Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://danp.sinp.msu.ru/pci2007/utro_30stend.pdf
Äàòà èçìåíåíèÿ: Tue May 8 00:33:24 2007
Äàòà èíäåêñèðîâàíèÿ: Mon Oct 1 21:32:02 2012
Êîäèðîâêà:
- Ar

1)
P P

.. 1), .. 1), . 2) , . , 2) Inst. Fr Allgemeine Physik, Technische UniversitÄt Wien, Wien, Austria
P P P P P P P P

/1/ . 4050 3600 , .

­ , /2/, 4320 .
. .

/3/ -, , . 500 . . 1.30 /, ­ 2.25 /, ­ 0.28 /. , 0.05 /. , . .
1. 2. 3.

Beardmore K., Smith R., Nucl. Instr. And Meth. In Phys. Res. B 102, 1995, . 223-227 de Wijs G.A. et al., Synthetic Metals, 139, 2003, . 109-114 D.W. Brenner, Phys. Rev., B 42, 1990,. 9458


ENERGY DISTRIBUTIONS OF SPUTTERED ATOMS OF SURFACE METAL NANOCLUSTERS BY LOW ENERGY IONS G.V.Kornich1), G.Betz2) Zaporozhye National Technical University, Zaporozhye, Ukraine 2) Institut fur Allgemeine Physik, Technische Universitat Wien, Wien, Austria
1)
P P P P P P P

An increase of activity of experimental and model researches of physical processes in nanodimensional clusters on different surfaces occurred during the last decade. Molecular dynamics simulations were performed for alone clusters, consisting of 13 and 75 Cu atoms, on a (0 0 0 1) graphite two-layer substrate, which consisted of 1584 and 3000 carbon atoms, respectively. Bombardment was simulated for Ar and Xe ions at impact energies of 100 eV and 400 eV as well as normal incidence. Energy distributions of sputtered particles from surface nanoclusters were qualitatively compared here with energy distributions of the linear cascade theory /1, 2/ for the flat surface of semi-infinite targets. The Tersoff potential with a cut-off radius of RI cf = 0.21 nm, splined to the Ziegler-Biersack-Littmark potential, was applied to the C-C interactions. A tight binding many body potential, directly connected to the BornMayer potential with a cut-off radius of R(Cu) cf = 0.55 nm, was used for the Cu-Cu interatomic interactions /3/. C­Cu interactions were simulated using a Lennard-Jones potential /4/ with R(Cu-C) cf = 0.375 nm. The C­Cu potential was splined to the Ziegler-Biersack-Littmark potential. Ion-Cu and ion-C interactions were simulated using only the purely repulsive Ziegler-Biersack-Littmark potential with R(ion-target) cf = 0.5 nm. Details of the preparation of the substrate ­ Cu cluster system are presented in /5/. From the simulations we found that the maxima of the energy distributions were for both cluster sizes under Ar bombardment and for larger cluster under Xe bombardment close to 2 eV, which agrees well with the theoretical prediction of UB/2, usually taken to be equal to 3.6 eV, the heat of sublimation of Cu /1, 2/. Only in the case of Xe bombardment for small clusters, there is strong indication that the maximum of the energy distribution has shifted close to 0 eV. Also the contribution of low energy sputtered Cu atoms to the energy distribution is more considerable in larger clusters as compared to small ones.
B B B B B B B B B B B B B B B B

REFERENCES 1. 2. 3. 4. 5. Thompson M.W., Phil. Mag., 18, 1968, . 377. Sigmund P., Phys. Rev., 184, 1969, . 383. Gades H., Urbassek H.M., Nucl. Instr. And Meth., B69, 1992 . 232. Dorfman S., Mundim K.C., D.Fuks, A.Berner, D.E.Ellis, J.Van Humbeeck, Mat. Sci. and Eng. C15, 2001, . 191. Kornich G.V., Betz G., Zaporojtchenko V., K.V.Pugina, Surf. Sci. 601, 2007, . 209.


NI(110) .. , . , Be Training Ltd, , - /1-2/. /3/ L3 VV - Ni(110) 0=150. =85,5° (110). /4/. /4/ /3/. .1. L VV (..)
B B

3

2 1,5 1 0,5 0 0 0,8 1,25 2,4 3

(.) 5 6,33

8

.
.1.

L VV ( = 8 ) = 5,54 * 10 -2 . .
3

1. 2. 3. 4. .., .., .. // , 1963, .4., .1074. .. // , 1966, .8., .637. Schuster M., Varelas C. // Nucl.Instrum. and Methods. Phys.Res. 1985, v.9, 2., p.145. .., .. // , 1984, .6, .22.


Al-, Ti-, Fe-, Cu- Mo Ar+
P P

.. , .. , .. , .. - ( ), , , , . Sp() . Be, Al, Ti, Fe, Cu, Mo, W. Ar+ ( = E/ = 10 45 %, E ­ ) = 5, 10 20 , -630 ­ 50 , 50 ­ 100, 1â10 . , Sp() Fe Cu = E/ = 10 40 % 40 ­ 45, W (.1). : 06-08-08180-
P P P P P P P P

.1. Sp() Be, Cu, W Ar+ = 10 , = 10 45 %
P P


.. , .. , .. , .. , . , , , , /1/. . /2/, ­ /1,3/. - . Cu3Au(100), GaP(100), GaAs(100) SiC(100) . (), , . Cu3Au(100) Ne+ E= 5 = 100, ­ , -. , - - 0.7 . Cu 0.6 Au 0.5 Cu3Au(100).
B B B B P P P P B B



0.4 0.3 0.2 0.1 0.0


<100> 0 <110> <010>

1. // . 1. . . / . .. ­ .: , 1984, . 336. 2. . . . .- .: , 1971, . 368. 3. // . .. . ­ .: , 1989, . 349.
30 60 90 0 ( )



.. , .. ( ), ,

. ( ) , ­ . , . . /1/ , , (1/E2)/[ln(E0/E)]3/2, E< P P B B P P B B

1. Waldeer K.T., Urbassek H.M. // Appl. Phys. 1988. V. A45. P. 207. 2. Tolmachev A.I. // Nucl. Instr. And Meth. 1993. V.B83. P. 479. 3. . . .: , 1956. 431 .
4. .. // . , . ., 1943. . XXXVIII 8. . 257.



.. , .. , ,

­ . /1/: , , .. , , . , , /2/ /3/ . /4/. . . , , . , /5/. , , , . . . 1. 2. 3. 4. 5. Waldeer K.T., Urbassek H.M.//Nucl. Instr. And Meth. 1987. V. B18. P. 518. .. // , 1943. .13, .323 . . .: , 1956. 431 . .. //, 2005. .75, .4, .11. Williams M.M.R.// Ann. Of Nucl. Energy. 1979. V.6. P.145.


30 .. 1), .. 1), .. 1) 2), .. 1), 1) .. , .. , .. 2) 1) , , 2) «», ,
P P P P P P P P P P P P P P P P P

. , , . , . , -850 5103 , /, -1300 ­ 5102/2 -2000 -2500 ­ 40 /. (1018-1019 / ) Ar+, N2+ 30 , . , , /1,2/. , , Y -2500. , Y() , /3/, ( ) (Y~1/cos).
P P P P P P P P P P P P B PB P



1. Harris P.J.F. // Phil. Mag. 2004. V. 84. P. 3159. 2. .., .., .. . . 2007. 3. .1. 3. .., .., .., . . 1994. 2. .33.




.. 1), .. 1), .. 2), .. 1), 1) .. 1), .. 1), .. , , 2) «», , 3) , . ,
P P P P P P P P P P P P P P P P P P P P P

3)
P

, , ( = 60) N2+ 30 (0001) -1 Ta - , T > Ta = 60 , T < Ta, Y (Y ~ 1/cos ) /1/. () ­ . -1, , . 1 . T > Ta 200 ~ 30 . T > Ta ( = 60) , . Y() = 60 Y . RUMP , . Y() T > Ta , - /2/.
B PB P B B B B P P B B B B P P B B P P P P B B

1. .., .., .., .C. // . . 2006. .70. 6. . 820.
P P P P

2. . // . .: , 1998, 551 c.


- .. 1), .. 2), .. 2), .. 1) 1) - , . , - . .. , . ,
P P P P P P P P P P

2)
P

, , , , . ­ , , «», , , . , , , . - . (80%) (20%) 5,5·10-4 30 0,03 /. , , - . , , . - . , , , . , - .
P P


.. 1), .. 1), .. 1), .. 2), .. 2) 1) . .. , 603950, . , 2) . .. , 603950, . ,
P P P P P P P P P P P P P P

SI+ . (1 1 02) « 2­ 30» SI+ 80 , 3·1014 Â 1015 -2 j = 4,5 Â 7,5 / . , - AFM TMX-2100 "Accurex" , , SI+ . (50 ) -102. , si+ 1015 -2, . SI+ 1015 -2 ­ , . -4 CuK1-. Ge <111>. ~ 4 .., SI+ 3·1014 -2 ~ 6 .., si+ 1015 -2 ~ 8 .. ±1 .. , (3,3 ± 0,3)·10-4. , , SI+: , ­ , . , .
P P P P P P P P P P P P P P P P P P P P P P P P P P B B P P P P P P P P P P P P P P P P


«»
.. , .. - , ,

. , . , , , «» . «» (. . , ) SCATTER /1/ , . W , 5 10 , . 10 «» .1. . , , , «» . 1. .., .. // , « », 3-4, C. 76-81, 2002. 77
5


. ..1), .. 1) 2)
P P P P P P P

2)
P

xn +1 = xn + yn +1 , yn +1 = yn + kxn ( xn - 1) + ( + xn ) yn , (1) - ( k 1 , , 10-5 ) (.[1]). (1) "in", "out", n E . ^ S ( n ) = Const e- nE kT , S ( n ) - n (.. , 1 ) () "in" ("out"), = 1 kT - , n . "in" ("out") E , . , . p > 1 (.. ). E ( x = E kT ):
Const
n



ne

- nx

1 1 Const x - p p x . e -1 e -1

(2)

(2) -, p . 1. .. . . ­ .: , 2003.