Документ взят из кэша поисковой машины. Адрес оригинального документа : http://nuclphys.sinp.msu.ru/nseminar/11.09.20.pdf
Дата изменения: Wed Apr 18 09:17:52 2012
Дата индексирования: Tue Oct 2 00:17:39 2012
Кодировка:
..



:


:


Ultraintense laser fields
Field ionization (mutliphoton, tunnel, etc.):

2J J = 2 2 osc E /
2

I > 1013 W/cm

2

>> 1 multiphoton << 1 tunnel, ATI, BSI
Field strength comparable to atomic field: Ultraintense laser field:

e E ~ Ea ~ 2 ~ 5 109 V/cm a
E a Iu = ~ 3,4 1016 W/cm 8
2 2


Relativistic optical field
Quiver electron velocity (classical):

me x = qEe

i t

vosc

qE = c me

Relativistic "threshold"


2 3

osc

0.5 MeV



osc

qE q I = = 2 2 me me c
2 2 2

Q = I2
QR 1,4 1018 W/cm 2 m
2


Electron motion
Nonlinear motion

v F = e E + в c P0 a0 = 0, 8 5 mc

B


(1018 )

Normal field 10-9 I ( m)

a = P = a, Px = 2

2 Relativistic field


Ultrarelativistic or Extreme Optical Field
Relativistic ions:

v

(i )

osc

eE = c M i

I

( proton )

rel

10 24 W/cm 2 m

2

Schwinger field (vacuum breakdown):

eE

schw

h c > 2me c , c = me c
2

I

schw

10 29 W/cm

2

SLAC ­ 46.6 1018 /2 ( ­1028 /2) 29.2 ,



W W I= P= S 2 ~ 10 S 1 W 1 I 10 /
22 2

P 100


CPA concept
p~100-150ps p~100-150ps

p~100fs
G G G

p~100fs

Strikland D., Mourou G. Optics Comm., 56, 219, (1985).


Petawatt Ti:Sa (JAERIAPRC)
Oscillator Regen Pre - amp 100TW compressor Power - amp Stretcher

7-J Nd : YAG

70-J Nd : glass

Booster - amp PW compressor




300 , 30 , 0,1 2x1022 /2


Novel approaches
Elements damaging prevents further amplification
Surface breakdown Volume breakdown (selffocusing)

Increase in size =>

OPCPA

Materials with higher damage threshold =>

Plasma amplification


OPCPA

Advantages of OPCPA :
· · · · · broad gain bandwidth high aperture considerable decrease in thermal loading significantly lower level of ASE 0.5 PW 0.5 very high gain



Lasermatter interaction at the highest intensity levels (Extreme Light Infrastructure ELI) 34 kJ, 10 fs, 0.2 EW (ExaWatt), I> 1024 W/cm2 Thermonuclear research
European High Power Laser Energy Research ­HiPER 200 kJ in ns pulse + 70 kJ in fs pulse PETAL (forerunner for HiPER project) 3.5 kJ, 0.5 ­10 ps, 5 PW National Ignition Facility, NIF 1.1 MJ in ns pulse Fast Ignition Realization Experiment (FIREX )4 x 10 kJ, 10 ps ­ «ISKRA5» 30 kJ, 0.3 ns, «LUCH» 12 kJ, 1 ns, «UFL900» 900 kJ, 1 ns, PW OPCPA ( ) .



­ ???


Electron quiver energy




: 15 : ~ 1





General scheme for plasma induced nuclear reactions
I>1019 /2

( )

, , -

(, , , .)


Photoinduced nuclear reactions: 238U(, f)
I~5x1019W/cm2, ~1 ps

Rutherford: K.W. D. Ledingham, I. Spencer, T. McCanny, et al PRl 84 899 (2000) LLLNL: T. E. Cowan, A.W. Hunt, T.W. Phillips, et al PRl 84 903 (2000)


Photoinduced reactions (, n): isotope production
I~5x1019 W/cm2, ~1 ps
197Au(

,n)196Au ( ,n)180Ta
65Cu(

181Ta

, n)64Cu
63Cu(

, n)62Cu


Isotope transmutation
129

I( ,n)128I
128

Spontaneous decay I~1020 W/cm2, ~70 fs

129I



105 years

I

128

25 min

Xe

100 fs

25 min

F Ewald, H Schwoerer, S D.Usterer, et al, Plasma Phys. Control. Fusion 45 A83­A91 (2003)


Positrons
Reaction channels: For 5 MeV electron

n + = n ei + n ee + n

e

+n



+n

i

nei : nee : ne : n : ni = 3 в1032 : 3 в 1030 : 3 в10 29 : 6 в10 29 : 5 в10

31

ei 1.4 x10 -30 Z 2 (ln )3 cm ( ~ 1) ~ 100 ei 10
- 26

2

cm

2

C. Gahn, G. D. Tsakiris, G. Pretzler, et al, APL 77 2662 (2000)


Pions
p C + (threshold ­ 140 MeV)
Proton spectra + yield

x

10

21 W/cm

2

.. ., , 74, 664 (2001)


« »
_

Hidding B. et al, NIM A, 636 31 (2011)


Ti:Sapphire Laser
Energy per pulse 150 mJ Energy stability 3% rms within 1 hour Pulse duration 50 fs Intensity up to 1019 W/cm2 Central wavelength 805 nm Spectral bandwidth 23 nm Repetition rate 10 Hz M2 =1.7 Nanosecond contrast 4x106 Picosecond contrast better than 105



, ..
1
I=4.710 / 18 I=1.410 /
17 2 2

0,1

0,01

1E-3

1E-4

0

1

2

3

4

5

,



( 1019 /c2)
, : , , , , , . . , , .



( 1021 /c2 )
( 11B(p,n) 11C. (99Tc 129I), . . . , , . , . ( (,n) (,p)) , , 25Mg, 48,49Ti, 68Zn .


, , , , . , , , . 200 .