Документ взят из кэша поисковой машины. Адрес оригинального документа : http://electr003.chem.msu.ru/rus/fnm/fnm12_89.pdf
Дата изменения: Sat Oct 13 12:38:59 2012
Дата индексирования: Sun Feb 3 00:00:21 2013
Кодировка:


(wasq@elch.chem.msu.ru)

http://www.elch.chem.msu.ru/rus/prgfnm.htm



­ 10
3.0
Data: Data3_B Model: Gauss Chi^2/DoF = 0.43967 R^2 = 0.43268

2.5

2.0

y0 xc w A

0 ±0 0.37444 8.33845 22.6263

±6.36207 ±9.89754 ±33.4592



1.5

1.0

0.5

0.0 0 2 4 6 8 10



-- 2,6 10.0



1. G G 0 ()
E = E0 +

G



= G



+ G



G



= -RT ln K



=K

1/2

2.

(--)



+



()


E = E -

3.

0.059 lg f1c1 2

f1 ­2 /

(OH-), c(Zn(OH)42-), f(OH-), f(Zn(OH)42-) ­ 2SO
3 2-

+ 3H2O +4e = S2O32-+6OH3 2-

c(), f()

E1(pH) = E2

Ag(S2O3)3- +e =Ag + 2S2O 4. T, h, B

f1 - 1 f2 - 2 /

pH = lg f2 ­lgf pH = lg f2 ­lgf

1

I I

1 2

f1 - 2 / f2 - 2 /

1



( ) ( )

(electron transfer)





(, -, 1930)
G v = kc exp - RT :
-

9.1



O + ne­ R; zO ­ n = z

R


nF i = nFkcO exp - RT nF i = nFkcR exp RT



(1905)

E = a + b lg i

G = G = F


a =-

RT ln i0 nF

b=

2.3RT nF

:

:

i = i = i0


i =i -i





nF (1 - ) nF - exp - i = i0 exp RT RT - cO RT k RT (Butler-Volmer Equation) = ln + ln (+ )nF k (+ )nF cR = - = E - E + = 1 E0
i0 = nFk
1- 1 k cO- c R




(.., 1933)

9.1, 9.6

1. G = G = F ( - 1 )

2. (- , 1) (g) g - z F g - z F cO = cO exp O O 1 cR = cR exp R R 1 RT RT
nF gO (n - zO ) F 1 i = nFkcO exp exp exp - RT RT RT (1 -) gO + g R (n - zO ) F 1 1- i0 = nFk s0 exp exp cO cR RT RT () i = nFk i = nFk
( ) O s

nF ( E - E 0 ) exp - RT nF cR exp RT

ln i = const + ln cO +

(n - zO ) F 1 nFE - RT RT

( ) 1- cO s

z F lg i + O 1 -- ( E -1 ) 2.3RT ( )



ln i +
zO F 1 nF ( E - 1 ) = const - RT RT

9.2, 9.6

(n - zO ) F 1 < 0 ( ) RT
=0 0,9 0,1

K2S2O8/KCl

M2S2O8/MCl

0,001 0,002


(gO, gR, 1)
=0




9.3

m F - exp i = i0 exp + RT



n-m F - - i = n(im - im ) RT

F c (1 - 1 ) F i = 2i01 exp 1 - X exp - 0 = 2i02 RT c X RT
( + 2 ) F (2 - 1 - 2 ) F - exp - exp 1 RT RT i=2 1 F 1 (1 - 1 ) F + exp - exp 2 i01 RT RT i02

cX F (1 - 2 ) F exp 2 - exp - 0 RT RT cX
· . · ( )


-
( ) .
. (1931 .): .

9.7

(~10-15 c) , (~10-13 ).

­


(1956)
/ 1 0 U / (Q ) = (Q - Q / ) 2 + U / 2 1 = + = (Q2 - Q1 ) 2 0 0 G = U - U 1 G = (Q* - Q1 ) 2 2 (G + ) 2 G = 4


2

G = + G 4


=

d (G ) 1 G =+ d (G ) 2 2





- F - W + W

e = NA 40 2 e0 = NA 40

2 0

1 1

1 1 1 1 j ( ) - + - 2a1 2a2 R 1 1 1 ( ) - - ( ) 2a 4 R
= f j ( Q j )
2

1 2

fj =

2 fO f R fO + f R

( -)



WO = FzO 1 + g
W O = c exp - O RT
(0 ) O
O

9.7
R

WR = Fz R 1 + g

G = F - WO + WR

i = nFcO k



G k = A exp - RT
A =


( G + ) G = WO + 4


2

2

x

v2 + v 2 = 2

1/ 2

2 4 2 = H h

2 DA

1 4 kT

1/ 2





9.8




F
+ ( + G - ) 2 1 WO i = const exp - exp () d RT - 4 RT 1 + exp RT (, , , )


(in situ )

I

peak

= 910U

tun

exp(-9.73( +U tun ))

Au Utun=const

E

peak

= E0 +

(0.5 -)U

tun

Es=const

I.V.Pobelov, Z.Li, T.Wandlowski, Electrolyte Gating in Redox-Active Tunneling Junctions - An Electrochemical STM Approach, J.Am.Chem.Soc. 130(2008)16045-16054



Au(111) / [Ru(NH3)6]
3+

Au(210) / [Ru(NH3)6]

3+

bare

9

16

L.V. Protsailo, W.R. Fawcett : Electrochimica Acta 45 (2000) 3497­3505




N.J.Tao, Nature Nanotechnology 1(2006)173



i = i - i
s cO i = i0 i = i0 1

9.4

,
s cR (, t ) - c 0 exp R

(, t ) nF exp 0 cO RT

(1 - ) nF - RT



i0
i0 = 0.02id

i i nF - ( O ) exp - 1 + ( R ) exp id RT id
(O ) d

(1 - )nF - RT
O)

i0 << i

i i = i 1 - (O ) id
R)

i=

( iid

( idO ) - i

RT ( ( | |<< ; i << idO ) ; id nF

nF i i i i0 -( -( RT idO ) id R )

RT i nF

1 1 1 + (O ) + ( R ) id i0 id

· (, ) · · · ..



A + B O R
e
-

10.1

O R A + B
e

-



H3O+ + e­ H H




+ H2O ( ) 2H H2 ( )

+ H3O+ + e­ H2 + H2O ( )



O2 2O O O




O2 + 2H+ + 2e­ H2O
­

2

O2 + e­ O
­

2

­

+ 2H+ + 2e­ H2O + H2O + 2e­ 2OH

H2O2 + 2H+ + 2e­ 2H2O O2 + H2O + 2e­ OH­ + HO HO2­ + H2O + 2e­ 3OH
­ 2

O2­ + H3O+ HO2 + H2O HO2 + e­ HO2
­

HO2­ + H3O+ H2O2 + H2O





p v = v - v = k R - k p R

10.1

i = nFv0 i0

p R - 1 R

=

RT i ln 1 + pnF i0

RT n F 2 R
2

max =

Rs =

RT n 2 F 2 R 2 +2

=

v0 p R
Electrochimica Acta 20 (1975) 913-916

1 RT =22 Cs n F R 2 + 2



.

10.2

k1 = 0

k1 = 0.2

k1 = 2

(k1 = const)


()

BASi DigiSim® Simulation Software for Cyclic Voltammetry



http://www.basinc.com/products/ec/digisim/
V. Mazine, J. Heinze, J. Phys. Chem. A 2004, 108, 230-235




k

10.5

ik =


k

ik



4 3 RT c* ln A =- G = 4r - r Vm c 3
2

10.6

( )


2.0

-1.2 -1.0 -0.8 I, /
2

1.5

1.0

I,mA

0.5

-0.6 -0.4 -0.2 0.0

-0.225 -0.2 , -0.1 , -0.1 ,

, 70 15 90 120

0.0

-0.5

-1.0 -1.0

-0.5

0.0

0.5

1.0

1.5

E,V

0

2

4 t,

6

8