Документ взят из кэша поисковой машины. Адрес
оригинального документа
: http://crydee.sai.msu.ru/f90/c9.html
Дата изменения: Sat Feb 17 17:14:24 1996 Дата индексирования: Mon Oct 1 19:42:15 2012 Кодировка: |
Here follows two examples, first recursive calculation of the factorial, then recursive calculations of the Fibonacci-numbers. The later is very inefficient. An efficient but not recursive method is given by Brainerd, Goldberg and Adams (1990), page 226.
The listings of the routines follow, the output variables are called FAC_RESULT and FIBO_RESULT, respectively.
RECURSIVE FUNCTION FACTORIAL(N) RESULT (FAC_RESULT) IMPLICIT NONE INTEGER, INTENT(IN) :: N INTEGER :: FAC_RESULT IF ( N <=1 ) THEN FAC_RESULT = 1 ELSE FAC_RESULT = N * FACTORIAL(N-1) END IF END FUNCTION FACTORIAL RECURSIVE FUNCTION FIBONACCI(N) RESULT (FIBO_RESULT) IMPLICIT NONE INTEGER, INTENT(IN) :: N INTEGER :: FIBO_RESULT IF ( N <= 2 ) THEN FIBO_RESULT = 1 ELSE FIBO_RESULT = FIBONACCI(N-1) + FIBONACCI(N-2) END IF END FUNCTION FIBONACCIThe reason that the above calculation of the Fibonacci-numbers is so inefficient is that each call with a certain value of N generates two calls for the routine, which in its turn generates four calls, and so on. Old values (or calls) are not re-used.
An interesting use of recursive technique is given by Brainerd, Goldberg and Adams (1990), page 222, for the calculation of an exponential function of a matrix. They give the immediate (straight forward) expression, with the successive multiplication with a matrix, and also a recursive variant, which can pick out the suitable squares to optimize the calculation. Recursion is also excellent to code an adaptive algorithm, see exercise (9.2) below.
Another very important usage of the RESULT property and the output variable is at array valued functions. It is very easy to specify an output variable so that it can store all the values of such a function. Actually, it is the combination of recursive functions and array valued functions that have forced the committee to introduce the RESULT property.
Not only functions but also subroutines can be recursive.
(9.2) Write an adaptive routine for quadrature, i.e. calculation of
a definite integral on a certain interval.
Solution.