fe YbNiO3 ( = 5 ­ 110 )

51


YbNiO3:57Fe

115 K

130 K

120 K

140 K

122.5 K

160 K

125 K

180 K

-12

-8

-4

0 4 v, /

8

12 -12

-8

-4

0 4 v, /

8

12

. 3.15. 57Fe YbNiO3 ( = 115 ­ 180 )

52


3.2.2. 57Fe









, p(Hn) Hn
57

Fe TmNiO3 YbNiO3 (. 3.16 ­ 3.20). T < ~130K
57 0.99 Fe0.01O3

TmNi YbNi
57 0.99 Fe0.01O3



.

Hn. , , Hn, . Hn. Hn . ( TmNi .
57 0.99 Fe0.01O3

YbNi

57 0.99 Fe0.01O3),

Hn D . 3.4 3.5.
p( H n )

p(Hn) Hn 57Fe TmNiO3 YbNiO3 (. 3.21 3.22), , N, .. D Ni
3+ 57 p(H n )

Hn

Fe

. , : TmNiO3 ­ N=133±3 YbNiO3 ­ N=127±2.
53


TmNiO3:57Fe N, % 100 4.8 K 99.5 p(Hn) 0.08 0.06 0.04 0.02 99 100 40 K 99 0 0.08 0.06 0.04 0.02 0 0.08 78 K 99 0.06 0.04 0.02 0 100 100 K 99 0.08 0.06 0.04 0.02 0 -12 -8 -4 0 v, / 4 8 12 0 100 200 300 400 500 Hn,

100

. 3.16. p(Hn) Hn 57Fe TmNiO3 ( = 4,8; 40; 78; 100 )

54


TmNiO3:57Fe N, % 100 p(Hn) 0.08 120 K 0.06 99 0.04 0.02 98 100 99 98 97 100 99 98 97 100 99 98 97 -12 -8 -4 0 4 v, / 8 12 150 K 140 K 130 K 0 0.4 0.3 0.2 0.1 0 0.4 0.3 0.2 0.1 0 0.4 0.3 0.2 0.1 0 0 100 200 300 400 500 Hn,

. 3.17. Hn 57Fe TmNiO3 ( = 120; 130; 140; 150 )

55


YbNiO3:57Fe N, % 100 5K p(Hn) 0.08 0.06 0.04 99.5 100 40 K 0.02 0 0.08 0.06 0.04 0.02 99 100 60 K 99 0 0.08 0.06 0.04 0.02 0 100 80 K 0.08 0.06 0.04 99 -12 -8 -4 0 v, / 4 8 12 0.02 0 0 100 200 300 400 500 Hn,

. 3.18. p(Hn) Hn 57Fe YbNiO3 ( = 4,8; 40; 60, 80 )

56


YbNiO3:57Fe N, % 100 90 K 99 p(Hn) 0.08 0.06 0.04 0.02 0 100 100 K 99 0.08 0.06 0.04 0.02 0 0.08 110 K 99 0.06 0.04 0.02 0 100 115 K 99 0.08 0.06 0.04 0.02 0 -12 -8 -4 0 4 v, / 8 12 0 100 200 300 400 500 Hn,

100

. 3.19. p(Hn) Hn 57Fe YbNiO3 ( = 90; 100; 110, 115 )

57


YbNiO3:57Fe N, % 100 120 K 99 p(Hn) 0.08 0.06 0.04 0.02 98 100 122.5 K 99 0 0.12 0.09 0.06 0.03 100 125 K 99 0 0.15 0.12 0.09 0.06 0.03 98 100 99 98 140 K 0 0.15 0.12 0.09 0.06 0.03 0 -12 -8 -4 0 4 v, / 8 12 0 100 200 300 400 500 Hn,

. 3.20. p(Hn) Hn 57Fe YbNiO3 ( = 120; 122.5; 125, 140 )

58


. 3.4. D p ( H n ) p(Hn), Hn max H p ( H n ) , p(Hn), 4,8 300 TmNiO3
T,
4,8 40 78 100 110 120 125 130 140 150 170 300

Hn,
328,21 232,65 180,19 149,46 140,89 84,64 86,97 19,15 4,85 4,36 6,09 13,01

D

p( H n )

,

2

H

max p(H n )

,

25900 31800 26400 19800 15000 7500 7600 1130 40 40 60 260

471,47 459,1 405,92 347,28 302,73 230,18 195,97 120 0 0 0 0

. 3.5. D p ( H n ) p(Hn), Hn max H p ( H n ) , p(Hn), 4,8 300 YbNiO3
T,
4,8 25 40 60 80 90 100 110 115 120 122,5 125 130 140 160 180

Hn,
335,09 212 233,37 208,29 175,9 161,77 145,92 112,4 108,56 85,56 61,47 39,62 26,31 27,34 27,96 30,51

D

p( H n )

,

2

H

max p(H n )

,

26400 30000 37000 26000 24600 20200 18100 11300 9300 6200 3400 1600 540 600 590 700

455,57 454,83 449,36 427,53 388,19 359,32 330,13 285,51 240,04 186,81 138,78 100 0 0 0 0

59


Dp

(H

n

2 ),

TmNiO3:57Fe

Hp(Hn),

35000 30000 25000 20000 15000 10000 5000 0 80 100 120 T, K
. 3.21. D p ( H n ) p(Hn) Hn 57Fe TmNiO3

Hp

(Hn)

150

100 D

p(Hn)

TN = 133 ± 3


140 160 180

50

0

60


Dp

(Hn)

, 2

YbNiO3:57Fe

H

p(Hn)

,

30000 Hp

25000

(Hn)

150

20000 100 15000 Dp
(Hn)

TN = 127 ± 2

10000


80 100 120 T, K 140 160 180

50

5000

0

0

. 3.22. D p ( H n ) p(Hn) Hn 57Fe YbNiO3

61



N


max p(H n )

H

, p(Hn),

(. 3.23 3.24). , , (12) (13)
3S H n TN H n (T;S;H 0 ;TN ) = H 0 BS S +1 H T , 0 BS (x) = 2S + 1 2S + 1 1 1 cth x - cth x . 2S 2S 2S 2S (11) (12)

, , N, ., : TmNiO3 ­ N=136.4±0.9 YbNiO ­ N=130.4±0.9.
H
ma x p(Hn)

3

,

TmNiO3:57Fe

500 400 300 SFe = 5/2 200 100 0 0 20 40 60 80 100 120 140 160 180 T, K TN = 136.4 ± 0.9



. 3.23. max H p ( H n ) , p(Hn),
62


H

max p(Hn)

,

YbNiO3:57Fe

500 400 300 200 100 0 0 20 40 60 80 100 120 140 160 180 T, K SFe = 2.5 TN = 130.4 ± 0.9



. 3.24. max H p ( H n ) , p(Hn),

63


.

TmNiO3

57

Fe

YbNiO3

. . 1. ,
57

Fe, Ni

TmNiO3 YbNiO3 , : - T > T -


(4b)

Pbnm ; T

(2d) (2c) P 21 / n . 2. , 57Fe TmNiO3 YbNiO3 ( 76 .%57Fe TmNiO3 80 .%57Fe YbNiO3) (2d) . 3. P 21 / n Pbnm TmNiO3 (485 ­ 535 K) YbNiO3 (530 ­ 590 K). 4. , . 5. TmNiO3 (TN = 135 ± 2 K) YbNiO3 (TN = 129 ± 2 K). 6.
57 57

Fe

TmNiO3 YbNiO3









Fe

­ 425 ± 27 K TmNiO3 402 ± 20 K YbNiO3.

64




1.

Alonso J.A., Martinez-Lope M. J., Casais M.T., Aranda M.A.G., FernandezDiaz M.T. Metal-insulator transition, structural and microstructural evolution of RNiO3 (R = Sm, Eu, Gd, Dy, Ho, Y) // J. Am. Chem. Soc. 121, 1999, p.4754.

2.

A. Alonso,J. L. Garcia-Mußoz, M. T. FernÀndez-Diaz, M. A. G. Aranda, M. J. Martinez-Lope, and M. T. Casais. Charge Disproportionation in RNiO3 Perovskites: Simultaneous Metal-Insulator and Structural Transition in YNiO3// Phys. Rev. Letters, 10 MAY 1999.

3. 4.

Medarde M.L. Structural, magnetic and electronic properties of RNiO perovskites (R = rare earth) // J. Phys.: Condens. Matter 9, 1997, p. 1679.

3

C. Piamonteze, H.C.N. Tolentino, A.Y. Ramos, N.E. Massa, J.A. Alonso, M.J. MartÌnez-Lope, M.T. Casais. Short-range charge order in RNiO3 perovskites (R=Pr, Nd, Eu, Y) probed by x-ray-absorption spectroscopy // Phys. Rev. 2005. B.71.012104

5.

I. Vobornik, L. Perfetti, M. Zacchigna, M. Grioni, and G. Margaritondo. Electronic-structure evolution through the metal-insulator transition in RNiO // Phys. Rev. B. 1999. V.60.P.R8426.
3

6.

M. Zaghrioui, A. Bulou, P. Lacorre, and P. Laffez. // Electron diffraction and Raman scattering evidence of a symmetry breakingat the metal-insulator transition of NdNiO3. Phys. Rev. B. 2001. V.64.P.081102R

7. 8.

M. T. Causa, R. D. S´anchez, M. Tovar. Charge disproportionation in YNiO3: ESR and susceptibility study // Phys. Rev. B. 2003. V.68.P.024429. .., .., ., .., ., ..,
57

.., .. ,
0.98Fe0.02O3

Fe RNi (R = La, Pr, Nd, Sm, Eu, Dy, Gd) // . , . . 2005. . 69. 10, .1503-1507.

65


9.

U. Staub, G.I.Meijer, F. Fauth, R. Allenspach, J. G. Bednorz, J. Karpinski, S.M.. Kazakov, L. Paolasini, F. d'Acapito. Direct Observation of Charge Order in an Epitaxial NdNiO3 Film. // Phys. Rev. Lett. 2002. V. 88. 126402-1.

10. De la Cruz F.P., Piamonteze C., Massa N.E., Salva H. // Phys. Rev. B. 2002. V. 66. 153104. 11. Presniakov I., Baranov A., Demazeau G. et al. // J. Phys.: Condens Matter. 2007. V. 19. 036201. 12. I.D. Brown. What factors determine cation coordination numbers? // J. Appl. Crystallogr. 1996. V.29.P.479. 13. M. Medarde, A. Fontaine, J.L. Garcia-Munoz, J. Rodriguez-Carvajal, M. Rossi, P. Lacorre. X-ray photoemission spectroscopy of RNiO3 // Phys. Rev. B46 1992, p.14975. 14. J.B. Torrance, P. Laccore, A.I. Nazzal, E.J. Ansaldo, C.Niedermayer. Phase transitions and distortions in perovskites RNiO3 // Phys. Rev. B45, 1992, p.8209. 15. J.L. Garcia-Munoz, J. Rodriguez-Carvajal, P. Lacorre. Orbital ordering of magnetic structure in nickelates // Phys. Rev. B50, 1994, p.978. 16. Weht R., Pickett W.E. Magnetoelectronic properties of a ferrimagnetic semiconductor: the hybrid cupromanganite CaCu3Mn4O12 Phys. Rev. B65, 2001, p. 014415. 17. C. Zobel, M. Kriener, D.Bruns, J.Baier, T. Lorenz. Resonance X-ray scattering in monocrystals NdNiO3 // Phys. Rev. B66, 2002, p.020402. 18. Presniakov I.A., Rusakov V.S., Demazeau G., Alonso J.A., Sobolev A.V., Gubaidulina T.V., Lukyanova E.N.. Structure of the local environment and hyperfine interactions of 57Fe probe atoms in DyNiO3 nickelate // Bulletin of the Russian Academy of Sciences: Physics, 2010, v. 74, No. 3, p. 335­338. 19. J.B. Torrance, P. Laccore, C. Asavaroengchai, R. Metzger. Structural and magnetic properties of rare earth nickelates // J. Solid State Chem. 90,1991, p.168. 20. G. Demazeau, A. Marbeuf, M. Pouchard, P. Hagenmuller. Preparation and
66


properties of RNiO3 (R = rare earth) // J. Solid State Chem. 151, 2000, p.1. 21. M. Blum, J.A. Tjon. Mossbauer Spectra in a Fluctuating Environment.// Phys. Rev. 165, (1968), p. 446. 22. M. Blum, J.A. Tjon. Mossbauer Spectra in a Fluctuating Environment II. Randomly Varing Electric Field Gradients.// Phys. Rev. 165, 1968, p. 456. 23. S. C. Bhargava. Magnetic behavior of Mg(Fe,Al)2O4: A Mossbauer study. Phys. Rev., B58, 1998, p.3240. 24. .. , . . ­ 2011. 25. .., .., ., .., ., .., .., .. ,
57

Fe RNi

0.98Fe0.02O3

(R = La, Pr, Nd, Sm, Eu, Dy, Gd). //

. 2005. .69. 10. .1503-1507. 26. Alonso J.A., Mart.inez-Lope M.J., Demazeau G., Fernandez-Diaz M.T., Presniakov I.A., Rusakov V.S., Gubaidulinad T.V. and Sobolev A.V. On the evolution of the DyNiO3 perovskite across the metal­insulator transition though neutron diffraction and M.ossbauer spectroscopy studies. // Dalton Trans., 2008, 6584­6592. DOI: 10.1039/b808485h. 27. Presniakov I., Baranov A., Demazeau G., Rusakov V., Alonso J., Sobolev A., Pokholok K. Evidence through MÆssbauer Spectroscopy of two different states for 57Fe probe atoms in RNiO3 perovskites with intermediate-size rare earths, R = Sm, Eu, Gd, Dy. // Journal of Physics: Condens Matter. (2007).
19. pp.036201-1-12.

67


*** .. , . . .. , .. , « » .

68