Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://cellmotility.genebee.msu.ru/html/articles/grig97.pdf
Äàòà èçìåíåíèÿ: Thu Mar 28 18:07:48 2002
Äàòà èíäåêñèðîâàíèÿ: Mon Oct 1 19:56:59 2012
Êîäèðîâêà:

14 * 2 * 1997

576.311.348.7:576.311.346.2 © 1997. .., .., ..
- - . .. . ..

Vero . , , ( ) ( ). 10 . . . , 1 %; 90% , 10-12 . 2,38 / . 7,49 , 30 . 0,3 1,4 ( ) . 1,00 /, 6,04 . , , , , , , , . , Vero . , , , 10 5 .

- , . 0,5 - , , [I]. 1 , .. . [1-7]. . . [8]. 0,5 0,5 10 [8,9]. ,
160


, : 0,03 / ( , [5]) 2,45 / ( 0,5 Xenopus laevis [6]). Reticulomixa 25 / [10, 11, 12]. (). (, ) [1, 4, 12, 13]. (VE-DIC) [14, 15, 16]. , , - [16, 17]. in vitro 1-2 / , , 0,5 / - , [18, 19]. in vitro . , , . [20-24]. 1,8 3,56 / [22--24]. 5 / [20]. [22]. 2,2 /. 2,2, 1,1 0,4 / . , . , , , , - . , , in vitro. · , . [1, 5]. , . . , , .. [6, II], . , - . , 0,3 . . Vero ( ) . 37° 5% CC>2 DMEM + F12 ("Sigma", ) 3% . .
2 , 2 161




. 1. , "". -- . 1 - , ; 2 ; 3 -

. . - [25]. "" [26, 27]. 2 ; 4 . 37°. 500 AG-6730 ("Panasonic", ). Planapo 40/1.0 4000; Planapo 63/1.4 - 6300. (-4). 10 . "", . . , - , : 1) () , . ; 2) () - () DT-2851 ("Data Translation", ) DT-IRIS. 10 . , [9]. : , , . , . . DT-2851 ("Data Translation", ) DT-IRIS. 6 . , , , . :
162


. 2. . . 10

(. 1), 1/4 3/4 . , : , . . . (Os04) [28]. , , 2,5% 30 . (PBS, 7,2-7,4) 1 % Os04 PBS 24 . 30 70% . . . 20 , 1 / . ("", ) . . , , (. 2). 50, - 30 . , 15 , , 1,5 , , , , . , . . , ( , , , ). 40 , 2* 163


. 3. . 10 .

. 4. . 10 .

. , - . , . , . (. 3). ( ) ( ). : (. 4). , . : - . , . 164


. 5. . . . . 10

. (. 5). "" [26, 27]. . 2-2,5 . . 2-2,5 40-50 ( 20-30 ), 80 . , . , , (. . 5). . , . . : () (). 50 (. . 5). , : ( 0,3 0,5 ), ( 0,5 0,8 ) ( 0,8 1,4 ). 14% . (. 1). , , 2 (3-4%). , , (. 6). (. 7). 165


1
, ""

0,3 0,5 7,6 ±11,8 (53%) 0,51 0,81 0,8 1,4 16,6 ±7,9 (32%) 6,5 ±5,8 (12%) 52,1 ± 12,6

1,5 ±2,3 (3%)

(. . 5). : ( 0,8 3 ) ( 3 10 ). - 0,5 . , 30. . , 1 , .. . 36%. : () (). , , . 2,38 /. 6,34 /. 7,49 , 30 (. 2). , , , , 2/3 . (. 3). (56%) (. 4). . . , , 8%. 2% . , , , 90°. , , . . (. 3). 2,66 / (d < 0,5 ) 2,28 / (d > 0,8 ), .. 15%. - ( > 0,5). . , . , (. . 1), 10% ; , , - 0,3% . . , , . , . 166


. 6. . 10 . , - . , -

46% , . 50% . . 90% , - 10%. , , , , . , , , 4% . 10 , . . . . 1,00 ± 0,33 / ( = 37) 1,6 16 ( - 6,04 ). 1%. 167


. 7. . 10 . - , -

0,16 0,24 / . . . , 1 . . 10 1,12 ± 0,53 ( = 37). . - , . 0,09 ± 0,19 10 (n = 95). 168


2 Vero ±S.D., / 2,51 ±0,77 2,25 ± 0,76 2,38 ± 0,77 , / 0,80-6,34 0,86-5,53 0,80-6,34 , 7,67 ± 2,63 7,30 ±2,61 7,49 ± 2,62 , 2,79-20,64 3,36-30,16 2,79-30,16

313 241 565 3

, ±S.D., / , / , ,

0,3-0,5 0,51-0,8 0,81-1,4 2,62 ± 0,84 2,13±0,66 2,00 ± 0,79 1,09-5,53 0,86-4,23 0,88-4,58 8,11 ±3,18 6,96 ± 2,28 6,82 ± 2,38 3,36-30,16 3,97-21,27 3,81-16,67 86 87 68

0,3-0,5 0,51-0,8 0,81-1,4 2,81 ±0,86 2,56 ± 0,76 2,00 ± 0,79 1,11-6,34 0,88-5,60 0,73-4,06 7,88 ± 3,09 7,87 ± 2,88 7,52 ± 1,93 2,22-20,64 2,54-20,00 3,38-17,14 111 102 100

0,3-0,5 0,51-0,8 0,81-1,4 2,66 ± 0,83 2,37 ± 0,76 2,28 ±0,82 1,09-6,34 0,86-5,56 0,73-4,58 7,85 ± 3,06 7,38 ± 2,70 6,15 ±2,36 2,22-30,16 2,54-21,27 3,38- 17,14 201 189 175 4 , 0,3-0,5 0,51-0,8 0,81-1,4 , 56 54 59 44 46 41

() . () 3 , 90 . 2 . , , 2,90 ± 1,33 /, - 0,53 ± 0,23 /. 10 82%.
169


18% . 10- , . . , , , , . . , , [29, 30]: 2 = (kT/3r)t, k - ; - ; - ; ; r ; t - , . 0,85 ([0,3 + 1,4]/2 ), Vero 0,1 . , HeLa - 2,6 [8], , Vero . , ( ) 10 0,4 [9], 1 . , - Vero , (HeLa ). , , Vero . , (.. , , ), 15 . "" , , 200 . , . , , . . Vero , , 30 ( 2/3 ). , , , . () " ". . . Vero . , . , , , . , , , , , , , . 170


, - - , - [31]. [32, 33]. , - , - - . - - . , [10, 11, 12]. [35], [36]. , - 5 /, [35]. , , [35]. , [37]. 0,5 1,05 /, 0,75 /. , [38]. , [39]. , , - . . , -, , 0,5 /, - 6,7 / [19]. 1-2 / [18]. , , 0,2-0,3 / - 3,5-4,0 / -- - . , [18; 19]. , 1,2 / [40]. , , in vitro, . Vero , ( 1 ), (0,3-0,5 ) . , 1 , 30 . 15%. , Vero , , , , , . . [], [38] . 2,2, - 1,1, - 0,4 / [1]. , Vero - , , 171


. , Vero - . : . . , 2,38 /. 6,34 /. , 10 , 5 ( - 0,53, - 1,52 /). , , [I], [9], . , 0,03 2 / [1, 5, 7, 12]. , . . , , - 0,3 25 / [11, 6, 39]. . . , . , , . , , , ( ), . .. .. . ( 93-04-06523 96-04-50935).
1. Freed JJ., Lebowitz MM. //J. Cell Biol. 1970. V. 45. P. 334-354. 2. Rebhun L.I. // Biol. Bull. 1959. V. 117. . 518-545. 3. Rebhun L.I. // In Primitive Motile Systems in Cell Biology. / Ed. Alien R.D., Kamiya N. N.Y.: Academic Press, 1964. P. 503. 4. Foe V.E., Alberts B.M. // J. Cell Sci. 1983. V. 61. P. 31-70. 5. Herman ., Albertini D.F. II J. Cell Biol. 1984. V. 98. P. 565-576. 6. Bridgeman P.O., KacherB., Reese T.S. //. Cell Biol. 1986. V. 102. P. 1510-1521. 7. Matteoni R., Kreis .. // J. Cell Biol. 1987. V. 105. P. 1253-1265. 8. Rebhun L.I. // Intern. Rev. Cytology. 1972. V. 32. P. 93-137. 9. .., .., .. // . 1995. . 37. 8. . 783-790. 10. Travis J.T., Alien R.D. //Cell Biol. 1981. V. 90. P. 211-221. 11. Koonce M.P., Schliwa M.J. // Cell Biol. 1985. V. 100. . 322-326. 12. Murphy D., Tilney L. // J. Cell Biol. 1974. V. 61. P. 757-779. 13. Baumann 0., Murphy D.B. //Cell Motil. Cytoskeleton. 1995. V. 32. P. 305-317. 14. Travis J.T.. KenealyJ.F., Alien R.D. //J. Cell Biol. 1983. V. 97, P. 1668-1676. 15. Hayden J.H., Alien R.D. // Cell Biol. 1984. V. 99. . 1785-1793. 16. Vale R.D., Reese T.S., Sheet! M.P. // Cell. 1985. V. 42. P. 39-50. 172 17. Gilbert S.P., Alien R.D.,SlobodaR.D. // Nature. 1985. V. 315. P. 245-248. 18. Mdntosh J.R., Porter M.E. // J. Biol. Chem. 1989. V. 264. P. 6001-6004. 19. Vale R.D.,MalikF., Brown D. //J. Cell Biol. 1992. V. 119.P. 1589-1596.


20. Alien R.D., Metural J., Tasaki I,.Brady S.T., Gilbert S.P. // Science. 1982. V. 218. P. 1127-1129. 21. Brady S.T., LasekRJ., Alien R.D. // Science. 1982. V. 218. . 1129-1131. 22. Vale R., Schnapp ., Reese ., Sheetz M.P. // Biophys J. 1984. V. 45 (2, pt. 2): 164a. (Abstr.). 23. Alien R.D.. Weiss D.G.. Hayden J.H., Brown D.T., Fujiwake H., Simpson M. // J. Cell Biol. 1985. V. 100. P.1736-1752. 24. Gilbert S.P., Sloboda R.D. //J. Cell Biol. 1994. V. 99. P. 445^52. 25. ... .. // . 1991. . 33. 2. . 15-21. 26. Abercromhie M. // Expti Cell Research. Suppl. 1961. V. 8. P. 188-198. 27. .. .. .. // . . 1966. . 171. . 721-724. 28. .. . M., 1946. 29. Seifriz W. Deformation and flow biological system/Ed. Frey-Wyssling A. Amsterdam: NorthHolland Publ., 1952. P. 1-156. 30. Musels KJ. Introduction to colloid chemistry. N.Y.: Wiley Interscience, 1959. 31. Gel/and VJ.,Bershadsky A.D. // Annu. Rev. Cell. Biol. 1991. V. 7. P. 93-116. 32. Kupfer A., Louvard D., Singer S.J. // Proc. Nat. Acad. Sci. USA. 1982. V. 79. P. 2603-2607. 33. .., .., .. // . 1983. . 25. 8. . 883-888. 34. Ashkin A., Schutze ., Dziedzic J.M., Euteneuer U., Schliwa M. // Nature. 1990. V. 348. P. 346348. 35. Green L. // Proc. Natl. Acad. Sci. USA. 1968. V. 59. P. 1179-1186. 36. Bickle D., Tilney L.G.. Porter K.R. // Protoplasma. 1966. V. 61. P. 323-345. 37. Rodionov V.I., Gyoeva F.K., Gelfand V.I. // Proc. Nat. Acad. Sci. USA. 1991. V. 88. P. 49564960. 38. Hollenbeck PJ., Bray D. // J. Cell Biol. 1987. V. 105. P. 2827-2835. 39. Morris R., Hollenbeck P. // J. Cell Sci. 1993. V. 104. P. 917-927. 40. Moore J.D., Endow S.A. // BioEssays. 1996. V. 18. . 207-219. 25..1996 4.XI.1996 QUANTITATIVE ANALISYS OF MOVEMENTS OF CYTOPLASMIC GRANULES IN POLARIZED FIBROBLASTS Grigoriev I.S., Chernobelskaya A.A., Vorobjev I.A. Laboratory of Cell Motility, Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899 Moscow, Russia Movements of cytoplasmic organelles were analyzed in Vero fibroblasts. In the cells polarized at the edge of an experimental wound, cytoplasmic granules moved randomly (Brownian movements) and by separate jumps (saltatory movements). The displacement of granules by the Brownian movements exceeded by more than an order of magnitude that mitochondria similar in weight. Lipid droplets moved predominantly by saltations, whereas mitochondria and lysosomes moved much less often. In a front part of the polarized cells, the main directions of saltatory movements were from a nucleus to a leading edge of a cell and back, whereas the tangential movements (across the long axis of a cell) comprised below 1%. 90% of saltatory movings occured in the area starting 10-12 µm from the nucleus and ending 10-12 µm from the leading edge of a cell. The average rate of saltatory movements of the granules (2.38 µm/s) were identical in both directions. The average length of the track was 7.49 µm; the maximum track lengh reached 30 µm. An increase in the granule diameter from 0.3 to 1.4 µm resulted in an insignificant (statistically insignificant) decrease in the movement average speed. The average speed of saltatory movements of mifochondria was 1.00 µm/s, and the average track lengh was 6,04 µm. Therefore, mitochondria, in contrast to lipid droplets, are rigidly fixed in the cytoplasm, and the force, holding mitochondria, is equal to the force produced by the microtubule-associated motors. Taking into account the characteristic of the centrifugal saltations, we suggested that thay are mediated by an unusual dynein. 173