Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://cellmotility.genebee.msu.ru/html/articles/chern01.pdf
Äàòà èçìåíåíèÿ: Tue May 21 15:31:10 2002
Äàòà èíäåêñèðîâàíèÿ: Mon Oct 1 19:58:17 2012
Êîäèðîâêà:
, 2001, 32, 1, . 58-66

, 70-
576.311.348.7: 576.311.346.2

1
© 2001 . . . , . . *, . . , . .
- . .. * . .. 119899, , 11.07.2000 . , . , , . , . Vero , . , ( ), . , 4.57 ± 3.69 . . , , , - ( ). 3.85 + 0.72 . - , Vero. 3.33 ± 2.43 , 18 . , , 1.49 ± 0.82 . , , , Vero 2-5 , .. ( 25 ). , , . , Vero , . : , , , .

- , , . , , , . , , , -
1

( 99-04-49436, 00-04-48762 0015-99366).

(Stubblefield, Brinkley, 1967; De Harven, 1968), . (Brinkley etal., 1975; Weber et al., 1975). , , . , 58


(Keating et al.,1997; Yvon, Wadsworth, 1997; Vorobjev et al., 1997; Borisy, Rodionov, 1999). , (Vorobjev et al., 1997, 1999; Borisy, Rodionov, 1999; Keating, Borisy, 1999; Rodionov et al., 1999). , . : , , , - , , 3-10 (Chalfie, Tompson, 1979; Bray, Bungl, 1981; Yu et al., 1994). , , , . , .
. Vero ( ) . 37° 5% 2 DMEM F12 (1 : 1) ("Sigma", ) 3% (100 /). . (Abercrombie, 1961). .

. ("Merck", ) 1.5% 10 , 1%- 100 1.5 ("Sigma", ) 2%- 10 ("Sigma", ). , ( ., 1996).

. , , - ("PELCO", ). , , , . 2%- 0.1%- ( 7.3) 20 . 0.1 %- (20 ) 0.3%- (20 ). . ( ., 1989). - . . Vero (Abercrombie, 1961). , , , . - 1-1.2 . 8000 -700 ("Hitachi", ), 150-175 . , "Adobe Photoshop" ("Adobe System, Inc.", ). "Statistika" ("StatSoft, Inc.", ). . - , , . , , 0°. , , 90° ( ), -90° ( ). . "Planapochromat 63/1.4" "Neofluar 16X/0.4" "Zeiss" (). -


500 "AG-6730" ("Panasonic", ). , , 6. 37° ("Nicolson Precision Instruments", ). . . . , . , , . (3-5 ). , . . . Vero , , . ( ) , . , ( ) , . , , , (. 1). . . . , , , , . , , . , .

. 1. Vero () ( -) Vero (). . : - 5, - 1 .

, , - , . (3-4 ) (. 1, ). , ( , 1.5 8 ), 4.57 ± 3.69 (N = 134). . 2. . . -


62

.

. 3. Vero: a - - ; -- ( , 0.25 ( ) ), - ( : ). - , Mm - , - . : 3 .

. , , . (. 2), 3.99 + 2.81 . - , 2.55 ± 1.62 2.27 ±1.21

(. 2). , , , 1 . , , , .
. 32 1 2001




, - . , , , . , (Freed, Lebowitz, 1970). 0.3 0.14 . (Grigoriev et al, 1997). - 17 . · () . 30 . 3.85 ± 0.72, - 15 . , () (Mclntosh, 1983; Vorobjev, Nadezh-dina, 1987; Gelfand, Bershadsky, 1991; Kellog et al., 1994). ( ), , , ,
1. Vero, , 1 2 3 4 5 173 124 138 166 136
32 1

. 4. Vero () () , (). . : 1 .

( ., 1982). , , - ,
2. , , % 1 2 3 4 5 23 28 22 16 11 3.64 ± 2.59 4.40 ±2.81 3.94 ±3.12 2.55 ±1.62 2.27 ±1.21 17.25 15.99 11.57 8.50 5.92

2.49 ±1.88 3.29 ± 2.08 3.82 + 2.67 4.41+2.88 5.66 ± 2.67
2001

17.25 11.33 15.66 16.11 12.75




64

.

( 5 ), 50 (Rodionov, et al., 1994; Borisy, Rodionov, 1999; Rodionov et al., 1999). , , . , . , , 20 1 (Gliksman et al., 1993), - , (Alieva, Vorobjev, 1992, 1997; , , 2000), (Yu et al., 1994), . , , , . Vero , , ( ), . , , , ( 0.5 20 ) 3.33 ± 2.43 . , (Yu, Baas, 1994). , 3.87 ± 3.83 ( 20.09 ), - 4.02 ± 5.28 ( 40.14 ). (Chalfie, Tompson, 1979), , , , 1.2 10.7 ( ). , (20-40 ) , , . , , 5% . -

( , Vero 40 ) 10 % . , 4.57 ± 3.69 . . , , , . , , . , - (Vale et al., 1996; Okada, Hirokaw? 1999). ^ , ? , , , -. , , 5-10 . - , , . , , , , , , -0.4-0.8 (Alieva, Vorobjev, 1992, 1997; , , 2000). , , , , (Ahmad et al., 1999). , , , Vero 2-5 , .. ( 25 ). , , , (Alieva et al., 1992). , Vero , . , , , , , 32 1 2001


65

, . " " (. 3): , , (. 3, ). , , . , , -·, , - . . - , , , , - , (. 3, ). , in vivo - (Gliks-man et al., 1993; Dhamodharan, Wadsworth, 1995; Yvon, Wadsworth, 1997; Vorobjev et al., 1999). , - vi - (Keating et al., 1997; Vorobjev et al., 1999), , , . , , 3-5, 10-20 , , in vitro (Mitchison, Kirschner, 1984; Kirschner, Mitchison, 1986; Belmont et al., 1990).
., ., . . . .: , 1982. 503 . ., .., ..
5 32 1 2001

// . 1989. . 305. . 1232-1234. .., .. - ? // . . 2000. . 16. 1. . 50-59. .., .., .. . - // . 1996. . 38. 2. . 211. Abercrombie M. The bases locomotory behavior of fibro-blast // Exp. Cell Research. 1961. Suppl. 8. P. 188198. Ahmad F.J., Yu W., McNally F.J., Baas P.W. An essential role for katanin in severing microtubules in the neuron // J. Cell Biol. 1999. V. 19. 145(2). P. 305-315. Alieva I.E., Vorobjev LA. Centrosome behavior under the action of a mitochondrial uncoupler and the effect of disruption of cytoskeleton elements on the uncouplerinduced alterations // J. Struct. Biol. 1992. V. 113. 3. P. 217-224. Alieva I.B., Vaisberg E.A., Nadezhdina E.S., Vorobjev LA. Microtubules and intermediate filaments patterns around the centrosome in interphase cells // The centrosome / Ed. V.C. Kalnins. N.Y.: Acad. Press, 1992. P. 103-129. Alieva I.B., Vorobjev LA. Stereoscopic analysis of microtu-bule pattern around the centrosome in interphase PK cells after treatment with taxol and nocodazole // Membr. Cell Biol. 1997. V. ll. l.P. 17-29. BelmontL.D., HymanA.A., Sawin K.E., Mitchison T.J. Real-time visualization of cell cycle-dependent changes in micro-tubule dynamics in cytoplasmic extracts // Cell. 1990. V. 62. P. 579-589. Borisy G.G., Rodionov V.I. Lessons from the melanophore // FASEB J. 1999. V. 13. P. 2221-2224. Bray D., Bungl MB. Serial analysis of microtubules of cultured rat sensory neurons // J. Neurocytology 1981. V. 10. P. 589-605. Brinkley B.R., Fuller G.M, Highfield D.P. Cytoplasmic microtubules in normal and transformed cells in culture: analisys by tubulin antibody immunofiuorescence // Proc. Natl. Acad. Sci. USA. 1975. V. 72. P. 4981^985. Chalfie M., Thomson J. N. Organization of neuronal microtubules in the nematode Caenorhabditis elegans // J. Cell Biol. 1979. V. 93. P. 15-23. De Harven E. Electron microscope study of human leukemic cells in tissue culture//Bibl. Haematol. 1968. V. 30. P. 300-302. Dhamodharan R., Wadsworth P. Modulation of microtubule dynamic instability in vivo by brain microtubule associated proteins //J. Cell Sci. 1995. V. 108. 4. P. 1679-1689. Freed J.J., Lebowitz MM. The association of a class of saltatory movements with microtubules in cultured cells // J. Cell Biol. 1970. V. 45. 2. P. 334-354. Gelfand V.I., Bershadsky A.D. Microtubule dynamics: mechanism, regulation, and function // Annu. Rev. Cell Biol. 1991. V. 7. P. 93-116. Gliksman N.R., Skibbens R.V., Salmon E.D. How the transition frequencies of microtubule dynamic instability (nucle-ation, catastrophe and rescue) regulate microtubule dynamics in interphase and mitosis: analysis using a Monte Carlo computer simulation // Mol. Biol. Cell. 1993. V. 4. P. 1035-1050. GrigorievI.S., ChernobelskayaA.A., Vorobjev LA. Quantitative analysis of the movements of cytoplasmic granules in polarized fibroblasts // Membr. Cell Biol. 1997. V. 11. 2. P. 195-211.


66

. Stubblefield E., Brinkley B.R. Cilia formation in Chinese hamster fibroblasts in vitro as a response to colcemid treatment // J. Cell Biol. 1967. V. 30. 3. P. 645-652. Vale R.D., Funatsu ., Pierce D.W. Direct observation of single kinesin molecules moving along microtubules // Nature. 1996. V. 380. P.451^53. Vorobjev I.A., Nadezhdina E.S. The centrosome and its role in the organization of microtubules // Int. Rev. Cytology. 1987. V. 106. P. 227-293. Vorobjev LA., Svitkina T.M., Borisy G.G. Cytoplasmic assembly of microtubules in cultured cells // J. Cell Sci. 1997. V. 110. 21. P. 2635-2645. Vorobjev LA., Rodionov V.I., Maly I.V., Borisy G.G. Contribution of plus and minus end pathways to microtubule turnover//Ibid. 1999. V. 112. 14. P. 2277-2289. Weber K., Pollack R., Bibring T. Antibody against tubulin: the specific vizualization of cytoplasmic microtubules in tus-sue cultured cells // Proc. Natl. Acad Sci. 1975. V. 72. P. 459-463. Yu W., Ahmad F.J., Baas P.W. Microtubule fragmentatir and partitioning in the axon during collateral branch form._ tion //J. Neurosci. 1994. V. 14. P. 5872-5884. Yvon A.M., Wadsworth P. Non-centrsomal microtubule formation and measurement of minus and microtubule dinamics in A498 cells //J. Cell Sci. 1997. V. 110. P. 2391-2401.

Keating T.J., PeloquinJ.G.,Rodionov V.I. etal. Microtubule release from the centrosome // Proc. Natl. Acad. Sci USA. 1997. V. 94. 10. P. 5078-5083. Keating TJ., Borisy G.G. Centrosomal and non-centrosomal microtubules // Mol. Biol. CeU. 1999. V. 91. 4-5. P. 321-329. Kellog D.R., Moritz M., Alberts B.M. The centrosome and cellular organization // Annu. Rev. Biochem. 1994. V. 63. P. 639-674. Kirschner M.W., Mitchison T. Microtubule dynamics // Nature. 1986. V. 12. P. 18-31. MdntoshJ.D. The centrosome as an organizes of the cytoskeleten // Mod. Cell Biol. 1983. V. 2. P. 115-142. Mitchison T.J., Kirshner M. Dinarnic instability of microtubule growth // Nature. 1984. V. 312. P. 237-242. Okada Y., Hirokawa N. A processive single-headed motor: kinesin superfamily protein KIF1A // Science. 1999. V. 283. P. 1152-1157. Rodionov V.I., Lim S., Gelfand VI., Borisy G.G. Microtubule dynamic in fish melanofores // J. Cell Biol. 1994. V. 126. P. 1455-1464. Rodionov V.I., Nadezhdina E.S., Borisy G.G. Centrosomal control of microtubule dynamics // Proc. Natl. Acad. Sci. USA. 1999. V. 96. P. 115-120.

Analysis of Different Methodological Approaches to Measuring Microtubule Length in the Cytoplasm of Cultured Cells
O. A. Chernobelskaya*, I. S. Grigoriev**, I. B. Alieva*, and I. A. Vobobjev*
*Belozerskii Research Institute of Physicochemical Biology, Moscow State University, Vorob'evy gory, Moscow, 119899 Russia **Biological Faculty, Moscow State University, Vorob'evy gory, Moscow, 119899 Russia Abstract--It is generally assumed that microtubules in tissue culture cells extend from the centrosome to cell periphery, and the length of individual microtubules averages several dozens of microns. However, direct electronmicroscopic measurements have cast some doubt on this assumption. In this study, the average length of microtubules in cultured Vero cells was estimated using a combined approach. The length of free cytoplasmic and Centrosomal microtubules was determined by means of electron microscopy in serial sections; concurrently, the length of free microtubules in the lamella was measured in preparations stained with tubulin antibodies (an indirect immunofluorescent method), by tracing saltatory particle movements along the microtubules in living cells. According to the data of immunofluorescent microscopy, microtubule length in the lamella averaged 4.57 ± 3.69 µm. However, since two or more microtubules can overlap, their length may be slightly overestimated by Ms method. On the other hand, saltatory movements are easy to monitor and measure fairly accurately, but their range may be shorter than the actual microtubule length because of a limited processiveness of motors (kinesin and dynein). On average, the trajectories of saltatory movements in living cells were 3.85 ± 0.72 µm long. At the electron-microscopic level, microtubule length was analyzed using pseudo-three-dimensional reconstructions of the microtubule systems around the centrosome and in the lamella. The length of free microtubules in the lamella reached 18 µm, averaging 3.33 ± 2.43 µm; the average length of centrosomal microtubules was 1.49 ± 0.82 µm. Good correspondence between the data on microtubule length and arrangement obtained by different methods allows the conclusion that most of free microtubules in Vero cells actually have a length of 2-5 µm; i.e., they are much shorter than the cell radius (about 25 µm). Microtubules extending from the centrosome are shorter still and do not reach the cell periphery. Thus, most microtubules in the lamella of Vero cells are free and their ordered arrangement is not associated with their attachment to the centrosome. Key words: microtubules, free microtubules, centrosome, centrosomal microtubules.



32

1

2001