Документ взят из кэша поисковой машины. Адрес оригинального документа : http://chem.msu.ru/rus/vmgu/123/157.pdf
Дата изменения: Tue Sep 4 16:37:10 2012
Дата индексирования: Sun Apr 10 11:14:04 2016
Кодировка: IBM-866




Ѕ

ђ





. . -. . 2. . 2012. . 53. 3

157

541.183

,
.. , .. , .. , , .. ( ; e-mail: adsorption@phys.chem.msu.ru)
Ag+ AuCl4 . , Ag(I)- , , . Ag(I)- Au(III)- () , . . , , , , , . Au(III)- , . , 0,83 0,88 , Ag(I) Au(III) . Au(III) н AuCl4 , . Au(III)- .
н

: , , , , , Ag(I), Au(III).

, , . [1]. Ag(I)- [1, 2] [3, 4], (, ) [5н7]. : c [3, 5] [8]. [9] Ag(I)- Ag(0)-. , Au(III)- , , [10]. . , , -

, - , . , . , , . Ag(I)- Au(III)-. Ag+ , AuCl4н н (, -) .


158

. . -. . 2. . 2012. . 53. 3

- . , , . . (s): -1 (s = 24 2/), -80 (s = 80 2/), -3 (s = 300 2/) (s = 80 2/). . , . 120ђ 2 . н , . Au(III)- HAuCl 4 . ( s = 100 2/) -- [11]. , , 500 /. HAuCl4 . HAuCl4 = 400 . , 120ђ 2 . Au(III)- c , . (Phн), c (PhнH=2) (PhнH2н3) . -

. - . 5н15%. () л 100Ё . (70 Ѕ 0,2 ). () ( 30 /). 150ђ 20 . : - - (7, 8), . (Vg, /). () (Vg): - -, , , . (Vg) 5н7% , нн н (). , -1 Ag(I) 100 / ( CAg(I) = 4,2 /2). . 1. , Ag(I)-, , , . (Am), , 83 22 / am = 0,83 am = 0,22 Ag(I) / Ag(I). , , н . , , , Ag(I) -


. . -. . 2. . 2012. . 53. 3

159

( ) SiOн. . Ag(I) , 7 [12]. · . . -80 80 2/. . 2 , . , 100, 400 800 / Ag(I) -80, c . Am 83, 303

. 3. -1 ( s = 24 2/ ) , (c Ag(I): 1 н 100; 2 н 400 /)

. 1. -1 (s = 24 2/), : 1 н ; 2 н (c Ag(I) 100 /)

. 2. -80 (s = 80 2/), (c Ag(I): 1 н 0; 2 н 100; 3 н 400; 4 н 800 /)

526 /. Ag(I)-, н -1 (s = 24 2/). . 3 , 100 400 / Ag(I). , 4 . , . 2, . . 1 , Ag (/), Ag (/2), (Am), / am (/ Ag(I)). , . 24, 80 300, н 80 2/. , Am -3 н (s = 300 2/) н 71 280 580 /, .. Ag 100 400 800 /. -80 н (s = 80 2/), н Am ( 83 303 526 /, .. 3,7 6,3 4 8 ). -1 н (s = 24 2/) н


160

. . -. . 2. . 2012. . 53. 3
1

Ag (/), (Ag, / ), (Am, /) am, / Ag+ , -1 s, 2 / 24 [Ag], / 100 400 -80 80 100 400 800 -3 300 100 400 800 80 100 400 CAg, / 4,17 16,7 1,25 5,0 10 0,33 1,33 2,67 1,25 5,0
2

2

Am, / 83 104 83 303 526 71 280 580 28 30

am, /Ag+ 0,83 0,26 0,83 0,76 0,66 0,71 0,70 0,72 0,28 0,06

Am ( 83 104 /, .. 1,25 4 Ag 100 400 /). (s = 80 2/) Ag 100 400 / Am , . . 4 am ( / Ag+) CAg+, /2 , ( . 1). . 1 . 4 , am Ag(I)- -3 (s = 300 2/) 0,71; 0,70 0,72 / Ag+. (CAg) 0,33 2,67 /2 ( 8 /2). -80 (s = 80 2/) Ag (/) (CAg) 4 . CAg 1,25 5 10 /2 am ( / Ag+) 0,83 0,76 0,66. -

-1, (s = 24 2/ ), (CAg) 4,2 16,7 / 2 ( 3 ) н 0,83 0,26 / Ag+. Ag(I)-, ( -80) (s = 80 2/). (CAg = 1,25 /2) 3 , , -

. 4. (am, / Ag(I)) (CAg, /2) , : 1 н -3 (s = 300 2/); 2 н -80 (s = 80 2/); 3 н -1 (s = 24 2/); 4 н (s = 80 2/)


. . -. . 2. . 2012. . 53. 3

161
, / 190 11 4

, (CAg = 5,0 /2) 10 . , , , - . · , н . , . , . (CAg) 0,33 10 /2 (am) 0,7н0,8 / Ag(I). Ag- , , . ( , /) , 400 / -1 ( 1 /, 100 , 5 ).

, Ag(I)- . Ag(I)- / , , [13, 14]. = Vg - / Vg - ( , -, , Ag(I)-) 40 80ђ . 2. 40ђ SiO2 ( = 2,5), , SiO2 , [15], , , [16], d- - , , -/- 2,5 4,1 (. 2). -1
2

Ag(1)-, 100 / Ag -1 (s = 24 2/) 40ђC -/- -/- / / / / / 4,1 3,4 6,0 10,3 - - - = Vg1 / Vg
2

80ђC - - 3,8 4,0 10 2,8 2,6


162

. . -. . 2. . 2012. . 53. 3

, = 1. Ag+ (, / = 2,8). -. , Ag(I)- (, ). Au(III) [17], Au(III), Ag(I)-, . Au(III) . . . 5 Au(III)-, , 500 / . AuCl4н 400, 120 60 /. AuCl4н (400 /, = 408 ) HAuCl4. , (100 /). HAuCl 4 1 2 0 / ( 522 ). HAuCl 4 60 / 546 . . , [18]. , AuCl4н , Au(III) . 1н3 (. 5) 1,25; 3,5 7 AuCl4н. Au(III)-, AuCl4н 120 /,

( = 400 ). Au(III)-, , . . 3 , AuCl4н (/), AuCl4н (/2) () Am (/) am (/ Au(III)н) , HAuCl4 . , , , (Am = 110 /) AuCl4 (400 /). 3,3 AuCl4 (120 /) 18 (Am = 6 /). AuCl4, 60 /, Am н 10 17 / . AuCl4, , Au(III). , AuCl4н (400 /)

. 5 . A u ( I I I ) - , , 500 / . HAuCl4: 1 н 400, 2 н 120, 3 н 60 /


. . -. . 2. . 2012. . 53. 3

163

3 (
AuCl4

Au(III)-: AuCl4 (/), 2 н, / ), ( ) (Am, / am, / Au(III)) [AuCl4 ], / 400 120 60 0
-

н



AuCl4 , 2 / 4,0 1,2 0,06 0,0 1,5 0,0

-

Am, / 110 6 10 18 105 0

am, /Au(III) 0,28 0,05 0,17 - 0.88 0

, 408 522 546 - 400 -



120 0

(500 /). Au(III), . . 3 , , . AuCl 4н (120 /) (105 /) 18 . am = 0,88, 3 a m (0,28), AuCl4н, 400 /. a m - -

, , Ag+ ( a m = 0,83) AuCl4н ( am = 0,88). , - , , , . , , -.

( 10-03-00999 11-03-01011) .
1. Keller G.E., Marcinkovsky A.E., Verma A.E., Williamson R.D. / Separation and Purification Technology / Ed. M. Decker. N.Y., 1992. 2. Kraitr M., Komers R., Guta F. // Anal. Chem. 1974. 46. P. 974. 3. Soonaeng Cho, Sangsup Han, Jongnam Kim et al. // Korean J. Chem. Eng. 2002. 19. P. 821. 4. Eldridge R.B. // Ind. Eng. Chem. Res. 1993. 32. P. 2208. 5. Lawrence B.M. // J. Chromatogr. 1968. 38. P. 535. 6. Aigner R., Spitzy H., Frei R.W. // J. Chromatogr. Sci. 1976. 14. P. 381. 7. C.., .. // . ., 1978. 8. Aigner R., Spitzy H.,.Frei R.W. // Anal. Chem. 1976. 48. P. 2. 9. .., .., .. . // . . -. . 2. . 2011. 52. C. 102. 10. Carrettin S., Corma A., Iglesias M.et al. // Applied Catalysis A: General 2005. 291. P. 247. 11. Eltekov Yu.A., Kiselev A.V., Khokhlova T.D. et al. // Chromatographia. 1973. 6. P. 187. 12. . // . . 2. ., 1982. 13. . ., . . / / - . ., 1967. . 256. 14. Belgacem M.N., Gandini A. // Inverse Gas Chromatography as a Tool to Characterize Dispersive and Acid-Base Properties of the Surface of Fibers and Powders. Surfactant Science Series. V. 80. 1999. . 448. 15. King, C.J. / Handbook of Separation Process Technology. N.Y., 1987. . ?


164 16. Hang H.J., Padin J., Yang R. // J.Phys. Chem. B. 1999. 103. P. 3206. 17. . // . ., 1982.

. . -. . 2. . 2012. . 53. 3 18. . // . . 2. ., 1967.
20.11.11

ADSORPTION OF HYDROCARBONS FROM SOLUTIONS AND GAS PHASE ON SILICA AND ALUMINA, MODIFIED WITH SILVER AND GOLD IONS
T.D. Khokhlova, E.V. Vlasenko, N.A. Zubareva, Van Nguyen, S.N. Lanin (Division of Physical Chemistry)
Immobilization of cations Ag+ on the silica, alumina and anions AuCl4- on aminosilica and alumina is carried out. By a method of inverse gas chromatography it is shown the selectivity of Ag(I)-silica in separation of alkanes, alkenes, alkynes and aromatics. Dependence of the Ag(I) and Au(III)-composites capacity on phenylacetylene (PHA) by the carrier nature, the specific surface area and the method of immobilization of the metal ions is considered. The adsorption isotherms of PHA in octane solutions are measured. It is found that PHA capacity of the composites prepared by immobilization of ammoniate of silver nitrate on silica in several times more than on alumina with the same silver content and than the composites prepared by immobilization of silver nitrate on silica. The Au(III)-alumina capacity on PHA was significantly higher than the Au(III)-aminosilica. The greatest capacity on PHA respectively 0.83 and 0.88 molecule on metal ion is observed for the Ag(I)-silica and Au(III)-alumina. In spectra of diffuse reflectance in visible region of the Au(III)-aminosilicas there is a significant shift of the absorption band maximum at reduction of the content of immobilized anions AuCl4-. That indicates formation of coordinate bonds between the free aminopropyl groups of the aminosilica carrier and the atom of gold. Formation of such bonds is hindered the adsorption of the PHA on Au(III)- aminosilica with low content of gold.

Key words: adsorption of hydrocarbons, gas chromatography, spectroscopy of diffuse reflectance, alumina, silica, immobilization of Ag(I), Au(III).
: н . . . , . . (khokhlova939@gmail.com); н . . , . . (elenavvlasenko@gmail.com); н . . , . . (nina_zubareva@ mail.ru); н ; н . . , , . . (snlanin@phys.chem.msu.ru).