Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://chronos.msu.ru/old/RREPORTS/kupervasser_osnovnie_paradoksi_stat.pdf
Äàòà èçìåíåíèÿ: Sat Dec 14 13:13:36 2013
Äàòà èíäåêñèðîâàíèÿ: Fri Feb 28 20:44:26 2014
Êîäèðîâêà:
.
, E-mail: olegkup@yahoo.com 2009 .
- . . , , , . , . . , . . , . . [9], [35]. , 1. , . . . , . ( ), , ( ) , , . ,
1

[7], [46] , «». [44], [45] , [10] , . . , , [4] [5]. ( ) . [59]. . .

1


. ( ) .

.
. .......................................................................................................................................4 1. ............................................................................................................................................5 1.1 . [1],[2]. 5 1.2 .[1],[2] .................................................6 1.3 . [34], [35], [9] .............................................................7 1.4 . ................................................................................8 1.5 . [1], [2], [29] .......................................................................................................8 1.6 . .......................10 1.7 . ............................ 12 1.8 . .......................................................................................................12 2. . ......................................................................14 2.1 ­ , , , , .[3], [36] .............................................................................14 2.2 . . [3], [15], [29] ...................15 2.3 . [29]................................................................................................................16 2.4 .[3], [29] ( J, O, P) .............16 2.5 «» : .[3] .......................................................17 2.6 . ............20 2


2.7 [51] .[3] ....................23 2.8 « , ». ..........25 2.9 . ........................................................................................................25 3. . . .................................................................................................................................26 3.1 . [37], [38],[3]. ............................................................. 26 3.2 . ............................................................................28 3.3 .[3], ( S, , U) .................29 4. . ................................ 29 5. . ............................................................ 30 6. . ....................................................32 7. () (). ( N) .......................................................................................35 8. /. ............................................................... 37 9. / . ...................................................................................................................39 10. . ..........................................................................42 10.1 . ? ....................................................................................................42 10.2 ? ............................................................................................................................... 45 10.3 .(Master equations).........................47 10.4 . ­ , . ............................................................................................................................... 47 10.5 «» («»): . ............................................................................................................................. 48 11. . ............................................................................................. 50 12. . ...................................................................................................................54 12.1 ­ . ..........................................54 12.2 . , ( ) . ...................................................................56 12.3 - () . ......................................................................................................................................57 12.4 . ............................................................................................................................ 61 13. . ..........................................................................................................................64 A . [1], [2], [9] ...................................................66 B . [1], [2], [9], [29] .....................................................66 . . [2].............................. 67 D . . [56] ..........................................................................................67 E. . . [2], [9] .........................................................................68 F . «». [1], [2] .............68 G. . [36], [3], [15] ........................70 I. . . [15], [29] ............72 K. . [33], [2] .............................................................................................................................. 75 3


L. « » . [9], [12] ................................................... M. . ......................................... N. . . ............ O. . [29], [3] ............................................. P. .[3], [30] ....................................................................................................................... R. . , . [3] .............................................................................................. S. -- -- . [3] ............................. T. .[3] .................................................................................. U. - -- . [3] ......................................... V. , . [58] ........................... . .................................................................................................................................

76 76 77 78 79 80 82 83 86 87 90

.
. 1) , . , , , , . , , , . 2) . (, , ..) , . , . 3) - , . , , ( , , ), . , , , , ( ). . , , . . , . [44] , [45] , [58], [46], [85] , «» . .

4


, , . 4) ( ), . 5) . . ( !), , . , , «» «» . (, ) . ( , ) .

1. .
1.1 . [1],[2].
. .

2. . , , .

, . . . , . . . 5


. , . . , , .

1.2 .[1],[2]
. . . . . .

Figure 3. . p, q. , p0, q0. (. [17])

, . , . («») , , . , . ( A ) [1], [2]

6


Figure 4. . , . . (. [17]) ( ) ( ). , . . , . , . . . , , . ( E.) [1], [2]

1.3 . [34], [35], [9]
[9], [35]: , . ( ). . . . , . ( ) [9], [35]: 7


, , , , [34], [9].

Figure 5. , , . t=t0 . (. [12]) : 1 , 4 , 8 .. . , , .

1.4 .
. , . , , . , . . ( .) [2] . , . .

1.5 . [1], [2], [29]
. 16 . 8


, «» «», , , ? 15 . . , 8 . , ? , 4 . . , . . . [1], [2], [29] ( B ) , , . , . , . . , , , . «» ? ! . , . . , , . ! , . : . , , ( F .) [2]. . , , . , .

Figure 6. . (. [14])

9


Figure 7. a) b) . (. [13])

Figure 8. : a) b) c) . (. [14])

1.6 .
, , , , . , , , . . , . , . , . , . . ( ) : 10


, , . , , 2. . . , . ( ) ( , ) . , , . - ( F .) , , . , , . «» «». «» . «» . «» «» , «» . «» [9], [35]. «» . «» «», . , . , , . . , . " " [56]. , , , . , . , . , . , ( « ») . « » . - , «». . «» . «» , . , .

2

, , . , , .

11


Figure 9. Direct process with macroscopic entropy increasing and its inverse process. Directions of shrinkage are denoted.

1.7 .
. : , . [1], [2]. . , , . . , , , , ! . , .

1.8 .
( ). . . ( D.) , . . , , . , , . , , 12


, . , . , , . , . [33], , . . , . , , ( .). () , . -, , . , . , , () , . , . ( , ) , . . ( ) , , , «» / . . . ( , ). . , , . "" [33].

13


Figure 10. . . (. [17]) , , . . . "" , . , .

2. .
2.1 ­ , , , , .[3], [36]
, . , . , " ". , . [36]. , .. . , , , . . (, ) , ( ). . ( ) . . , . 14


­ . , , « » [36]. , . , . - . , - . . [36], , . . . [36] ( G.).

2.2 . . [3], [15], [29]
. , , . . ( )? , ( « »!). . . , , . , , , . ( ­ ) , . . [15] . . . , . . , . , . , - . () . , . ( I. )

15


2.3 . [29]
, () .. 1) . 2) . , ( ). . , . 3) . ­ , . . , . - , , . . , . 4) . . . 5) , . , . , . . 6) , , . , , . . .

2.4 .[3], [29] ( J, O, P)
, . , , : . , . - , . . . . , 16


, , .. . . . , . , , . , . , . . . , . . , . . , ­ . , , , .. , . . , . , . . . , . . , . , "" "" . , - , . . , , , , . "", "", "" . , . , , . "" "" .

2.5 «» : .[3]
, . . ( U): . 17


, . , ( ) . . , , . , , : 1) ( ) . . 2) . , , . ( ), , , . , . , . . . 3) [3] . ­ , . , , , , , . , , ! . , . , . "", . , . «» -- ().[3], ( R) , «» . , " ", .. , . -, , . ( ) , . ­ , . , 18


(1/2), : (+1/2 -1/2). , . . , . - . , , . . ( Z) +1/2. . , ( ) -1/2. . Z, +1/2, 1/2. Z. , «». , , «», . , . , ? , () ? ? ( T) . (.. ) , , ( ) . .. .

11. . , , . . , ( ), . , , , "" (.. 19


) . , . , , . . , . , , . , ( ). , . , , +1/2 -1/2 .

2.6 .
- "" , . , « - -- , , 1801 ». . , S, S1 S2. , , , S1 S2, . -- , . , «» «» , . , , . , , , , . . . , , . . , .

20


Figure 12. . (. [96]) , . , ( ). , . , , . : , , , . , , , , , , , . , , .

Figure 13. . (. [97])

21


. 14 , , -- «» . , . , , , . . , , , , , . , . ­ , . , , . . . , , , . , , , .. . ­ . . , , , , . . , , . . . -, , . , , . , . , . . : 1) , "" . , , . . ­ . 10-20 . ( ). 22


2) . (D) (n) (L). : D>>(Ln), - . 3) ( , , , ) ( L), . , , , . , , . , . , , . . . (.. ) 3. , , . - ( cohaerentio - , ) [31], [39], [16], [16], [47], [48] , ( P). . (.. ) , . : . , .

2.7 [51] .[3]
, (.. ) . , . , 4.
3

, , , , . , , , , . , ( L) .
4

, , , , . . , . . , , . , .

23


, , , , . 5. , , . . , , . ­ « ». [51]( ,1935) , . . , , ( ), 50- . , . ( ), : «» «». 6.( , , . ) , . . . , . , , . , . , , . !7 . , , , . « »[3], [6], [7].

5

, - , , .
6

«» . [8], [58], ( V). 7 , [8 ], [58], ( V).. .

24


. 15 . . (. [98]) , . ? , ? , ? ?

2.8 « , ».
« , ». , , . . , . , , ! . . , ( ) . , . . , , . . . , "" , , . , , . , . , «» , . , .

2.9 .
25


. . , . : , . , , . , , . , . . ( ) . . , , . : , : . , . , , . , , , . , . .

3. . .
, , , , . [3] . , , . . .

3.1 . [37], [38],[3].
. , , . . , « », ( 26


) . . , . , . . . , .

. 16. . (. Max Tegmark [99])

. , . . , . , . .. ! . , , ( ) . , . , , «» . ( .) , «» . 27


, , .

3.2 .
. , , . , . , . , . . , , . , . , , .

17. (). (. [100]) , . . , , , . , ! , [37], [38], . , , . 28


3.3 .[3], ( S, , U)
, , . , , - . [3]. , , ( - ), . , , , .. . , , . . , ( , ) , . , , . ( ) . , , , - . . , .

4. .
, . , . , , : , , . : , , . , , . , , . . , , , . . . , , , . ? ­ . , . , -. 29


5. .
, , , . : , .. . - . , , , . , , . . . . , .. . , , ? ­ . , ( ) , . . , , , . . ( ) . , , . 1) . , -.[37], [38] , . , . , - . , . , , . , , , . 2) , , . , , . ­ . , , . ( ), . , . 30


( , ) . , , , .

18. - «» . - . , , . . , , , . 3) . , . , . -, , . , , , . [40], [41] . -, , . , . , , . , . ( , , ) . . , , , , , .. , ! , ­ . 31


-, , , , , .. . , , . . , . () . [43].

.

6. . .
­ , . ­ . . , , , . , , , . , , . . . , . , , . () . , , . . , . , . . ? , . , ( ). , . 32


. , : , , . , , . . , . , ­ . .

. 19 , . . . . [2], [28], [44], [45] . , , ? 8. [2], [28], [44], [45] . , . , , , . ,
8

« » , ? [44], [45] - ! , ? [60]. , «» . « ». , , .

33


. . . / «», . . , , . . , . [49], [18] , . , .

. 20 . . . . , . , . , . , . .

34


7. () (). ( N)
, , . 1) . 2) . , . 3) , , , «». : , , . . , ( ) ( ) ( ) . 4) - . - ( ) ( ) , . 5) - ( ) . , , . . ( ) . , . , , . 6) , , . , . « », (.. ). . , 35


. 7) . , , . , . , -, , . -, . . . 8) . - . , , () «», , 9. : . , , , , , .

9

« », . - [61] , : 1) . , . , . ( ) 2) . , , . , ­ . , . - . , ( « »). , , . !

36


8. / [88-94].
. , , . , ( ). , . , . , , / ( ). , . ? ? : . ( ). - , ( - , ). , . ( . . ). () . . "". / ( ). . ( ) ( ) ! (, , ) , 37


. (, , ) . (, , ) , . "" . . . , . . , ; . , , , . , , , - . - [69], [70]: ", , (, , 1 [20])" () . - ( , ) . . , .. , /. , . - : . . . , - FAPP (.. , ). , . . , , ( , ) , () . , , (" ") (" ") , , , " ". " ? -, ? . " " " " . . ( ). 38


. , " ". - , . , , . ( ). ( ). . . , . , . . , . . . , . , . , . , , . . , . . . - . , , . . , , T, , . [0, T], - [-T, 0]. - ? : ([0, T]) 0. , [-T, 0] -T. T , . T, 0. " " . , . . , [66].

9. / .

39


, . . : . . , , . , . . , /, . , (FAPP, ) , . , , . ( ), . . . , : - ( , ) /. , /. . [71] ­ , , . ­ - . ­ , . . . [95]. - ( ) . . , - ( ) . , , . - / ! , . , /. , ( ) / . ­ . , . . 5 -- 40


, AdS/CFT , . . , - ( ) 5- 4- . , . , , . , , , . , , , .. , . -- ( ), /. , ! . , ! , [72] (). , [73]. ( , , ) (wormhole traversing space into one traversing time). , . ? , . , . . , . . , . . . , , , ! , ( ) , . « » , . , . , . [74] , (closed timelike curve) . ( , 41


) , , . . , , . ( !) , [75]. , : ! , , , . , , : , . . ( ): - () ( - , ). [75], [74]. ( ) ( ) ( ) [74] . : () , , , « » . . , , (Loshmidt) . !

10. .
10.1 . ?
, , . , , , , , (master equations) - . . , . 42


. ? , . , (.. ), , , . ? , .. ? ! ( ) , . . , master equations ( , , , , ) . . . , . . , , . , , , , . . ? , . / , . , .

43


. , , . , , . , , , . . ( ) , ? [11]. . , . , . [56]. , , . . , . , , , , , , , ? , , , . ( ), . , , . . , . . , ? , . [42]. , . ? , , ( ). .. .10

10

, , . , , , , , , . . « » . , . , , ( )

44


. , , . : , [10], [44], [45]? , , . -, , . , , .11 , , . .. , . , - , . , .

10.2 ?
, . . , , , ( ), . , . , , . . ,
«» «» , . .[13] 11 , . , . ( ) .[43],[10]. . . , , , . , , , . (, , , [53] [54] ).

45


, , . , , . , («») . . (.. ), . , . ( ) ( ) , .. . , .

23 ) b) : , [14]? , . , . . , . [15], [16], [47], [48] .. . ? . . . (pointer states) [39], [31]. , , , . (pointer states) . . , , , . . , master equations (, , , ) . 46


«», . , , . , , , . . -, . . , . -, ( ). . , . . .

10.3 .(Master equations)
. , ( ) . (, ). [15] , . , («») , [35], [2], ( ). , ­ . , («») () . . [3] . , . , . ( ) ( ) , , . . - .

10.4 . ­ , .
47


, . ( ) . N ( ) . t0 N0 . . , . , , , . () , . (t>>/E, t ­ , ­ , E ­ ) , .( /E << t < , ­ ). ( ), - . (nt << Treturn , n ­ [] , Treturn ­ ) , .. . (). ( N=N0exp(-(tt0)/) ) , , .

10.5 «» («»): .
.[1],[2] («») ( K) . . , , , . . . « ». , . , . , (.. ). « » . [9], [12], ( L) . («»), ( , , ) . . , 48


, ( ). , ( ). («») . , « ». « », , « ». «». « », , , . . , ( « ») . « » . - , «». » . , « » . , , .

. 24 («») . . (« » .) « » . , ( ).

49


, . « » 12. . , , . , . . - ( ). ( , ) , , . , (, ) () . « » . « » .[28] , , « ». , . , , « » ! « » (, , ), . , . . , . .

11. .
( ) . . , , . , , . . , . . ( - ) . , . , . , , . . 1) . , , -
12

. , ().

50


, . , . . , .. . 2) , . , , . , - . , . (, , , , .) ­ , . , , . . 3) , , . . (.. ) . . . . , . , , ! .. . .[16], [47], [48]

. 25

, . . 51


, « ». «» , , (). , , - , , . .

26. . (. [102]) « » ( , , ) , . , , «» . , . , , [16], [47], [48] . , , . , . «» , , , , . , . , . , [86-87]. [52, 8687]. . , , , . 52


, , , . , . . . 4) , , . , . [25] ­ . , . - . , . , , . , . ( , .) ( ) . 5) . . , . 13. ­ . , .. . , , . , ( ) . , . . , , , . , - .
13

, , , .

53


. . . . , . , . , . ! , , .[44], [45] , «» , ( ). 6) . , ­ . (, -, ) . , . .

12. .
, , . , . : ? ? ? ? , , , , , , , , . , : , , .

12.1 ­ .
[11]. , .. 14, , , .
14

.. . «» . , .

54


, : , . : « » . [26]. , , . [19] . , . . , , , , , . .. ! , [20]. ( ) , . , , . , , . 15 [17] , (, , ) , . , . , . . , , . . .. , . , , . - . - , - () , . . , , () . . [18]. . , ( () , ) , , , () .
15

, . .

55


. [18]. : 1) , , . 2) , , , [32]. , , , . , , . 3) , , , [50], , . , , , , . , , [50] , . .

12.2 . , ( ) .
. . , ( ) . , . , , . , . ­ . , , . ­ , , , . , . . , , . . . , . , . , .. . 56


, , . , ( ) , . , . . , . . , - , . . , . , .. .

12.3 - () .
. , () . , ( ). ( ), . 1) ­ «» . . 2) , ­ , (). , . 3) . . , . . : 1) ­ [62-64]. ( , ) . , . , «» , (, !) 2) , , , . 57


«» ( + + ), . , , . . . , . , [27] [6] , . , . , . , , , . . [27] , , , , [25], . , « »[47]. , . ( .[47]) , , . «, », . , « » , . , . - (, ). . , . , , . , , .[44],[45] - , (, ). . .[16], [47], [48] , . , ­ . . . ­ , . , . , , , 58


.[10] , , , , ­ . : -> -> -> -> . « » « » - . . , . , , [10]. , . . , . () . , , , . . , , , ... . , . , . ( , ) . , . , , , , , . , , . , , . , . «» () , . «» (blow up) [62-64], . . , . «» . , , . ( ) [65]. ­ , ­ . . («») , «». , , , . «» . , «» , 59


« »[66]. , , «» , . «» . [67-68]. , , . . . , , () . - . ( ). , ­ . m . , , . . . ( , ). ( ) . . . . . , , . . , ­ . , . . , - . «-». , . , , , («») , . , «-» , «» . , ( «-»), « ». , «», () «», ( ) «». «» - «» (.. ) . 60


, . .

12.4 .
, , , , , .. . ( ) , . , .. , . . , . « «»» [55]. . , "": «... "". , - , , , - . "" " " , , - . - - , " ", ....
, , , , , "". , . " " , , , , , . - , . , . , " ", , , , - . , . . - , , . . - , . , » , "" : « , , , ""

61


. " " , . , , . , ad hoc( (.)). , , , , , , , . , , - , - . , , , . , . "", , "" . "" , ,, - , -, , . , , , , . , - - . , . , , . . , . (Cetonia aurata), - . : " ". . . - " ", , , . , , . ., , . : 1) , , (, ), , , , . 2) ( - ) , , , (, ). 3) , , . 2 3 , , , , . "", ""»

, «» , . , «» . 62


, (.. ). , , . . , « ». , , . , «». «» . «» , «» . , , . . . , , , . . . , . ! , . ? ? , . , « ». , , «». . . [21], [22]. . . [46] . 1) «» , , « » «» , . «» . «» . , , «» . «» «» . «» «» . 2) , , . , , . 63


3) . . . , , « ».[56] , « » ! ( , ) [56] .

13. .
. . . - ( ) . . ( M) , , , . , . , . , . , , , . . , - , , «» . [23] , , , . , , . [24] «» , , , . , , . , . , . , ­ , 64


. , «» . , , . . , . , . . , , , «». , . . , . , , , . : 1) , ? 2) ? 3) « » «» (, , ), ( , ), ? , : a) , , ( ) , . b) , c . , (.. ) , , . , . , . () . , . . , . , . c) . , , . . [58] ( M V) d) . [57] «» , [76], [77], [78]. , , . 65


A . [1], [2], [9]
t N r1, ..., rN p1, ..., pN N . xi=(ri,pi) (i=1, 2, ..., N) X= (x1, ..., xN)=(r1, ..., rN , p1, ..., pN) . 6N 6N- . , - . . , , , t X. dX X. t , dM M. lim dM/M=fN(X,t)dX
m

t. fN(X,t)dX=1 f i N Lf N {H , f N } t L - : H H L i i p x x p , H - .

B . [1], [2], [9], [29]
S=-k
(X)fN(X,t)

ln fN(X,t)

[29] S=-k tr ln

66


tr - . . fN . [35]

. . [2]
, g , - . . , G. , g. , g. , , , . g' , , g, . g g'T . g'T,. , g, G. , g g'T , , . . Tg'
G , g' . -->, (1) g'-->0, .

D . . [56]
. X Y, : .. - xi yi . , (xi , yi ), , . . , . , .. , . : . , , , Y , X. , . , 67


. ,

E. . . [2], [9]
-- , , E.


, . . , . , , (, a) = E = const (1)

() , . () -->0 , , - { -- }. , :
(X) =

1 {-(,)}, ( E , a )

(2)

1/(, ) -- , , . . (,)=

(X )



{E H ( X , a)}dX

(3)

(2) ,

F

(X )



F(X )

1 {E H ( X , a)}dX ( E , a)

(4)

(, ) . (, )dE , (,) = H(X,a) = E + dE..

F . «». [1], [2]
xk,, yk,, z
k

(k = l, 2, . .., ).

rk . N 3 :



68


qn(x1,. . . , zN) (n=1, 2, . . . , N). :

d L L 0 . dt q q k k

( k =1 , 2, . . . , 3N). (1)

L=K--U-- , ; -- ; U-- . :

H p k H pk q k qk H


k 1

3N

k 1,2,...,3N , L p k q k L, p k q k



(2)

-- , , a (q1 , q2 ,..., q3N ; p1 , p2, ,..., p3) -- . &, : qk=Xk , pk = Xk
+3N

{k=1, 2, ..., 3).

(3)

(Xl, 2 ..., 6N) (X), dXu dX2, ..., dX6N dX. , X t , 0 t = 0. . , . , , . , , , . , . ,



div div t

(4)

= const :

x y z div x y z

(5)

, , , . .

69



k 1

6N

X X

k k

0

(6)

, , , (2)


k 1

6N

X k X k


k 1

6N

qk pk q p k k




k 1

6N

2H 2H q p p q k k kk

0

(7)

. , , .

G. . [36], [3], [15]
. , ( , ) (q), q: ||2dq , dq . . . f, . , , . , . , , , . , , . (, ), ; , . , , , ; . , f . f fn, n 1, 2, 3, .... , f fn n. n f. , | n | 2 dq = 1. (1)

, f fn. , n -

70


fn , , , . = nn, (2)

, n -- . , , , , . , , . (2) ( ) fn f. , | |2 (2) fn f . fn ; ,


n

| an |2 1

(3)

, . . k k :

A k= k k
A ­ .

(4)

- . U(x, y, z) :

H

2 U ( x, y, z ) 2m

(5)

2 2 2 2 2 2 - x y z
. , , , , . . . . .

. 71




i

2 U ( x, y, z ). t 2m

(6)

(6) 1926 . . .


x



x x , p x
2



px p

x

2

,

. -- (x), ; , x .







d x dx 0 dx
2

2

-- . ,




x 2 dx (x) 2 ,
x d * dx d d * d 2 dx x x * dx dx 1, dx dx dx 2 d d 1 1 2 2 dx * 2 dx 2 * p x dx 2 p x , dx dx
2





x
2 2

p x 2

2

0

( ) , . x px /2 (7)

/2. (7) 1927 . , (. . ), , . , ( = y = z = 0), = = = pz = . , . , , .

I. . . [15], [29]
72


, . , , , ( ) . |a>, |b> . , z ( |+1/2> |-1/2>) |a> |b> |a>=a1(a) |+1/2>+a2(a) |-1/2>, |b>=a1(b) |+1/2>+a2(b) |-1/2>. , a |a>: (a ( a1( a ) | a ( a ) |2 a 1 1 ) a2a )* (a1(a)* , a2(a)* )= ( a1* ( a ) a = ( a(a) a ) a | a2a ) |2 2 1 2 b ( a1( b ) | a1(b ) | 2 a 1(1 ) a 2b )* (b)* (b)* b = a ( b ) (a1 , a2 )= a (b )* a (b ) | a (b ) | 2 2 2 1 2 b |b>:

, . , , . , |a>:

a

=

|a> < a|

a |> :

a |> = < a|> |a>,
< a|> , : < a|>= a dV
*

Nb ,

: Na , |a> , |b> . .

. ;

73


W a ( a ) 2 W a (b ) 2 a1 b1 =Wa a + Wb b = ( a )* ( a ) ( Wa a1 a2 Wb a1(b )*a2b

)

( ( Wa a1( a ) a2a )* Wb a1(b ) a2b )* (a) 2 (b ) 2 Wa a2 Wb a2

Wa=Na/N, Wb=Nb/N, N=Na+Nb. |±1/2>, { |±1/2>}-. |a>, |b>, .

1 0 a = 0 0 1 0 b = 0 0 : 0 W =Wa a + Wb b = a 0 W b
P0, , ( , , - , , ..). , , , . 1,...,k,- k; , k, - , P0=


k

pP k ,


k

p 1,

.., 0 - , . k , P0 (P0)kl=pkl . P0. A, - P0. . 74


N L N t L - : L=H-H=[H,], H - . i

A ­ , : =trA tr ­ . J. . [6], [3] « » (1), (2), ... . , , 1, 2, ... . a. (), « » , a X () . : a X ()a() X () « », 1 (1) + 2 (2)+... . a X [()][a() X ()] , , : « » ( - - ) . - . , , , , .. a() X () ||2. * ||2 . .

K. . [33], [2]
. fN*(X,t)= g(X-Y)fN(Y,t) 75

(y)


g(X)=1/ D(X/) D(x)= 1 for |X|<1 D(x)= 0 for |X|1 - « » f (x1,x2,t) -> f(x1,t)f(x2,t)

L. « » . [9], [12]
. , [9, 12]

~ 1
-1 1=1 ~

-1 . ~ , : ~~ ~ ~ tr tr ln d/dt0
~ ~ t = -1 L - -1(L)=+(-L) -1 . . P, . , P: ~ ~ ~ t

M. . , . 76


- , . , . , . , , . , , , , .

. 27. . (. [101])

N. . .



,

,

77


. . [3] (q, ) | > (q, p) , dqdp=l = - tr = l =|> <| ( 1)

H , t



i

[H , ] t

(q, )



dq dp

tr ()

O. . [29], [3]
, |0>, -- |> = ci|i>, |i>-- . 0=|> |0><0| <|. (5.40) , , , trA(0)=n |n> -- - . , trA(0)= |> <0|n><|=|><|, (5.41)

78


|n> . , , |>. , , , |>=cieii|i>|0>|. (5.42) 0=|> <|=cicj*ei(i-j)|i>|i>. (5.43) trA()=n |= =(ij)cicj* ei(i-j) |i> ); , trA()=|ci|2|i>. . 5.5 ( ). S , |i> S |i> A, trA() (S ) , , S, |>=ici|i>. , , , , .

P. .[3], [30]







, . , (, ) , . , |0> |0,s>; (5.40), 0=sps|> |0,s><0,s| <|. (5.46)

|0,s> |i> , |i,s>, , , i; iH / (|> |0,s>)=ii,s |> |i,s>. (5.47) , s. |0,s> , i,s(mod 2) 0 2. 79


(5.46) (5.47) , |>=ici|i> : =(s,i,j) pscicj* ei(i,
s-j,s)

|i> |i,s>
(5.48)

(5.48) (5.45), , (5.48) , . , («» , «» ). , , . . |i>|i,s> |j>|j,s> r s. tr (A) =(s,i,j) pscicj* ei(i,s-j,s) |i,s>= =(i,j) cicj* ai,js psei(i,s-j,s) (5.49)

i,s , s ij; , tr (A) = |ci|2aii= tr ('A). (5.50) '= |ci|2aii ps|i> |i,s>, , |i,s>, , |i,s>. , . 5.6. . , . -- , , ' -- , . , '. , , 5.6, , . -- -- [30].

R. . , . [3]
: -- , 0 1. , 0 = t0, t1, ..., tN = [0, T] . -- , tn 0. , , , max(pn+1 -- n) 0, 80


pN--p0 0

(5.52)

( , t = 0, t = T). . 0 , 0, P1= 1 -- 0 1. -- , tn. , ' = 0 0 + P1 P1 (5.53)

, , tn+1,
+1

= e-i

Hn

' ei

Hn

(5.54)

-- , = tn+1-- tn. , k |><|, +1 2k ; =|0><0|, , . (5.54),
+1

= ' ­ in[H, ' ]+O(n2).

(5.55)

02 =0, 0 P1 = 0, 0
+1

0 = 0 0 ­ in[0 H 0, 0 0]+O(n2).

(5.56)

, , tn 0, pn+1= tr ( +1 0) = tr(0 +1 0) = =tr(0 0) ­ in tr[0 H 0, 0 0]+O(n2). (5.57) , 02 = 0 , 00 |><| X tr (X |><|) = <||>= tr (|> <| ). (5.58) , (5.57) , pn+1= pn+O(n2). (5.59) ( = max n); k, pn+1- pn kn 2 kn (5.60)

p N p0


n 0

N 1

(p

n 1

p n ) k


n 0

N 1

n

kT 0

0. 81


S. -- -- . [3]
, , - : , , , , . , 1935 . , 0. 1/2, . . 1 (5.62) | | | | | 2 |> |> -- sz +1/2 --1/2 , (5.62) . , (5.62) , . , 1 | | | | (5.63) | 2 |> |> -- sx. , , , z - . , sz(e--) ; : +1/2, |>|>. , |> z sz(e+) --1/2. , , , , - . , , ( sz(e+)= --1/2) , . , z-, x- . (5.63) , |>|>, |>|>, x- sx(e+). . , sz(e+), sx(e+). , : - , . , , - «/», . 82


, , , , , () . , , |>|>, sz(e-) +1/2, |>|>, sx(e-) +1/2. , , |>, |> , , . , , , . , - , . (5.62) (5.63), ( )
tr | | 1 2 | | | |
e


(5.64)

e



1

| | | | 2

(5.65)

. . , 1/2, . , , . sz, |>, |> , (5.64). sx, |>, |> , (5.65), . . , . ( , sz sx) - , , . , , . . .

T. .[3]
, , , . , , , , , , . . , , , . 83


. , . . , , ( , , , , ). p(|) , . , F, , . , (5.75) pE F | = p ( | ) p F ( | ). , 1/2 , . , F . . , , , F ; ,
pE
F

( ) pE

F

( ) 0 (5.76)

() -- , , ; (5.76)

p

EF

( )



pE (| ) pF (| ) d



p

EF

( ) d

(5.77)

, , , . , () = 0, pE(|) = 0, F (|)=0. (5.78) , () = 0, pE(|) = 0, F (|)=0. (5.79) , (5.80) pE (| ) 0 pE (| ) 1 (5.78) -- (5.80) , () 0, 0, 1. , , , . , , , , , . , , , , ( «» «»). 1 , 1: , + --. b1, c1, a2, b2, 2. , ; 1=--a2. 84


, v. , . . b1=--b2 c1=--c2. , , b . ( =1, b =1) , b. (b = 1, = --1) = ( =1, b = 1, = --1) + ( = --1,b = 1, = --1) ( =1, b = 1) + ( = --1, = --1). (5.81) , , b , (b1 = 1, 2= 1) (1=1, b2=--1) + (1=--1, 2= 1). (5.82) , ; , , , . (5.82) , , . , c 1/2 , 0, ; , . , B, , , B , . P(b1 = 1, 2 = 1), (5.82); , 1 2 , , +1/2. 1 z; 1 1/2, 1 | >, 2 -- |>. , 2, |> |> ( x); , , + 1/2, | e iJ x | [cos 1 2iJ x sin 1 ] | 2 2 (5.83) cos 1 | i sin 1 | 2 2 , P(b1 = 1, 2 = 1) =1/2 |<+() | >|2=1/2 sin2( 1/2 ) (5.84) ( +1/2 1 1/2). (5.82)









(a1 = 1, b2 = --1) = 1/2 cos2 (1/2 ) (a1 = --1, 2 = 1) = 1/2s2[1/2( + )]. , (5.82) sin2 (1/2) cos2(1/2) + cos2 [1/2 ( + )], cos + cos + cos ( + ) -- 1, (5.85) = = 3/4. . 85


5.8 (). , , , . , , , (5.82). 1/2, , 0.

U. - -- . [3]
( , ) . , , ( ) [29], . , . , V(r). , t (r, t), q(t), 2 (5.69) i U ( x, y, z ). t 2m q

dq j (q, t ) dt (q, t )
j -- : j Im , = ||2. (5.71) m , t = 0 , (r, 0), q. , dV, q, (q, 0)dV; t (q, t)dV. , q , u = j/p (5.70).

u 0 t
..

(5.72)

j (5.73) t (r, t), (r, 0), j(r, t) p(r, t). = , (5.73) (3.42), , , (5.69). , q t = 0 , .
86


, , , (5.69), q , , ; |(q)|2dV dV q. , , , |(q)|2dV dV. q , (5.69), (5.70), , - . , . , , . q1 q2, (r1, r2). dq1 j1 dq2 j2 , , dt dt

j

Im 1 , j Im 2 , = ||2. m m

j1, , dq1/dt q2: . , , , V(r1, r2) . , , . , .

V. , . [58]

87


Figure 28. . . ( 1956) "" , , " (. 142). , , , , , , , , ; - -- , -- , , , , , -- !? , , . , (. 143):

88


Figure 29. « » . . . (""); (""); ("") , , . ( 144):

Figure 30. . : , . . 144 , " ": . , . " ":

Figure 31. 29. 89


. " ", ? . 146.

Figure 32. 29. , , "". , " ", " "? , . , . , , , -- , "" " ". , , , , , . -- -- . , . , , , , " " , . . .

.
1. .., . Klimontovich, Statistical Physics , Nauka Publishers, Moscow, 1982 [in Russian]. 2. .., Terletsky J.P., Statistical physics, Vyshaja shkola Publishers, Moskow, 1973 [in Russian]. 3. ., . Anthony Sudbery. Quantum Mechanics and the Particles of Nature: An Outline for Mathematicians. Cambridge University Press, New York, 1986 4. .., .., .., . Gelfer J.M., Ljuboshits V.L., Podgoretskij M.I., Gibbs Paradox and identity of particles in quantum mechanics. Nauka Publishers, Moscow, 1975 [in Russian]. 5. . , ? 88 Ohanian, H.C. Amer. J. Phys., June 1986, v 54, N6, p. 5000 6. , . Eugene P. Wigner, Symmetries and Reflection, Cambridge [Mass.] ; London , The MIT Press, 1970 7. ., Rudolf Peierls, Surprises in theoretical physics. Princeton, N.J. : Princeton University Press, 1979 8. ., 90


Giuseppe Caglioti, The Dynamics of Ambiguity, with a preface by Hermann Haken, Springer, Berlin, Heidelberg, New York., 1992 9. . ., Ilya Prigogine, From being to becoming: time and complexity in the physical sciences, San Francisco , W.H. Freeman, 1980. 10. A.J. Leggett, Quantum mechanics at the macroscopic level, conferenciers LES HOUCHES session XLVI 30 Juin -1 Aout 1986 Chance and matter 11. , ? . Erwin Schrodinger, What is life? The Physical Aspect of the Living Cell, Cambridge University Press, New York, 1946 12. ., ., . Gregoire Nicolis, Ilya Prigogine Exploring Complexity, New York, Freeman and Co., 1989 13. D. Kazhdan, Mathematics in the 20-th century D. Kazhdan, Mathematics in the 20-th century, On conference in Tel-Aviv University, 2000 14. . . , . Stephen Hawking and Roger Penrose, The Nature of Space and Time, Princeton, NJ, Princeton University, 1996 15. ., Karl Blum, Density Matrix Theory and Applications, Plenum Press, New York, 1981 16. .., .., : Valiev K.A., Kokin A.A., Quantum computers: Expectations and Reality, Izhevsk, RKhD, 2004 17. ., Bauer E., Theoretical biology, Portland, Oregon, U.S.A, Intl Specialized Book Service Inc, 1984 18. Avshalom C. Elitzur, Let There Be Life Thermodinamic Refletions on Biogenesis and Evolution Journal of Theoretical Biology, 168, 429-459 19. , Erwin Schrodinger, Science and Humanism Physics in Our Time 20. Brian D. Josephson, Limits to the universality of quantum Mechanics. Internet paper http://www.tcm.phy.cam.ac.uk/~bdj10/papers/QMlimits.html 21. , Stanislav Lem, the Total of the Process engineering, SUMMA TECHNOLOGIAE ,Krakow, 1964, http://www.frankpr.net/Lem/Summa/contents.htm 22. , Stanislav Lem, the Mask, Maska, Krakow, WL, 1976 part in Mortal Engines, Harvest/HBJ Book; Reissue edition ,1992 23. M. Rahibe, N. Aubry, G.I. Sivashinsky and R. Lima, Formation of wrinkles in outwardly propagating flames, Phys. Rev. E 52 (4), 3675 (1995) 24.Siegel M., Tanveer S. PRL, Vol 76, Nu0000m 3 (1996) p. 419- 422 25. The micromaser spectrum ,Marlan O.Scully, H. Walther Phys. Rev. A 44, 5992­5996 (1991) 26. Bohr N., Atomic Physics and Human Knowledge (Wiley, New York, 1987), Chapter 3 27. M. , «» , 1973 91


MANFRED EIGEN, SELFORGANIZATION OF MATTER AND THE EVOLUTION OF BIOLOGICAL MACROMOLECULE , Die Naturwissenschaften , 58. Jahrgatig, Oktober 1971, Heft 10, Springer-Verlag, Berlin Heidelberg New York. Eigen M., Molecular self-organization and the early stages of evolution, Quarterly Review of Biophysics,1971, vol. 4, p. 149 28. J.Bricmont ,Science of Chaos or Chaos in Science?_ arXiv:chao-dyn/9603009 v1 http://arxiv.org/abs/ chao-dyn/9603009 29. , . J. von Neumann Mathematische Grundlagen der Quantemechanik (Springer, Berlin, 1932) 30. Daneri A., Loinger A., Prosperi G. M., Quantum theory of measurement and ergodicity conditions, Nuclear Phys., 1962, v 33, p.297-319 31. Wheeler J.A., Zurek W.H (ed.), Quantum Theory and Measurement, Princeton, N.J:Princeton University Press, 1983 . 32... , .. , .. , ? Edward J. Steele, Robyn A. Lindley and Robert V. Blanden, Lamark's signature. How retrogenes are changing Darwin's natural selection paradigm, Allen & Unwin, Sydney, Perseus Books, Reading, MT, USA, 1998 How retrogenes are changing Darwin's natural selection paradigm 33. . , R&D, -, 2001 Prigogine Ilya The End of Certainty, The Free Press, NY, 1997 34. . , «», , 1990 Francis C. Moon Chaotic Vibrations, A Wiley-Interscience Publication John Wiley & Sons, NY 35. .. , «», , 1984 36. .. .. . «», 1989 37. Lev Vaidman, Many-Worlds Interpretation of Quantum Mechanics, Stanford encyclopedia of philosophy 2002, http://plato.stanford.edu/entries/qm-manyworlds/ 38. Lev Vaidman, ON SCHIZOPHRENIC EXPERIENCES OF THE NEUTRON OR WHY W E SHOULD BELIEVE IN THE MANY-W ORLDS INTERPRETATION OF QUANTUM THEORY, 1996, http://arxiv.org/abs/quant-ph/9609006v1 39. W ojciech Hubert Zurek, Decoherence, einselection, and the quantum origins of the classical, REVIEWS OF MODERN PHYSICS, VOLUME 75, JULY 2003 40. Albert, D. Z (1992), Quantum Mechanics and Experience. Cambridge: Harvard University Press. 41. John Byron Manchak, Self-Measurement and the Uncertainty Relations, Department of Logic and Philosophy of Science, University of California. http://philo.at/kollektion/index.php/record/view/8261 42. , . . -- .: , 1983 Karl Popper The Logic of Scientific Discovery, 1934 (as Logik der Forschung, English translation 1959), 43. Alexei Ourjoumtsev, Hyunseok Jeong, Rosa Tualle-Brouri , Philippe Grangier, Generation of optical 'SchrÆdinger cats' from photon number states, Nature 448, 784-786 (16 August 2007) 92


44. Roger Penrose, The Emperor's New Mind, Oxford University Press, 1989 45. Roger Penrose, Shadows of the Mind, Oxford University Press, 1994 46. .. , , «2», , 2007 47. , , ­ , « », , 2000 48. , « », , « », , 2000 , , . 49. . , , , , , , 1969 50. , -, « », , 1999 51. Erwin SchrÆdinger, Naturwissenschaften, 48, 807; 49, 823; 50, 844, November 1935 52. Nicolas H. VÆelcker, Kevin M. Guckian, Alan Saghatelian and M. Reza Ghadiri, Sequence-addressable DNA Logic, Small, Volume 4, Issue 4, Pages 427 ­ 431,Published Online: 18 Mar 2008

53 Milgrom, Mordehai. "Does Dark Matter Really Exist?" Scientific American Aug. 2002: 42-50, 52 54. .. , .. " " (., , 1989 .) .. " " (., , 2000 .). 55. , « », « », « », - -, 1997; The Portable Jung Edited by J. Campbell, NY, The Viking Press, 1971; Jung, The Structure and Dynamics of the Psyche, Collected Works, Vol. 8, pars. 969-997; ( from Man and Time (Papers from the Eranos Yearbooks.3, NY and London, 1957 ) On Synchronicity Originally given as a lecture by C.G.Jung, at the 1951 Eranos conference, in Switzerland, and published in Zurich, 1952 http://poetrylicence.blogspot.com/2009/06/on-synchronicity.html 56. , « », «», , 1969 57 , 25 , «», -, 2007 Robert Matthews, 25 Big Ideas, Oneworld Oxford, England, 2005 58. . «, , », «-», 2001 Douglas R. Hofstadter Godel, Escher, Bach: An Eternal Golden Braid, Bask Books, USA, 1979 59. Avshalom C. Elitzur, Meir Shinitzky P-Violation Manifested at the Molecular Level ­ A Simple Means for Absolute Definitions of Left vs. Right, 2005, APS/123-QED

93


60. Goren Gordon, Avshalom Elitzur The Ski-Lift Pathway: Thermodynamically Unique, Biologically Ubiquitous, 2007 61. Avshalom Elitzur , Vaidman L. , Quantum mechanical interaction ­ free measurement, Found Phys., 29, 987-997 62. .., ,., . . , 2005. 63. .., ,., . . , 2005. 64. Samarskii A.A., Galaktionov V.A., Kurdyumov S.P., and Mikhailov A.P. «Blow-up in Quasilinear Parabolic Equations». Berlin: Walter de Gruyter, 1995. 65. . ., . ., . . . .: , 1997. 66. Hogan J., «Why the Universe is Just So», Rev.Mod.Phys. 72 (2000) (astro-ph/9909295) 67. .. , , , 2007 68. J. J. Hopfield, «Neural networks and physical systems with emergent collective computational abilities», Proceedings of National Academy of Sciences, vol. 79 no. 8 pp. 2554­ 2558, April 1982. PNAS Reprint (Abstract) PNAS Reprint (PDF) 69. L. Maccone, Quantum Solution to the Arrow-of-Time Dilemma, Phys. Rev. Lett. 103, 080401 (2009). http://arxiv.org/abs/0802.0438 70. Oleg Kupervasser, Dimitri Laikov Comment on Quantum Solution to the Arrow-of-Time Dilemma of L. Maccone (2009) http://arxiv.org/abs/0911.2610 71. Black hole information paradox - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Black_hole_information_paradox 72. Joaquin P. Noyola, Relativity and Wormholes, Department of Physics, University of Texas at Arlington, Arlington, TX 76019, (2006) http://www.uta.edu/physics/main/resources/ug_seminars/papers/RelativityandWormholes.doc 73. M. Morris, and K. Thorne, Am. J. Phys. 56 (4), (1988). 74. Hrvoje Nikolic, CAUSAL PARADOXES: A CONFLICT BETWEEN RELATIVITY AND THE ARROW OF TIME,Foundations of Physics Letters, Volume 19, Number 3, June 2006 ,p. 259-267(9) 75. S. V. Krasnikov, The time travel paradox, Phys.Rev. D65 (2002) , http://arxiv.org/abs/gr-qc/0109029 76. George Musser, "Easy Go, Easy Come." (How Noise Can Help Quantum Entanglement ), Scientific American Magazine, November 2009, 94


http://www.scientificamerican.com/sciammag/?contents=2009-11 77. Michael Moyer, "Chlorophyll Power." (Quantum Entanglement, Photosynthesis and Better Solar Cells), September 2009, http://www.scientificamerican.com/article.cfm?id=quantum-entanglement-and-photo 78. Jianming Cai, Sandu Popescu and Hans J. Briegel Dynamic entanglement in oscillating molecules and potential biological implications, http://arxiv.org/abs/0809.4906 85. Licata, I. ; Sakaji, A. Eds. Physics of Emergence and Organization, World Scientific, 2008 paper: Ignazio Licata, Emergence and Computation at the Edge of Classical and Quantum Systems 86. Siegelmann, H.T. Neural Network and Analog Computation: Beyond the Turing Limit, Birkhauser, 1998 87. Calude, C.S., Paun, G. Bio-steps beyond Turing, BioSystems, 2004, v 77, 175-194 88. H.D. Zeh, The Physical Basis of the Direction of Time (Springer, Heidelberg, 2007). 89. H. D. Zeh Remarks on the Compatibility of Opposite Arrows of Time Entropy 2005, 7(4), 199- 207 90. H. D. Zeh Remarks on the Compatibility of Opposite Arrows of Time II Entropy 2006, 8[2] , 44-49 91. Schulman, L.S., Phys. Rev. Lett. 83, 5419 (1999). 92. Schulman, L.S., Entropy 7[4], 208 (2005) 93. Oleg Kupervasser, Hrvoje Nikolic, Vinko Zlati, arXiv:1011.4173 http://arxiv.org/abs/1011.4173 94. Oleg Kupervasser, arXiv:0911.2610 http://arxiv.org/abs/0911.2610 95. Nikodem J. Poplawski «Radial motion into an Einstein­Rosen bridge» Physics Letters B 687 (2010) 110­113 96. Russian geometrical portal http://www.neive.by.ru 97. aYp.ru Portal http://fizika.ayp.ru/ 98. David M. Harrison, Department of Physics, University of Toronto Schrodinger's Cat http://www.upscale.utoronto.ca/PVB/Harrison/SchrodCat/SchrodCat.pdf 99. Josh Clark How Quantum Suicide Works http://science.howstuffworks.com/science-vsmyth/everyday-myths/quantum-suicide3.htm 100. Toy Anxiety's Blog http://toyanxiety.wordpress.com/2009/10/30/flash-forwardschrodingers-cat/ 101. "What Is Reality?" http://www.ipod.org.uk/reality/index.asp 102. Quantum Teleportation Kenneth Chang ABCNEWS.com

95