Документ взят из кэша поисковой машины. Адрес оригинального документа : http://num-meth.srcc.msu.ru/english/zhurnal/tom_2007/v8r103.html
Дата изменения: Tue Jan 9 14:12:39 2007
Дата индексирования: Mon Oct 1 22:41:38 2012
Кодировка:
"The mapping of integer sets and Euclidean approximations"  
"A method of stabilization of grid-characteristic schemes for gas-dynamic equations"
Ryabov G.G., Serov V.A.

     The development of discrete models for representations of nonconvex parts of $R^3$ space and the solution of routing problems with a metric that approximates the Euclidean metric on these models continue to remain fundamental in the fields of robotics, geoinformatics, computer vision, and designing of VLSI. The paper deals with a lattice-cellular model. The main attention is paid to the mapping of the integer sets $Z^2$, $Z^3$, $Z^4$ onto itself, the construction of a lattice fan under a given accuracy of metric approximation, the decomposition of equidistant graphs, and the combined application of lattice and polyhedral models for a software system of metric-topological constructions.

Ryabov G.G., Serov V.A.     e-mail: gen-ryabov@yandex.ru,   v_serov_@mail.ru