Документ взят из кэша поисковой машины. Адрес оригинального документа : http://chaos.phys.msu.ru/ryabov/research.html
Дата изменения: Fri Jan 21 18:32:26 2011
Дата индексирования: Mon Oct 1 19:41:10 2012
Кодировка: IBM-866
Alexey Ryabov. Research
 

Ecology

How differences in the mixing of the upper and lower layers of a water column influences the distribution of phytoplankton species and the outcome of competition between them?

Ryabov A.B., Rudolf L., and Blasius B. (2010) Vertical distribution and composition of phytoplankton under the influence of an upper mixed layer. J. Theor. Biol. 263: 120--133

Under what conditions a population will survive in a heterogeneouse environment and when a new species can invade in the presence of another?

Ryabov A.B. and Blasius B. (2008) Population growth and persistence in a heterogeneous environment: the role of diffusion and advection. Math. Model. Nat. Phenom. 3: 42-86

Evolution

One species might evolve to better fit a landscape of a niche space, but what will happen if this landscape dynamically changes, reflecting locations of all other species?

Dommar C. J., Ryabov A. and Blasius B. (2008) Coevolutionary motion and swarming in a niche space model of ecological species interactions. Eur. Phys. J. Special Topics 157: 223тАУ238

Billiards

In billiards with perturbed boundaries a billiard ball will change its velocity, which is know as Fermi acceleration. What dynamical properties of unperturbed billiards are important to achieve high velocities of the billiard ball

Loskutov A., Chichigina O., and Ryabov A. (2008) Thermodynamics of dispersing billiards with time-dependent boundaries. Int. J. Bifurcat. Chaos 18: 2863-2869

Loskutov A. and Ryabov A. (2002) Particle dynamics in time-dependent stadium-like billiards. J. Stat. Phys. 108: 995-1014

Loskutov A., Ryabov A.B., and Akinshin, L.G. (2000) Properties of some chaotic billiards with time-dependent boundaries. J. Phys. A-Math. Theor. 33: 7973-7986

Loskutov A., Ryabov A.B., and Akinshin, L.G. (1999) Mechanism of Fermi acceleration in dispersing billiards with time-dependent boundaries. J. Exp. Theor. Phys 89: 966-974

Fractals