Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://nuclphys.sinp.msu.ru/mirrors/1999_12c.pdf
Äàòà èçìåíåíèÿ: Tue Jan 13 15:51:52 2009
Äàòà èíäåêñèðîâàíèÿ: Tue Oct 2 00:14:35 2012
Êîäèðîâêà: koi8-r
DEFLECTION OF CHARGED PARTICLES BY CRYSTALS
S. P. DENISOV Motion of relativistic charge particles in magnetic and electric fields and their deflection and focusing using bent crystals are considered. Éððîç ê,çðfl ,êéáëêá áíflçê,êðçðìêi à fléáëë°i ~ðçê^ , î,,ëêçëñî ê íáìç ê~áðìñî òñífli ê êi ñçìíñëáëêá ê ûñìøðê ñ,ì ò ê òñîñê êàñ,,ëøç°i ì êðçííñ,.


Ê. Õ. ÿæÃÞÊÈã
Åñðìñ,ðìêõ ,,ñðø ðç,áëë°õ øëê,á ðêçáç êî. Å.ã. Öñîñëñðñ,

1. ããæÿæÃÞæ

© ÿáëêðñ, Ê.Õ., 1999

. . 1976 (, ) .. . , , (, ) , .. . 1984 8 . 1989 70 . . 1996 .. , .. , .. , .. , .. , .. , .. .. . (), , 1 , : 1 = 109 . (R), ­ (R ).
2. ÈÌÄÖÈÃæÃÞæ ÑäÊÌÞßÓ ÛÖæÄÌÉÈÅäèÃÞÌÃÓÅ ÕÈÖæÅ

e, v p U B [1]

84

ÊÈÉÈÊÈãÊÄÞÁ ÈåÉäÀÈãäÌæÖÇÃÓÁ ýËÉÃäÖ, <12, 1999


dp e ----- = ­ e grad U + -- [ v â B ] . (1) dt c (1) . - grad U . -U / x, -U / y, -U / z. (1), v B, Fl . v B B sin , ­ v B. Fl [2] e F lx = -- ( y B z ­ z B y ) , c e F ly = -- ( z B x ­ x B z ) , c e F lz = -- ( x B y ­ y B x ) . c , M v E Mv vE 2 2 22 p = ----------------- = ------ , (2) ( pc ) = E ­ ( Mc ) , 2 2 c 1­ c ­ = / c. . B. , , , cp n R m = ------- , (3) eB pn ­ , B. (3), (1). , lm . , B z. p0 (x, y). , Rm = cp0 /(eB ) (. 1), , . . 1 , m lm eBl m sin m = ----- = ---------- . Rm cp 0 , ­ , ­

p0



l

m

m y m x . 1. . B Rm p

­ , 0 ,3 Z Bl m sin m = ------------------- , p0 c (4)

Z ­ . , 70 1°. , , 2 . (4) , 2 2 . ­ , . ( 10 ) . . , . . (. 2), lc dc , . Uc , y , U = 0, U = yUc / dc . E0 , p0 0

ÿæÃÞÊÈã Ê.Õ. ÈÌÄÖÈÃæÃÞæ ÀäÉÝýæÃÃÓÎ ÑäÊÌÞß ÄÉÞÊÌäÖÖäÅÞ

85


U = Uc

p

0

y py (td) x U=0

d

p0 p

. 2.

x t = 0 (. 2). (1), p x = p0 , eU c t p y = ­ ---------- , dc p z = 0, (5)

(x, y), x p0 . td (5), d py( td ) eU c t d tg d = ------------- = ­ -------- ---- . px p0 d c (6)

( c) td = lc / 0 . , x , . , p 2 = p 2 + p 2 , x y (2) (5) pxc p0 c x = --------- = --------------------------------------------- = 2 2 E E 0 + ( ceU c t / d c ) 0 = ------------------------------------------------------ . 2 1 + ( ceU c t / ( E 0 d c ) ) (7)
2 2

, , , [2], , . x (7). . 70 dc = 10 , 1 . , 1°. , eUc = 106 , (9) lc 120 . , 1 , . , , , . -, , ( 1 ) ? : , . ? , ­ . , . , , .
3. ÄäÃäÖÞÉÈãäÃÞæ ÑäÊÌÞß ã ÄÉÞÊÌäÖÖäÎ

(E Mc2) d 1, , , ceU c t ------------E0 d c 1. (8)

(8), , x = 0 , td = lc / 0 eU c l c tg d = ­ ---------- ---- . p0 0 d c (9)

. (8) d 1 E Mc2. , (8). , -

(. 3), . ­ . , . (. . 3). (100), (110) (111). 1964 . [3] . , 0 ( ), U, .

86

ÊÈÉÈÊÈãÊÄÞÁ ÈåÉäÀÈãäÌæÖÇÃÓÁ ýËÉÃäÖ, <12, 1999


(100)

(110)

(111)

. 3.

. . , z y (. . 3). x U = U(x). e M (x, z) 0 z. , E0 , p0 0 . (1), d px U ------- = ­ e ------ , dt x d pz ------- = 0. dt (10)

1 2 E t = -- p 0 0 + eU = const, 2 p0 d 2 x dU ---- ------- + e ------ = 0. -dx 0 dt 2

(12) (13)

2x 2 U ( x ) = U 0 ----- , d p x dp ---- , 2 (14)

dp ­ . (14) (. 4). (14) (13), x: p 0 d 2 x 8 eU 0 ---- ------- + ------------ x = 0. -2 0 dt 2 dp (15) p0 / 0 dx m ------- + ax = 0, 2 dt (m a ­ ). , x = 0: x = A sin ( 0 t + 0 ) , d p Et A = ---- -------- , 2 eU 0 2 c 2 eU 0 0 = ----- ------------ , d p E0 (16)
2

U x, U dU dU ------ = ------ = --------- . d x x dt x (11)

(15) m 8 eU 0 / d
2 p

a

(11), x = pxc2 / E, E = = c p x + p z + M c , (10). , , E + eU = const. px / pz
22 22 2 2 22

1 E Ez + p x c / ( 2 Ez ) ,
22

E z = c p z c + M c ­ , px c --------- + E z + eU = const. 2E z , (10), pz , , Ez , E t = p x c / ( 2 E z ) + eU . pz = = p0 Ez = E0 , , Et (10) :
22 22

0 ­ 0 ­ , . z = 0t, = dx / dz = dx /(0dt) : A 0 1 2E = --------- cos ( 0 t + 0 ) = ---- -------t cos ( 0 t + 0 ) . 0 E0 0 (16) , Et eU0 dp /2,

ÿæÃÞÊÈã Ê.Õ. ÈÌÄÖÈÃæÃÞæ ÀäÉÝýæÃÃÓÎ ÑäÊÌÞß ÄÉÞÊÌäÖÖäÅÞ

87


U, B 25

20

. : , , , . . [4].
4. ÈÌÄÖÈÃæÃÞæ Þ ÍÈÄËÊÞÉÈãÄä ÕËÑÄÈã ÀäÉÝýæÃÃÓÎ ÑäÊÌÞß ÄÉÞÊÌäÖÖäÅÞ

15

10

5

0

-0,75

-0,25

x, å

0,25

0,75

. 4. (110) ( ­ , ­ )

, , . (12) , 0 , , U = 0 (x = 0). l = 2 eU 0 1 2 eU 0 ------------ = ---- ------------ . p0 0 0 E0 (17)

1976 .. , , , , . E0 , p0 v0 (x, z) 0 z (. 5). R dp , U, 3, pzz / R(z), . (. 5), z . pz = p0 z = 0 (. 3) : R(z) = R = const. x d px U p 0 0 ------- + e ------ + ---------- = 0. x R dt (. 3): p0 0 1 2 E t = -- p 0 0 + eU + ---------- x = const, 2 R (18)

l . - 0 . . 70 , , (110), dp = 1,92 å (1 å = 10-10 ) U0 = 22 . , , . (17) l = 25 ( ­ ). 70 , (110) 0,0014°. , : .

= dx / dz px / p0 1. U(x) (14),

x

p

0

0

0 F

z

c

. 5. (x, z ­ , Fc ­ )

88

ÊÈÉÈÊÈãÊÄÞÁ ÈåÉäÀÈãäÌæÖÇÃÓÁ ýËÉÃäÖ, <12, 1999


p0 d 2 x 8 U 0 p0 0 ---- ------- + --------- ex + ---------- = 0. -2 0 dt 2 R dp x = x ' ­ p 0 0 d p / ( 8 eU 0 R ) (15). , 2

x 0 = ­ p 0 0 d p / ( 8 eU 0 R ) :
2

x = x0 + A sin(0t + 0), A 0 (16) (18), 0 ­ . | x0 + A | max dp / 2, . R p0 0 R c = ------------ d p . 4 eU 0 (19)

Rc (18), , z (0 = 0 x0 = 0). R > Rc 0 , , | x0 + A | max dp / 2 x = 0: R c = l 1 ­ ----c , R (20)

? . ­ . , 0 > c = 20 , . 10­100 c . , . , ( 3), ( ), , . 100%- . , ? . -, "" 10- 3­10- 4. . -, E0 , l 1 / E 0 , , . , (, ) 450 50%. . -, , , . , , , (x, z) F (. 6, ). F B, B1 , B2 , , , O. , OF , . , , , , OF, , F.

l ­ (17). 0 > c . (20) , , . , 3, - , , dp . , Rc , 0 c . 70 , (110) . (19), Rc = 15 . R = Rc 1 c , R Rc . , R = 75 E0 = 70 = 1° lc lc = = R sin = 1,3 . 100 10 000 , (. 2). : , , ,
1 ­ , .

ÿæÃÞÊÈã Ê.Õ. ÈÌÄÖÈÃæÃÞæ ÀäÉÝýæÃÃÓÎ ÑäÊÌÞß ÄÉÞÊÌäÖÖäÅÞ

89


B1 B B2 F



5 O . 6. ­ ; ­ () () , .

x = 2BF c , (21) c ­ (20). 70 x = 40 1 . 70 . . 6, . x (21). . 6, , , F , c .
5. ÀäÄÖØÑæÃÞæ

- , . [5]. .
ÖÞÌæÉäÌËÉä
1. .., .. . .: . .-. ., 1960. 63 . 2. .., .. . .: , 1981. . 147, 507. 3. . // . . 1969. . 99, . 2. . 249. 4. .., .., .. // . 1994. . 164, . 10. . 1017. 5. Biryukov V.M., Chesnokov Yu.A., Kotov V.I. Crystal Channeling and Its Application at High-Energy Accelerators. Berlin: Springer, 1997.

, , , . . , , - , , -

*** , , (), - . , , -3 t-. . 230 .

90

ÊÈÉÈÊÈãÊÄÞÁ ÈåÉäÀÈãäÌæÖÇÃÓÁ ýËÉÃäÖ, <12, 1999