Документ взят из кэша поисковой машины. Адрес оригинального документа : http://mmmf.msu.ru/archive/20142015/z7/15.html
Дата изменения: Sun Apr 10 00:41:55 2016
Дата индексирования: Sun Apr 10 00:41:55 2016
Кодировка: Windows-1251
Разбиение на пары. | 7 класс | Кружки | Малый мехмат МГУ

МАЛЫЙ МЕХМАТ МГУ

Кружок 7 класса

Руководитель Дмитрий Владимирович Трущин
2014/2015 учебный год

Версия для печати

Занятие 15 (28 февраля 2015 года). Разбиение на пары.

1.
Кого в России больше: женатых мужчин или замужних женщин?
2.
В одном доме живут 9 мальчиков и одна девочка. Назовем 'компанией' любую группу, состоящую из двух или более детей из этого дома. Каких компаний больше: с девочкой или без девочки? На сколько?
3.
Аня хочет выбрать и купить восемь из десяти имеющихся в магазине открыток, а Яна хочет выбрать и купить две из десяти имеющихся в магазине марок. У кого из девочек больше способов сделать свой выбор?
4.
Чего среди первых 9999 натуральных чисел больше — чисел с суммой цифр 15 или чисел с суммой цифр 21?
5.
Придворный астролог царя Гороха называет время суток хорошим, если с прошлого момента, когда часовая и минутная стрелки встречались прошло меньше времени, чем осталось до следующего момента их встречи (например, 16.45 — хорошее время), и называет время суток плохим если до следующей встречи стрелок осталось меньше времени, чем прошло с их предыдущей встречи (например, 7:15 — плохое время). Какого времени в сутках больше — хорошего или плохого?
6.
Номер автобусного билета состоит из 6 цифр от 000000 до 999999. Билет называют счастливым, если сумма первых трех цифр его номера равна сумме трех последних цифр. Имеются билеты со всевозможными номерами, каждый билет встречается один раз.
a)
Каких билетов больше: с номерами, в которых каждая цифра больше предыдущей или с номерами, в которых каждая цифра меньше предыдущей?
б)
Докажите, что сумма всех счастливых номеров делится на 999.
в)
Докажите, что сумма всех счастливых номеров делится на 1001.
г)
Каких билетов больше: счастливых или тех, чьи номера делятся на 11?
д)
Докажите, что счастливых билетов столько же, сколько билетов с суммой цифр 27.
7.
У кассира было 30 монет достоинством в 10, 15 и 20 копеек на общую сумму в 5 рублей. Докажите, что 20-копеечных монет у него было больше, чем 10-копеечных. На сколько больше?
8.
Черная Королева и Алиса играют в следующую игру. Сперва Королева ставит в любую клетку шахматной доски короля. Затем они по очереди (начиная с Алисы) делают этим королем ходы. Проигрывает тот, кто поставит короля на клетку, в которой тот уже был до того. Кто выиграет при правильной игре?

Вы видите ошибку? Выделите ее и нажмите Ctrl+Enter! Rambler's Top100
liveinternet.ru
Apache
PHP
HTML 4.01
CSS