Документ взят из кэша поисковой машины. Адрес оригинального документа : http://nuclphys.sinp.msu.ru/students/vacuum.htm
Дата изменения: Thu Apr 24 12:57:48 2014
Дата индексирования: Sun Apr 10 02:43:32 2016
Кодировка: Windows-1251
Вакуумные насосы

Московский Государственный Университет им. М.В.Ломоносова
Физический факультет
Кафедра Общей Ядерной Физики
Москва, 2005 г.

Кругов Виталий

Вакуумные насосы
(реферат)


Введение

История развития вакуумной техники.

    В переводе с латинского 'Вакуум' означает пустоту. Философский этап развития вакуумной техники опустим, ибо он примитивен.
    Началом научного этапа в развитии вакуумной техники можно считать 1643 г, когда Торричелли впервые измерил атмосферное давление. В 1672 году Отто фон Герике изобретает механический поршневой насос с водяным уплотнителем. Изучалось поведение различных систем и живых организмов в вакууме.
    Наконец, в 80-х годах 19 в. Человечество шагнуло в технологический этап создания вакуумных приборов и техники. Это было связано с открытием А.Н. Лодыгиным электрической лампы накаливания с угольным электродом (1873) и открытием Т.А. Эдисоном термоэлектронной эмиссии (1883). Начинают изобретаться такие вакуумные насосы: вращательный (Геде, 1905), криосорбционный (Дж. Дьюар, 1906), молекулярный (Геде, 1912), диффузионный (Геде, 1913); манометры: компрессионный (Г. Мак-Леод, 1874), тепловой (М. Пирани, 1909), ионизационный (О. Бакли, 1916).
    В СССР становление вакуумной техники началось с организации вакуумной лаборатории на ленинградском заводе 'Светлана'. Началось бурной развитие электроники и новых методов физики.

Применение вакуума в науке и технике.

    Области применения весьма широки. Практически ни одно технологически сложное производство не обходится без применения вакуума.
    В электронной технике: осветительные лампы, газоразрядные, генераторные и сверхвысокочастотные приборы, телевизионные и рентгеновские трубки.
    В производстве микросхем и приборов: нанесение тонких пленок, ионное внедрение, плазмохимическое травление, электронолитографию.
    В металлургии: плавка и переплав металлов в вакууме освобождает их от растворенных газов, что придает им высокую прочность, пластичность и вязкость.
    Машиностроение: электроннолучевая сварка, диффузионная сварка, плазменная обработка.
    Химическая промышленность: вакуумные сушильные аппараты, вакуумная пропитка, вакуумные фильтры.
    Основной инструмент современной ядерной физики - ускоритель частиц - немыслим без вакуума. Поддержание почти космического вакуума требуется в установках для проведения экспериментов.

Вакуумные насосы

Общая характеристика

    Все вакуумные насосы можно разделить на высоковакуумные и низковакуумные, а по физическому принципу действия - на механические, сорбционные, ионные. Среди механических насосов выделяют объемные и молекулярные, основанные на передаче количества движения молекулам газа от движущихся поверхностей.
    Насосы объемного типа осуществляют откачку за счет периодического изменения объема рабочей камеры. Этот тип вакуумных насосов появился раньше остальных и получил широкое применение в различных конструкциях: поршневая, жидкостно-кольцевая и ротационная.
    Среди насосов с передачей количества движения молекулам газа различают: водоструйные, эжекторные, диффузионные и молекулярные. Их характеристики можно рассчитать на основании закономерностей внутреннего трения в газах.
    Сорбционные явления в вакууме широко используются для откачки газов из вакуумных систем. На принципе хемосорбции основана работа испарительных насосов. Физическая адсорбция и конденсация используются для откачки газов криосорбционными насосами: адсорбционными и конденсационными.
    Направленное движение предварительно заряженных молекул газа под действием электрического поля является основой работы ионных насосов. Принцип ионной откачки совместно с сорбционным используется в конструкциях ионно-сорбционных насосов.
    Основными параметрами любого вакуумного насоса являются: быстрота действия, предельное давление, наименьшее рабочее давление, наибольшее давление запуска и наибольшее выпускное давление.


Рис. 1. Упрощенная схема вакуумной системы.

Рассмотрим схему простейшей вакуумной системы (рис. 1), состоящую из откачиваемого объекта 1, насоса 2, и соединяющего их трубопровода. Течение газа из откачиваемого объекта в насос происходит из-за разности давлений (p1 - p2), причем p1 > p2.
    Быстроту откачки насоса Si в произвольном сечении соединительного трубопровода можно определить как объем газа, проходящий через это сечение в единицу времени:

Si = dVi/dt.

Быстротой откачки объекта или эффективной быстротой откачки насоса называется объем газа, поступающий в единицу времени из откачиваемого объекта в трубопровод через сечение I при давлении p1:

SEff = dV1/dt. (1)

Быстрота действия насоса - это объем газа, удаляемый насосом в единицу времени через входной патрубок (сечение ближе к насосу) при давлении p2:

SH = dV2/dt. (2)

Отношение эффективной быстроты откачки насоса к быстроте действия называется коэффициентом использования насоса:

Ku = SEff/SH. (3)

Производительностью насоса называется поток газа, проходящий через его входное сечение. Для стационарного потока выполняется условия сплошности:

Q =  p2SH = p1SEff = piSi. (4)

Установим связь между тремя основными характеристиками вакуумной системы: быстротой действия насоса SH, эффективной быстротой откачки объекта SEff и проводимостью вакуумной системы между насосом и откачиваемым объектом U. Запишем следующие равенства:

SH =  Q/p2 = U(p1 - p2)/p2,
SEff =  Q/p1 = U(p1 - p2)/p1.
(5)

После несложных преобразований имеем искомую связь:

1/SEff -1/SH = 1/U. (6)

Это уравнение называется основным уравнением вакуумной техники. Для анализа этого уравнения запишем его немного в другом виде:

SEff = SHU/(SH + U). (7)

Сразу же бросаются в глаза следующие факты:

  1. Если SH = U, то получаем что SEff = 0.5SH;
  2. Если U----->infin, то SEff ----->SH;
  3. При U----->0, имеем SEff----->0.

    Предельное давление насоса pпр - это минимальное давление, которое может обеспечить насос, работая без откачиваемого объекта. Логично заметить, что быстрота действия насоса при приближении к предельному давлению стремиться к нулю. Предельное давление большинства вакуумных насосов определяется газовыделением материалов, из которых изготовлен насос, перетеканием газов через зазоры и другими явлениями, возникающими в процессе откачки.
    Наименьшее рабочее давление вакуумного насоса pм - это минимальное давление, при котором давление длительное время сохраняет номинальную быстроту действия. Наименьшее рабочее давление примерно не порядок выше предельного давления. Использование насоса для работы при давлениях между предельным и наименьшим рабочим экономически не выгодно из-за ухудшения его удельных характеристик.
    Наибольшее рабочее давление вакуумного насоса pб - это максимальное давление, при котором насос длительное время сохраняет номинальную быстроту действия. В рабочем диапазоне от наименьшего о наибольшего рабочего давления обеспечивается эффективное применение насоса для откачивания вакуумных установок. Рабочие диапазоны давлений вакуумных насосов в основном определяются их принципом действия.
    Давление запуска вакуумного насоса pз - максимальное давление во входном сечении насоса, при котором он может начать работу. Давление запуска обычно заметно превышает наибольшее рабочее давление. Для некоторых типов насосов, к примеру, магниторазрядных, это различие может достигать 2-3 порядков.


Рис. 2. Зависимость быстроты действия от входного давления

     Наибольшее выпускное давление pВ - максимальное давление в выходном сечении насосы, при котором он может осуществлять откачку. Этот параметр не используется для некоторых типов сорбционных насосов, поглощающих газ в объеме насоса.
    Параметры вакуумных насосов показаны на основной характеристике вакуумного насоса - зависимости быстроты действия от его входного давления (рис. 2). Экспериментальное определение основной характеристики вакуумного насоса может осуществляться двумя методами: стационарным методом постоянного давления и квазистационарным методом постоянного объема.


Литература

  1. Л.Н. Розанов 'Вакуумная техника', Москва 'высшая школа', 1982г;
  2. Б.И. Королев 'Основы вакуумной техники', 1958г.

next

На головную страницу

Рейтинг@Mail.ru