Документ взят из кэша поисковой машины. Адрес оригинального документа : http://chem.msu.ru/rus/teaching/kolman/280.htm
Дата изменения: Unknown
Дата индексирования: Sun Apr 10 14:35:30 2016
Кодировка: Windows-1251
Кислотно-основной баланс

280-281Следующая Содержание Предыдущая

Ткани и органы. Кровь

Кислотно-основной баланс

281А. Концентрация ионов водорода в плазме крови

Концентрация ионов Н+ в плазме и в межклеточном пространстве составляет около 40 нМ. Это соответствует величине рН 7,40. рН внутренней среды организма должен поддерживаться постоянным, так как существенные изменения концентрации прогонов не совместимы с жизнью.

Постоянство величины рН поддерживается буферными системами плазмы (схема В), которые могут компенсировать кратковременные нарушения кислотно-основного баланса (см. с. 36). Длительное рН-равновесие поддерживается с помощью продукции и удаления протонов. При нарушениях в буферных системах и при несоблюдении кислотно-основного баланса, например в результате заболевания почек или сбоев в периодичности дыхания из-за гипо- или гипервентиляции, величина рН плазмы выходит за допустимые пределы. Уменьшение величины рН 7,40 более, чем на 0,03 единицы, называется ацидозом, а повышение - алкалозом

Б. Кислотно-основной баланс

Происхождение протонов. Существуют два источника протонов - свободные кислоты пищи и серосодержащие аминокислоты белков, полученные с пищей кислоты, например лимонная, аскорбиновая и фосфорная, отдают протоны в кишечном тракте (при щелочном рН). В обеспечение баланса протонов наибольший вклад вносят образующиеся при расщеплении белков аминокислоты метионин и цистеин. В печени атомы серы этих аминокислот окисляются до серной кислоты, которая диссоциирует на сульфат-ион и протоны.

При анаэробном гликолизе в мышцах и эритроцитах глюкоза превращается в молочную кислоту (см. с. 330), диссоциация которой приводит к образованию лактата и протонов. Образование кетоновых тел - ацетоуксусной и 3-гидроксимасляной кислот - в печени (см. с. 304) также приводит к освобождению протонов, избыток кетоновых тел (при голодании, сахарном диабете) ведет к перегрузке буферной системы плазмы и снижению рН (метаболический ацидоз; молочная кислота → лактацидоз, кетоновые тела → кетоацидоз ). В нормальных условиях эти кислоты обычно метаболизируют до СО2 и Н2О и не влияют на баланс протонов.

Удаление протонов. В почках протоны попадают в мочу за счет активного обмена на Na+-ионы. При этом в моче протоны забу-фериваются, взаимодействуя с NH3 и фосфатом (см. с. 318).

В. Буферные системы плазмы

Наиболее важной буферной системой плазмы является бикарбонатный буфер, состоящий из слабой угольной кислоты (рК1 6,1) и ее кислого аниона бикарбоната. Угольная кислота Н2СО3 находится в равновесии со своим ангидридом СО2. Установление равновесия между обеими формами ускоряется ферментом карбонат-дегидратазой ("карбоангидразой"). При рН плазмы концентрации НСО3- и СО2 находятся в соотношении 20/1. Растворенный в крови СО2 равновесно обменивается с СО2 газовой фазы альвеол легких. Поэтому НСО3-/СО2 -система является эффективной открытой буферной системой. Ускоренное или замедленное дыхание изменяет концентрацию СО2, что приводит к изменению рН плазмы (дыхательный ацидоз или соответственно алкалоз). Таким образом, легкие могут быстро и действенно влиять на рН плазмы без участия систем удаления прогонов.

Белки плазмы и особенно гемоглобин эритроцитов (см. с. 276) также способны присоединять протоны, поддерживая постоянство рН. Определенный вклад в буферные свойства крови вносит фосфат.

Следующая Содержание Предыдущая