Äîęóěĺíň âç˙ň čç ęýřŕ ďîčńęîâîé ěŕřčíű. Ŕäđĺń îđčăčíŕëüíîăî äîęóěĺíňŕ : http://matematika.phys.msu.ru/files/a_stud_spec/251/fa.pdf
Äŕňŕ čçěĺíĺíč˙: Fri Feb 25 07:45:40 2011
Äŕňŕ číäĺęńčđîâŕíč˙: Mon Oct 1 22:55:15 2012
Ęîäčđîâęŕ:
. . .





C. C.

A
4- ,

2001


517.98 22.16 95

. . . 4- ., . : - - , 2001. xii+354 c. ( ). ISBN 5­86134­103­6. . , ¨ , , , , . - . , . .: 347. . . . .
1602080000-10 82(03)-2001

.

ISBN 5­86134­103­6

c . ., 2001 c . . . , 2001




1. § 1.1. § 1.3. ..................................... ....................... § 1.2.

viii xii 1 1 3 7 10 12 ................ 12 15 18 24 26 .......... ........ 26 29 32 35 38

.........................................

............................................

2. § 2.1. § 2.2. § 2.3.

............................. .........................

............................................

3. § 3.1. § 3.2.

§ 3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . § 3.4. § 3.5. .........................


iv

§ 3.6. . . . . . . . . . . . . . . . . . . . . . . . . . . § 3.7. ......... ........

41 44 46 51 53 53 56 59 60 62 65 68 71 72 74 74 79 82 85 87 97 104

§ 3.8.

............................................

4. § 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . § 4.2. § 4.3. § 4.4. § 4.5. ...

..............................

....................................

.......................................... ......................... ......................... ...........

§ 4.6. § 4.7.

§ 4.8.

............................................

5. § 5.1. ......................

§ 5.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . § 5.3. ........................... .....

§ 5.4. § 5.5.

.......................... ...............

§ 5.6.

............................................


6. § 6.1. § 6.2. § 6.3. ....

v 106 106 111 114 119 122 125 129 131 131 134 138 141 147 150 155 158 . 158 165 172 175 179 187

.................................. ................................ ................

§ 6.4. § 6.5.

............................ ...............

§ 6.6.

............................................

7. § 7.1. § 7.2. ....................... ....................... ............... .

§ 7.3.

§ 7.4. § 7.5. § 7.6.

........

.........................

............................................

8. § 8.1. § 8.2.

.......

§ 8.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . § 8.4. ........................ ...........

§ 8.5.

............................................


vi 9. § 9.1. § 9.2.

190 190 193 196 201 207 213 218 220 220 223 226 228 230 232 234 236 243 251 260 272

......................

................................... ..............

§ 9.3. § 9.4.

....................................

§ 9.5. § 9.6. .................

............................................

10. ¨ § 10.1. ........................... ................. ........ ..

§ 10.2.

§ 10.3.

§ 10.4. , § 10.5.

......................................... .......

§ 10.6. § 10.7. § 10.8. C (Q, R) § 10.9. § 10.10. D D

....................

..........................

................................... ..........................

§ 10.11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................


11. § 11.1. § 11.2. ......

vii 274 274 276 278 280 281 283 288 290 294 300 303 323 327 345

.......................

§ 11.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . § 11.4. § 11.5. C (Q, C) § 11.6. § 11.7. C - .............

...................... ..................... ................... .......

§ 11.8.

§ 11.9. - C -

............................................




, . . , . , . , . , . , . . . , , (, ). . , , , . , . , . , , , . , . , , . , , , , , . , . . , . , . , . ¨ , . . -




ix

. . . , . , . ., , . . . . , 1900 ., . . . , . , . , . , . , . ., . , , . . . . , . . . , (, . , , , , ). , , , : , . , , , , . : , . , . , , , .


x



, (. 1449). . , . . . . . , . . , . . , . . , . . , . . , . . . . . . 1948 . . . , , , 1974 ., . . , , . . , , , . .




. . , , . , . , . . . . , , .




. , , Kluwer Academic Publishers 1996 . , , , .



, , . C.


1

1.1. 1.1.1. . A B F A â B . F A B , , A B . 1.1.2. . F A â B dom F := D(F ) := {a A : ( b B ) (a, b) F } F , im F := R(F ) := {b B : ( a A) (a, b) F } F . 1.1.3. . (1) F F
-1

A B ,

:= {(b, a) B â A : (a, b) F }

B A, F . , F F -1 . (2) F A F A â A. (3) F A â B . F , a A (a, b1 ) F


2

. 1.

(a, b2 ) F , b1 = b2 . , U A IU := {(a, a) A2 : a U }, IU A A, U . U 2 U . F A â B A B , F dom F = A. IU A = U . IU . F A â B F : A B . , dom F = A im F B . im F = B : F A B . , F -1 B â A , F : A B . (4) . , F : A B B (ba )aA , a ba (a A), (ba ). , (a, b) F , b = ba . , . (5) F A â B U A. F (U â B ) U â B F U F U F |U . F (U ) := im F |U U F . . , F , a F (a) = b, F ({a}) = {b}. F (a) . , , . , F -1 (U ) U B F -1 U F . 1.1.4. . F A â B G C â D G F := {(a, d) A â D : ( b) (a, b) F & (b, d) G} F G. G F A D.


1.2.

3

1.1.5. . , , , 1.1.4 , B = C . 1.1.6. F , F F -1 = I im . . F F -1 I imF . , F |dom F

F

1.1.7. F A â B , G B â C U A. G F A â C G F (U ) = G(F (U )). 1.1.8. F A â B , G B â C , H C â D. H (G F ) A â D (H G) F A â D . 1.1.9. . 1.1.8 H G F . 1.1.10. F, G, H H GF =
(b,c)G

. F
-1

(b) â H (c).

(a, d) H G F ( (b, c) G) (c, d) H & (a, b) F ( (b, c) G) a F -1 (b) & d H (c) 1.1.11. . 1.1.10 , , , ( , 1.1.1). . ( ) , , . 1.1.12. G F GF =
b imF

F

-1

(b) â G(b).

1.1.10 : H := G, G := I

imF

F := F .


4

. 1. 1.2.

1.2.1. . X , . . X 2 . IX , , -1 IX , , = -1 . 1.2.2. . . . . X , X , (X, ) x y y (x). : X , x y x y y x . . , . . . . 1.2.3. . (1) ; X0 X 0 := X0 â X0 . (2) () X , -1 () X . -1 (). (3) f : X Y Y . X : f -1 f . 1.1.10 f
-1

f =
(y1 ,y2 )

f

-1

(y1 ) â f

-1

(y2 ).

, (x1 , x2 ) f
-1

f (f (x1 ), f (x2 )) .

, , f -1 f , f . , .


1.2.

5

. , , , : f -1 f = f -1 IY f . (4) X X . : X 2X (x) := (x) ( 2X X , P (X )). X := X/ := im . , , ( , . .). , X . (x) x. , =
-1

=
xX



-1

(x) â

-1

(x).

f : X Y . f f X , . . f : X Y , f = f , f -1 f . (5) (X, ) (Y , ) . f : X Y (. . x y f (x) f (y )) , f -1 f . 1.2.4. . (X, ) U X . x X U , U -1 (x). : x U . , x . x X U , x U -1 . : x U . , x . 1.2.5. . , (). , . 1.2.6. . x U , x U x U . U .


6

. 1.

1.2.7. (U ) U (X, ). , , x X U . , -, x (U ), -, (x) U = {x}. 1.2.8. . 1.2.7 . 1.2.9. . x X U X , x U . x = supX U , , x = sup U . ( ) U inf U , , inf X U . 1.2.10. . x (X, ) U X , (x) U = {x}. U . 1.2.11. . . , , , . 1.2.12. . X , x1 , x2 X x1 x2 := sup{x1 , x2 } x1 x2 := inf {x1 , x2 }. 1.2.13. . X , X . 1.2.14. , . 1.2.15. . (X, ) , X 2 = -1 , . -


1.3.

7

. , , . 1.2.16. . X () X . ( ) N X () . ( , N := {1, 2, 3 . . . }.) 1.2.17. , . 1.2.18. . 1.2.17 , X X X . 1.2.19. . (X, ) X 2 = -1 . X . X0 X , X0 X . , (. . ). 1.2.20. . . -

1.2.21. . , . 1.3. 1.3.1. . X B 2X . B ( X ), B 2X X .


8

. 1.

1.3.2. B 2X , (1) B = , B ; (2) B1 , B2 B ( B B ) B B1 B2 . 1.3.3. . F 2X ( X ), F B ( X ), . . F = fil B := {C 2X : ( B B ) B C }. , B . . 1.3.4. F , (1) F = , F (2) A F , A B (3) A1 , A2 F F F B 2X ; X B F; A1 A2 F .

1.3.5. . (1) F X â Y B 2X . F (B ) := {F (B ) : B B }. , F (B ) . , F (B ) := fil F (B ). F X B dom F = B F , F (F ) Y . F F . , F : X Y B X , F (F ) Y . (2) (X, ) . , B := { (x) : x X } . F : X Y , fil F (B ) F . (X , ) F : X Y Y . F F , F ( ) F . ( ) G : X X (x)xX (X, ) , F = F G, F F ( : F F ). .


1.3.

9

1.3.6. . F (X ) X . F1 , F2 F (X ) F1 F2 , , F1 F2 F1 F2 ( F2 F1 F2 F1 ). 1.3.7. F (X ) . 1.3.8. N F (X ). N F0 := sup N . F0 = {F : F N }. , F0 . , F0 , N , F0 = . A F0 B A, / , F N , A F , : B F F0 . A1 , A2 F0 , F N , A1 , A2 F , N . 1.3.4, A1 A2 F F0 . 1.3.9. . F (X ) X . 1.3.10. . 1.3.8 , , . 1.2.20. 1.3.11. F , A X A F , X \ A F . : A F B := X \ A F . , A = B = . F1 := {C 2X : A C F }. A F F1 B F1 F1 = . 1.3.4 (2) 1.3.4 (3). , F1 . F1 F . F , F1 = F . : B F B F. : F1 F (X ) F1 F . A F1 A F , X \ A F . X \ A F1 , . . = A (X \ A) F1 , .


10

. 1.

1.3.12. f X Y F X , f (F ) Y .

1.3.13. X := XF0 := {F F (X ) : F F0 } F0 F (X ). X . , F0 , {X } X . , X : sup = inf X = {X } inf = sup X = F0 . 1.2.17 1.3.8 F1 F2 F1 , F2 X . F := {A1 A2 : A1 F1 , A2 F2 }. , F F0 F F1 , F F2 . F = F1 F2 , F . F = F . , (B1 , B2 F B1 B2 F ). , C A1 A2 , A1 F1 A2 F2 , C = {A1 A2 } C = (A1 C ) (A2 C ). A1 C F1 , A2 C F2 , : C F . 1.3.4 .
1.1. , - - . 1.2. [0, 1] [0, 1]? [0, 2]? 1.3. : , , RM â RN M , N . 1.4. R, S, T : (R S )
-1

=R

-1

S

-1

;

(R S )

-1

=R

-1

S

-1

;

(R S ) T = (R T ) (S T ); (R S ) T (R T ) (S T );

R (S T ) = (R S ) (R T ); R (S T ) ( R S ) ( R T ) .

1.5. X X â X . , X =

.

1.6. XA = B AX = B X , . 1.7. . 1.8. ? ?




11

1.9. ( ). 1.10. - ? . ? 1.11. F , X . , F : F IX . F () , , . . 1.12. X, Y M (X, Y ) X Y (?). , (1) (M (X, Y ) ) (Y ); (2) (M (X, Y ) ) (Y ). 1.13. , X, Y , Z : (1) M (X, Y â Z ) M (X, Y ) â M (Y , Z ); (2) M (X â Y , Z ) M (X, M (Y , Z )). 1.14. ? 1.15. ? 1.16. f X Y . , Y f X . 1.17. , , , . 1.18. , . 1.19. A N, . x, y s := RN x A y := ( A A ) x|A = y |A . R := RN /A . t R t , t(n) := t (n N). , R \ {t : t R} = . R . R R?


2

2.1. 2.1.1. . , , . X A (X, +) A X , · : A â X X . . : X A (X, A, +, ·) . 2.1.2. . R C . F. , R ( ) C. 2.1.3. . F . X F ( F). F , X . R , C . : (X, F, +, ·), (X, R, +, ·) (X, C, +, ·). , , ´ , X . 2.1.4. . (1) F F. (2) (X, F, +, ·) . -


2.1.

13

(X, F, +, · ), · : (, x) x s F x X , . X X . F := R X X . (3) (X0 , F, +, ·) (X, F, +, ·), X0 X X0 F â X0 X . X0 X . , , X0 X . , X X 0. X , , , . (4) (X ) F. , , X := X , . . x : X , x := x( ) X ( , = ). X : (x1 + x2 )( ) := x1 ( ) + x2 ( ) (x1 , x2 X , ); ( · x)( ) := · x( ) (x X , F, ) (, , · x : x x). X F (X ) . := {1, 2, . . . , N } X1 â X2 â . . . â XN := X . , X = X , X := X . := {1, 2, . . . , N }, X N := X . (5) (X ) F. X0 := X , . . X := X , x0 , ( , x0 ) 0 , x0 ( \ 0 ) 0. ,


14

. 2.

X0 X . (X ) (X ) . (6) (X, F, +, ·) (X0 , F, +, ·) X . X0 := {(x1 , x2 ) X 2 : x1 - x2 X0 }. X0 X . X := X/ X0 : X X . X x1 + x2 := (
-1

(x1 ) +
-1

-1

(x2 )) (x1 , x2 X );

x := (

(x)) (x X , F). F

, , S1 , S2 X , F , S1 + S2 := +{S1 â S2 }; S1 := · ( â S1 ); S1 := {}S1 .

X F. - X X0 X/X0 . 2.1.5. X Lat(X ) X . Lat(X ) . , inf Lat(X ) = 0 sup Lat(X ) = X . , . 1.2.17, . 2.1.6. . X1 , X2 Lat(X ) X1 X2 = X1 + X2 . , E Lat(X ) inf E = {X0 : X0 E }. E , sup E = {X0 : X0 E }.


2.2.

15

2.1.7. . X1 X2 X X () ( : X = X1 X2 ), X1 X2 = 0 X1 X2 = X . X2 () X1 , X1 () X2 . 2.1.8. . X1 X . E := {X0 Lat(X ) : X0 X1 = 0}. , 0 E E0 E , 2.1.6, X1 sup E0 = 0, . . sup E0 E . , E , 1.2.20 E X2 . x X \ (X1 + X2 ), (X2 + {x : F}) X1 = 0. , F x1 X1 , x2 x2 + x = x1 , x X1 + X2 , , x1 = x2 = 0, X1 X2 = 0. , X2 + {x : X2 . , x x = 0. X1 X2 = X1 + X2 = 2.2. 2.2.1. . X , Y F. T X â Y , T X â Y . T : X Y , , ( , ). T S X â Y dom S = X , : T ( X Y ) S X Y , S . 2.2.2. T : X Y , T (1 x1 + 2 x2 ) = 1 T x1 + 2 T x2 (1 , 2 F; x1 , x2 X ). = = X X 0. 0. .
2

F} = X 2


16

. 2.

2.2.3. L (X, Y ) X Y Y X. 2.2.4. . L (X, F) X , X # := L (X, F) () . X X . F, , . . , F = R - , , . 2.2.5. . T L (X, Y ) () , T -1 L (Y , X ). 2.2.6. . X Y () X Y , X Y . 2.2.7. X Y , T L (X, Y ) S L (Y , X ) , S T = IX T S = IY . S = T -1 T = S -1 . 2.2.8. . X, Y , Z , T L (X, Y ) S L (Y , Z ). , S T L (X, Z ). S T S T . , (S, T ) S T , , : L (Y , Z ) â L (X, Y ) L (X, Z ). , E L (Y , Z ), T L (X, Y ), E T := (E â {T }). 2.2.9. . (1) T , T -1 . (2) X1 X X2 , X2 X/X1 . , : X X/X1 ,


2.2.

17

X2 , . . x2 (x2 ), x2 X2 , . (3) X := X (X ) . Pr : X X , Pr x := x , (= ). , Pr : Pr L (X , X ). , L (X ) := L (X , X ), X X , X := X , X := 0 = X := X . (4) X := X1 X2 . +-1 X X1 â X2 , PX1 := PX1 ||X2 := Pr1 (+-1 ), PX2 := PX2 ||X1 := Pr2 (+-1 ), X X . PX1 X X1 X2 , PX2 PX1 . , PX1 PX2 , PX2 X X2 X1 . , 2 PX1 + PX2 = IX . , PX1 := PX1 PX1 = PX1 , . . . , P L (X ) P (X ) P -1 (0). T L (X ), PX1 T PX1 = T PX1 , T (X1 ) X1 , . . X1 T . T PX1 = PX1 T , X1 , X2 T . , X = X1 X2 T . T X1 T1 L (X1 ). T1 T X1 . T2 L (X2 ) T X2 , T T T1 0 0 T2 .

, x X1 X2 - x1 X1 , x2 X2 , x1 = PrX1 x, x2 = PrX2 x. , x, . . - T1 x1 , T2 x2 (,


18

. 2.

, T x1 , T x2 ), T x. , T X1 â X2 X1 â X2 , x1 x2 T1 0 0 T2 x1 x2 .

T L (X1 X2 , Y1 Y2 ). (5) E X , eE e e = 0, e F (e E ), , e = 0 e E . E , E . X ( ) X . . X , X . X dim X . X (F) , dim X . X1 X , X/X1 X1 codim X1 . X = X1 X2 , codim X1 = dim X2 dim X = dim X1 + codim X1 . 2.3. 2.3.1. . T L (X, Y ) : ker T := T -1 (0) , coker T := Y / im T , coim T := X/ ker T T . T , ker T = 0. T , im T = Y . 2.3.2. , .


2.3.

19

2.3.3. . . , . , 1 -Y X @ 2 4 3@ R @? V - W 5 , 1 L (X, Y ), 2 L (Y , W ), 3 L (X, W ), 4 L (V , Y ) 5 L (V , W ), 2 1 = 3 5 = 2 4 . 2.3.4. . X Y Z ( Y ) , ker S = im T . . . . Xk-1 Xk Xk+1 . . . Xk , Xk-1 Xk Xk+1 ( ). , ( , , , ). 2.3.5. . (1) X Y Z , . . S T = 0. . (2) 0 X Y , T . ( 0 X , , L (0, X ) (. 2.1.4 (3)).) (3) X Y 0 , T . (, Y 0 L (Y , 0).) (4) T L (X, Y ) T , 0 X Y 0 .
T T T S T S


20

. 2.

(5) X0 X . : X0 X () : x0 := x0 x0 X0 . X/X0 - : X X/X0 . 0 X0 X X/X0 0 . ( , , .) . , , , 0XY Z0 , . Y0 := im T , , , , : 0 -X ? - Y0 T -Y -Z ? ? -Y - Y / Y0 S -0
T S

0

-0

, , - . (6) T L (X, Y ) . 0 ker T X Y coker T 0, T . 2.3.6. . T T ( T T0 ), X
0 0 T

-X @ T T0@ ? R @ Y

. . T0 = T , : X0 X

.


2.3.

21

2.3.7. X, Y X0 X . T0 L (X0 , Y ) T L (X, Y ). T := T0 PX0 , PX0 X0 . 2.3.8. XA = B . X, Y , Z ; A L (X, Y ), B L (X, Z ). X A -Y @ X B@ ? R @ Z X L (Y , Z ) , ker A ker B . : , B = X A ker A ker B , . : X := B A-1 . , x X X A(x) = B (A-1 A)x = B (x + ker A) = B x. , X0 := X |im A . X . y im A z1 , z2 X (y ). z1 = B x1 , z2 = B x2 , Ax1 = Ax2 = y . B (x1 - x2 ) = 0. , z1 = z2 . 2.3.7, - X X0 Y . 2.3.9. . 2.3.8 A , X .

2.3.10. . 2.3.8 2.3.9. 2.3.11. T () , T , . . :


22 coim T 6 X T .

. 2. Tim T T ? -Y

2.3.12. X f0 , f1 , . . . , fN X # . f0 f1 , . . . , fN , ker f0 N ker fj . j =1 (f1 , . . . , fN ) : X F
N

,

(f1 , . . . , fN )x := (f1 (x), . . . , fN (x)). , ker(f1 , . . . , fN ) = N ker fj . 2.3.8 j =1 X
(f1 ,...,fN )

-F @ @ f0@

N

@ R @? F F
N#

, .

2.3.13. AX = B . X, Y , Z ; A L (Y , X ), B L (Z, X ). A X Y

6 I @ @ X B@ Z X L (Z, Y ) , im A im B .


2.3.

23

: im B = B (Z ) = A(X (Z )) A(Y ) = im A. : Y0 ker A Y A0 := A|Y0 . A0 Y0 im A. X := A-1 B , , . 0 2.3.14. . 2.3.13 A , X . -

2.3.15. . 2.3.8 2.3.13 . , . 2.3.16. . S L (Y , Z ) T L (X, Y ). , , 1 , . . . , 6 , :

()
1 2 3 0 ker T - ker S T - ker S - 3 4 5 - coker T - coker S T - coker S 0













.


24

. 2.

2.1. , . ? 2.2. Z2 . 2.3. . 2.4. f : R R f (x + y ) = f (x) + f (y ) (x, y R). f ? 2.5. , , , . 2.6. X X0 X00 . , X/X00 (X/X0 )/(X00 /X0 ) . 2.7. : x
##

:x

#

x|x

#

(x X , x

#

X # ).

, X X ## . 2.8. , , . .
##

(X ) = X

##

dim X < +.

2.9. ? 2.10. ? 2.11. T , T n-1 = 0 T n = 0 - n. , T 0 , T , . . . , T n-1 . 2.12. , . 2.13. XA = B AX = B ( X ). 2.14. ? 2.15. , .




25

2.16. (xe )eE (x# )eE , : e xe | x xe | x
# e # e

=1

(e E );

=0

(e, e E, e = e ).

2.17. (x# )eE e (xe )eE , : xe | x xe | x
# e # e

=1

(e E );

=0

(e, e E, e = e ).

2.18. . 2.19. W - X - Y - Z W - X - Y - Z , , ker = T (ker ) T -1 (im ) = im . . ,
T T


3

3.1. 3.1.1. . F 2 , U . U ( U ( )), (1 , 2 ) 3.1.2. . (1) (). ( , () .) (2) := F 2 - . (3) := R2 , - X X. (4) := R2 , - + . , K , K + K K K K R+ . R2 \ 0- () + , R+ â 0- . ( R+ := {t R : t 0}.) (5) := {(1 , 2 ) F 2 : 1 + 2 = 1}. - . X0 1 U + 2 U U.


3.1.

27

X x X , x + X0 := {x} + X0 X . , L X x L, L - x := L + {-x} X . (6) := {(1 , 2 ) F 2 : |1 | + |2 | 1}. - . (7) := {(, 0) F 2 : || 1}. - ( F := R ; , ). (8) := {(1 , 2 ) R2 : 1 0, 2 0, 1 + 2 = 1}. - . (9) := {(1 , 2 ) R2 : 1 + 2 1}, + - . , . (10) F 2 X F X ( ). , 3.1.2 (1)­3.1.2 (9) -. 3.1.3. X E - X . im E } ( ). , , im E ( ), {U : U im {U : U E } ( ).

3.1.4. . 3.1.3, , , - , , . Y 3.1.5. X Y , U X V -. U â V ( ).

U V , U â V = . u1 , u2 U v1 , v2 V , (1 , 2 ) . 1 u1 + 2 u2 U , 1 v2 + 2 v1 V . , (1 u1 + 2 u2 , 1 v1 + 2 v2 ) U â V . 3.1.6. . X , Y T XâY . F 2 . T ( ), T -.


28

. 3.

3.1.7. . - ( ) , . , . . : , (. 3.4.2). 3.1.8. T X â Y 1 -, U X 2 -. 2 1 , T (U ) ( 2 ). y1 , y2 T (U ), x1 , x2 U (x1 , y1 ) T (x2 , y2 ) T . (1 , 2 ) 2 (1 , 2 ) 1 , , 1 (x1 , y1 ) + 2 (x2 , y2 ) T . , 1 y1 + 2 y2 T (U ). 3.1.9. - -. F X â V G W â Y F, G ( ). (x1 , y1 ) G F ( v1 ) (x2 , y2 ) G F ( v2 ) (x1 , v1 ) F & (v1 , y1 ) G; (x2 , v2 ) F & (v2 , y2 ) G.

1 , 2 , (1 , 2 ) , , . 3.1.10. U , V X U , V ( ) , F U + V ( ). 3.1.5, 3.1.8 3.1.9. F 2,

3.1.11. . X , F 2 U X . H (U ) := {V X : V ( ), V U } - U . 3.1.12. : (1) H (U ) ( ); (2) H (U ) -, U ; (3) U1 U2 H (U1 ) H (U2 ); (4) U ( ) U = H (U ); (5) H (H (U )) = H (U ).


3.2. 3.1.13. : H (U ) = {H (U0 ) : U0 U, U
0

29

}.

V , . U0 U , , 3.1.12 (3), H (U0 ) H (U ), H (U ) V . 3.1.12 (2) (, , ) , V ( ). 3.1.3 , H (U0 ) H (U1 ) H (U0 U1 ). 3.1.14. . , - - . , ( ) -. , := {(1 , 2 ) R2 : 1 + 2 = 1} + H (U ) co(U ). HF 2 (U ) L (U ) lin(U ), U = , , L () := 0. L (U ) U ( L (X ) X ). , . . , , . .
N

co({x1 , . . . , xN }) =
k=1

k xk : k 0, 1 + . . . +

N

=1 .

3.2. 3.2.1. . (X, R, +, · ) . , , X . , , X 2 . X . ( (X, R, +, ·, ), , .) 3.2.2. X . (0) . (x) = x + (0) x X .


30

. 3.

(0) 3.1.3. , (x, y ) = (x, x) + (0, y - x) (x, y ) y - x (0). 3.2.3. K X .

:= {(x, y ) X 2 : y - x K }. , , K (0). , , K (-K ) = 0. , 0 K IX K + K K . -1 = {(x, y ) X 2 : x - y K }. , -1 IX K (-K ) = 0. , . (x1 , y1 ), (x2 , y2 ) 1 , 2 R+ . 1 y1 + 2 y2 - (1 x1 + 2 x2 ) = 1 (y1 - x1 ) + 2 (y2 - x2 ) 1 K + 2 K K. 3.2.4. . K , K (-K ) = 0. 3.2.5. . 3.2.2 3.2.3 . . () X (X, X+ ), X+ . 3.2.6. . (1) R R+ := (R+ ) , . (2) X X+ . X0 X , , X0 X , X0 X+ . X0 . (3) X Y () . T L (X, Y ) ( T 0), T (X+ ) Y+ . L+ (X, Y ).


3.2.

31

L+ (X, Y ) Lr (X, Y ). Lr (X, Y ) . 3.2.7. . , . 3.2.8. . , , K -, . 3.2.9. K - . x U . -x -U . , 3.2.8 sup(-U ). -x sup(-U ). , - sup(-U ) = inf U . 3.2.10. K - U V sup(U + V ) = sup U + sup V . , U V , . . , sup(U + V ) = sup{sup(u + V ) : u U } = = sup{u + sup V : u U } = sup V + sup{u : u U } = = sup V + sup U. 3.2.11. . 3.2.10 , . : sup U = sup U R+ . 3.2.12. . x x+ := x 0 x, x- := (-x)+ , |x| := x (-x) x.


32

. 3.

3.2.13. x y x + y = x y + x y. x + y - x y = x + y + (-x) (-y ) = y x 3.2.14. x = x+ - x- ; |x| = x+ + x- . 3.2.13 y := 0. , |x| = x (-x) = -x + (2x) 0 = -x + 2x+ = (x+ - x- ) + 2x+ = x+ + x- . 3.2.15. . x, y X [0, x + y ] = [0, x] + [0, y ]. ( , [u, v ] := (u) -1 (v ) () .) [0, x] + [0, y ] [0, x + y ] . 0 z x + y , z1 := z x. , z1 [0, x]. z2 := z - z1 . z2 0. z2 = z - z x = z + (-z ) (-x) = 0 (z - x) 0 (x + y - x) = 0 y = y . 3.2.16. . X , Y K -. Lr (X, Y ) L+ (X, Y ) K -. 3.3. 3.3.1. . (1) X B ([0, 1], R) [0, 1], X0 := C ([0, 1], R) X , . Y := X0 X0 , X Y (. 3.2.6 (1) 3.2.6 (2)). T0 : X0 Y T L+ (X, Y ). T , E X0 supX0 E , X0 . , supX0 E = T supX E , supX E E X . , Y K -.


3.3.

33

(2) s := RN , . , , c s, . , f0 : c R, f0 (x) := lim x(n), s. , f s# , f 0 f f0 . x0 (n) := n xk (n) := k n k , n N. , f0 (xk ) = k . , f (x0 ) f (xk ) 0, x0 xk 0. . 3.3.2. . X0 X X+ ( X ), X0 + X+ = X . 3.3.3. X0 X , x X x0 , x0 X0 , x0 x x0 . 3.3.4. . X , X0 X Y K -. T0 L+ (X0 , Y ) T L+ (X, Y ). I. X := X0 X1 , X1 , X1 := {x : R}. X0 T0 , U := {T0 x0 : x0 X0 , x0 x} , , y := inf U . T x := {T0 x0 + y : x = x0 + x, x0 X0 , R}. , T , T T0 dom T = X . T . x = x0 + x x 0, = 0 . > 0, x -x0 /. , -T0 x0 / y , . . T x Y+ . < 0 x -x0 /. , y -T0 x0 / T x = T0 x0 + y Y+ . II. E S X â Y , S T0 S (X+ ) Y+ . 3.1.3 E , E T .


34

. 3.

x X \ dom T , I X := dom T X1 , X0 := dom T , T0 := T X1 := {x : R}. T . , T . 3.3.5. . Y := R 3.3.4 . 3.3.6. . x , [0, x] = [0, 1]x. 3.3.7. (X, X+ ) , X = X+ - X+ . f T+ T |X T X := X+ - X+ . X # . , ker f X f = 0. f [0, T ], . . [0, 1] T + f = T . = 0, 2T [0, T ]. T = 0 f = 0. T (x0 ) = 0 - x0 X , = 1 f = 0. ­ X , X X T0 T X , -

3.3.8. . X0 . T0 .

3.3.4. I. T . , T [0, T ] [0, 1] x0 X0 T (x0 ) = T (x0 ) (T - T )(x0 ) = (1 - )T (x0 ). : T (x) inf {T (x0 ) : x0 x, x0 X0 } = T (x); (T - T )(x) inf {(T - T )(x0 ) : x0 x, x0 X0 } = (1 - )T (x). , T = T [0, T ] [0, 1]T . . , T . II. E , 3.3.4. Ed , S E , S |dom S dom S . Ed . 1.2.19 E0 Ed . S := {S0 :


3.4.

35

S0 E0 }. , S E . S , . S (dom S )# , 0 S (x0 ) S (x0 ) x0 (dom S )+ . S (x0 ) = 0 x0 , S = 0S , . S (x0 ) = 0 x0 (dom S )+ , S0 E0 S0 (x0 ) = S (x0 ). S0 : S (x ) = S (x ) x dom S0 . = S (x0 )/S (x0 ), . . S0 . E0 , : S = S . 3.4. 3.4.1. . R· R· +. (+) := + ( R+ ), + + x := x + (+) := + (x R· ). 3.4.2. . f : X R· . -

epi f := {(x, t) X â R : t f (x)} f , dom f := {x X : f (x) < +} f . 3.4.3. dom f f , . . , : X R· f X â R X R. dom f = X , f : X R, R· .

3.4.4. . X . f : X R· , epi f .


36

. 3.

3.4.5. f : X R· , , . . f (1 x1 + 2 x2 ) 1 f (x1 ) + 2 f (x2 ), 1 , 2 0, 1 + 2 = 1 x1 , x2 X . : 1 , 2 0, 1 + 2 = 1 x1 , x2 dom f , . x1 , x2 dom f . (x1 , f (x1 )) epi f (x2 , f (x2 )) epi f . , 3.1.2 (8), 1 (x1 , f (x1 )) + 2 (x2 , f (x2 )) epi f . : f : X R· (x1 , t1 ) epi f , (x2 , t2 ) epi f , . . t1 f (x1 ) t2 f (x2 ) ( dom f = f (x) = + (x X ) epi f = ). , , 1 , 2 0, 1 + 2 = 1 (1 x1 + 2 x2 , 1 t1 + 2 t2 ) epi f . 3.4.6. . p : X R· , epi p . 3.4.7. dom p = 0 : (1) p ; (2) p , ; . . p(x) = p(x) 0 x dom p; (3) 1 , 2 R+ x1 , x2 X p(1 x1 + 2 x2 ) 1 p(x1 ) + 2 p(x2 ); (4) p , : p(x1 + x2 ) p(x1 ) + p(x2 ) x1 , x2 X . 3.4.8. . (1) , . (2) U X . (U )(x) := 0, x U, +, x U.

(U ) : X R· U . , (U ) . U ,


3.4.

37

(U ) . U , (U ) . (3) ( ) ( , . . (R· )X ) . . (4) (. . ) . . 3.4.9. . X , U V X . , U V , n N, V nU . U ( X ), U X , . . X = nN nU . 3.4.10. T X â Y , im T = Y . U ( X ), T (U ) ( Y ). Y = T (X ) = T (nN nU ) = nN T (nU ) = nN nT (U ) 3.4.11. . U X . x U core U U ( U ), U - x X . 3.4.12. f : X R· x core dom f . h X f (x)(h) := lim
0

f (x + h) - f (x) f (x + h) - f (x) = inf . >0

f (x) : h f (x)h f (x) : X R. () := f (x + h). 3.4.8 (4) : R R· . 0 core dom . (() - (0))/ ( > 0) , . . (0)(1). f (x)(h) = (0)(1).


38

. 3. > 0 h H f (x)( h) = inf = inf f (x + h) - f (x) =

f (x + h) - f (x) = f (x)(h).

, h1 , h2 X f (x)(h1 + h2 ) = 2 lim
0 1 f x + 2 (h1 + h2 ) - f (x) =

= 2 lim
0

f

1 2

1 (x + h1 ) + 2 (x + h2 ) - f (x)

lim
0

f (x + h1 ) - f (x) f (x + h2 ) - f (x) + lim = 0 = f (x)(h1 ) + f (x)(h2 ).

3.4.7 . 3.5.

3.5.1. . X , f : X R· x dom f . x (f ) := {l X # : ( y X ) l(y ) - l(x) f (y ) - f (x)} f x. 3.5.2. . (1) p : X R· . p (p) := 0 (p). (p) = {l X # : ( x X ) l(x) p(x)}; x (p) = {l (p) : l(x) = p(x)}. (2) l X # . (l) = x (l) = {l}. (3) X0 X . ( (X0 )) = {l X
#

: ker l X0 }.


3.5.



39

(4) f : X R· x core dom f .

x (f ) = (f (x)). 3.5.3. . T L (X, Y ) , f : Y R· , x X , T x core dom f . x (f T ) = T x (f ) T . 3.4.10 , x core dom f . 3.5.2 (4), x (f T ) = ((f T ) (x)). , h X (f T ) (x)(h) = lim
0

(f T )(x + h) - (f T )(x) =

= lim
0

f (T x + T h) - f (T x) = f (T x)(T h).

p := f (T x). 3.5.2 (4) , , 3.4.12, p , : (p) = (f (T x)) = T x (f ); (p T ) = ((f T ) (x)) = x (f T ). , (p T ) = (p) T . l (p) T , . . l = l1 T , l1 (p), l1 (y ) p(y ) y Y . , l(x) l1 (T x) p(T x) = p T (x) x X , . . l (p T ). , (p) T (p T ). l (p T ). T x = 0, l(x) p(T x) = p(0) = 0, . . l(x) 0. -x. l(x) = 0. , ker l ker T . , 2.3.8, l = l1 T l1 Y # . Y0 := T (X ) Y0 Y , , l1 (p ). , (p ) (p) ,


40

. 3.

l2 (p) l1 = l2 . l = l1 T = l1 T = l2 T = l2 T , . . l (p) T . , , (p ) (p) . l0 (p ) Y0 := Y0 â R Y := Y â R T0 : (y0 , t) t - l0 (y0 ). Y Y+ := epi p. , -, Y0 (y , t) = (0, t - p(y )) + (y , p(y )) (y Y , t R). -, (y0 , t) Y0 Y+ , 3.4.2, t p(y0 ) , , T0 (y0 , t) = t - l0 (y0 ) 0, . . T0 Y0 . 3.3.4 T Y, T0 . l(y ) := T (-y , 0) y Y . , l = l0 . , T (0, t) = T0 (0, t) = t. , 0 T (y , p(y )) = p(y ) - l(y ), . . l (p). 3.5.4. . 3.5.3 , . , (p ) (p) : , , , . 3.5.5. . X , X0 X p : X R . () : (p + (X0 )) = (p) + ( (X0 )). . l (p + (X0 )). l (p ), X0 X . 3.5.3, l (p) , . . l1 (p) l = l1 . l2 := l - l1 . l2 = (l - l1 ) = l - l1 = 0, . . ker l2 X0 . 3.5.2 (3), , l2 ( (X0 )).


3.6.



41

3.5.6. . f : X R· x core dom f . x (f ) = . p := f (x), : 0 X . , 0 (p ), . . (p ) = . 3.5.3, (p) = ( = (p) = (p )). 3.5.2 (4). 3.5.7. . f , f : X R·
1 2

x core dom f1 core dom f2 . x (f1 + f2 ) = x (f1 ) + x (f2 ). p1 := f1 (x) p2 := f2 (x). x1 , x2 X p(x1 , x2 ) := p1 (x1 ) + p2 (x2 ) (x1 ) := (x1 , x1 ). 3.5.2 (4) 3.5.3, : x (f1 + f2 ) = (p1 + p2 ) = (p ) = = (p) = (p1 ) + (p2 ) = x (f1 ) + x (f2 ). 3.5.8. . 3.5.6 . , . , 3.5.6, , (p T ) = (p) T , . pT (y ) := inf {p(y + T x) - l(x) : x X }, l (p) 3.5.3. , pT l1 (pT ) l = l1 T . , ( ) . 3.6. 3.6.1. . X seg X 2 â X , seg(x1 , x2 ) := {1 x1 + 2 x2 : 1 , 2 > 0, 1 + 2 = 1}.


42

. 3.

, , V X segV seg V 2 . U , V , V , seg-1 (U ) U 2 . V . x V V , {x} V . V ext(V ). 3.6.2. U V , v1 , v2 V , 1 , 2 > 0, 1 + 2 = 1 1 v1 + 2 v2 V , v1 U v2 U . 3.6.3. . (1) p : X R· x X dom p. x (p) (p). , 1 , 2 > 0 1 +2 = 1 , 1 l1 + 2 l2 x (p) l1 , l2 (p), 0 = p(x) - (1 l1 (x) + 2 l2 (x)) = 1 (p(x) - l1 (x)) + 2 (p(x) - l2 (x)) 0. , p(x) - l1 (x) 0 p(x) - l2 (x) 0. , l1 x (p) l2 x (p). (2) U V , , V W . U W . (3) X . x X+ , {x : R+ } X+ . : 0 y x. x = 1/2 (2y ) + 1/2 (2(x - y )). 3.6.2, 2y = x 2(x - y ) = x , R+ . , 2x = ( + )x. x = 0, . x = 0, /2 [0, 1] , , [0, x] [0, 1]x. . : [0, x] = [0, 1]x 0; 1 , 2 > 0, 1 + 2 = 1 y1 , y2 X+ x = 1 y1 + 2 y2 . = 0, 1 y1 [0, x] 2 y2 [0, x] , , y1 y2 . > 0, (1 /)y1 = tx t [0, 1]. , (2 /)y2 = (1 - t)x. (4) U . V U U , U \ V .


3.6. {x}



43

x U , U.

3.6.4. . p:XR l (p). , , X := X â R, X+ := epi p Tl : (x, t) t - l(x) (x X, t R). l (p) , Tl . : T X # , T [0, Tl ]. t1 := T (0, 1), l1 (x) := T (-x, 0); t2 := (Tl - T )(0, 1), l2 (x) := (Tl - T )(-x, 0).

, t1 0, t2 0, t1 + t2 = 1; l1 (t1 p), l2 (t2 p) l1 + l2 = l. t1 = 0, l1 = 0, . . T = 0 T [0, 1]Tl . t2 = 0, t1 = 1, . . T = Tl T [0, 1]Tl . t1 , t2 > 0. 1/t1 l1 (p) 1/t2 l2 (p), l = t1 (1/t1 l1 )+t2 (1/t2 l2 ). l ext( (p)), 3.6.2 l1 = t1 l, . . T = t1 T l . : l = 1 l1 +2 l2 , l1 , l2 (p) 1 , 2 > 0, 1 + 2 = 1. T := 1 Tl1 T := 2 Tl2 , T [0, Tl ], T + T = Tl . , [0, 1], T = Tl . (0, 1), 1 = . , l1 = l. l2 = l. 3.6.5. . p : X R . x X l ext( (p)) , l(x) = p(x). , . . , p : ext( (p)) = . X := X â R X+ := epi p X0 := 0 â R. , X+ X0 = 0 â R+ = epi 0. 3.6.4 X := 0, l := 0 p := 0, , T0 X0 . X0 X (. 3.5.3). 3.3.8, T X # T0 . ,


44

. 3.

T = Tl , l(x) := T (-x, 0) x X . 3.6.4, l ext( (p)). . 3.4.12 l ext(x (p (x))). 3.5.2 (2) 3.5.2 (4) : l ext(x (p)). 3.6.3 (1), x (p) (p). , 3.6.3 (2) l (p). 3.6.6. . p1 , p2 : X R . p1 p2 ( RX ) , (p1 ) ext( (p2 )). , p1 p2 (p1 ) (p2 ). , 3.6.5, p2 (x) = sup{l(x) : l ext( (p2 ))}. 3.7.

3.7.1. . (X, F, +, · ) F. (X, R, +, · |R âX ) (X, F, +, · ) XR . 3.7.2. . X f X# . Re f : x Re f (x) (x X ). Re : (X # )R (XR )# . 3.7.3. Re (X # )R (XR )# . F := C, F := R Re . Re . , Re (. 2.3.2). Re f = 0, 0 = Re f (ix) = Re(if (x)) = = Re(i(Re f (x) + i Im f (x))) = - Im f (x). f = 0 Re .


3.7.



45

g (XR )# , f (x) := g (x) - ig (ix). , f L (XR , CR ) Re f (x) = g (x) x X . , f (ix) = if (x), f X # . f (ix) = g (ix) + ig (x) = i(g (x) - ig (ix)) = if (x) , Re . 3.7.4. . Re . Re
-1 -1

: (XR )# (X # )R -

3.7.5. . 3.7.3 g : x g (x) - ig (ix) (g (XR )# , x X ).
-1

F := R Re .

-

3.7.6. . (X, F, +, · ) F. p : X R· , dom p = x1 , x2 X 1 , 2 F p(1 x1 + 2 x2 ) |1 |p(x1 ) + |2 |p(x2 ). 3.7.7. . ( ). 3.7.8. . p : X R· . | |(p) := {l X
#

: |l(x)| p(x) x X }

p. 3.7.9. . p : X R· | |(p) (p) | |(p) = Re
-1

( (p));

Re (| |(p)) = (p).

F := R | |(p) = (p). , Re . F := C. l | |(p), (Re l)(x) = Re l(x) |l(x)| p(x) x X , . . Re (| |(p)) (p). g (p) f := Re-1 g . f (x) = 0, |f (x)| p(x). f (x) = 0, := |f (x)|/f (x). |f (x)| = f (x) = f (x) = Re f (x) = g (x) p(x) = ||p(x) = p(x), || = 1. , f | |(p).


46

. 3.

3.7.10. X , p : X R X0 X . () | |(p + (X0 )) = | |(p) + | |( (X0 )). 3.7.9 3.5.5, : | |(p + (X0 )) = Re-1 ( (p + (X0 ))) = Re-1 ( (p) + ( (X0 ))) = = Re-1 ( (p)) + Re-1 ( ( (X0 ))) = | |(p) + | |( (X0 )). 3.7.11. X , Y , T L (X, Y ) p : Y R . p T , | |(p T ) = | |(p) T . 2.3.8 3.7.10, | |(p T ) = | |(p + (im T )) T = (| |(p) + | |( (im T ))) T = = | |(p) T + | |( (im T )) T = | |(p) T . 3.7.12. . 3.7.11 . 3.7.13. . X , p : X R X0 X . , , l0 X0 , |l0 (x0 )| p(x0 ) x0 X0 . l X , |l(x)| p(x) x X , , l(x0 ) = l0 (x0 ), x0 X0 . 3.8. 3.8.1. . R (. . R· -). X f : X R , t R {f t} := {x X : f (x) t};




3.8. {f = t} := f
-1

47

(t);

{f < t} := {f t} \ {f = t}. {f t}, {f = t}, {f < t} f . , {f = t} . 3.8.2. . T R t Ut (t T ) X . f : X R , {f < t} Ut {f t} (t T ) , t Ut . : T s t ( ). s < t, Us {f s} {f < t} Ut . : f (x) := inf {t f : X R. {f < t} , {f < t} Ut . s x Us s < t. , {f < t} f f (x) T : x Ut }. t T x {f < t}, f (x) < +, T , Us Ut . , x Ut , t, . . Ut {f t}.

3.8.3. , . f , g : X R (Ut )tT (Vt )tT : {f < t} Ut {f t}; {g < t} Vt {g t} (t T ). , , T R (. . ( r, t R, r < t) ( s T ) (r < X s < t)). f g ( R , . . f (x) g (x) x X ) , t1 , t2 T , t1 < t2 V
t1

Ut2 .


48 : V
t1

. 3.

{g t1 } {f t1 } {f < t2 } Ut2 .

: g (x) = + ( f (x) g (x)). t R , g (x) < t < +, t1 , t2 T g (x) < t1 < t2 < t. x {g < t1 } V
t1

Ut2 {f t2 } {f < t}.

, f (x) < t. - t : f (x) g (x). 3.8.4. . T R t Ut (t T ) . , , f : X R, {f < t} Ut {f t} (t T ). f {f < t} = {Us : s < t, s T }; {f t} = {Ur : t < r, r T } (t R). f 3.8.2 3.8.3. s < t, s T , Us {f s} {f < t}. f (x) < t, T s T , f (x) < s < t. , x {f < s} Us , {f < t}. r > t, r T . {f t} {f < r} Ur . , x Ur r T , r > t, f (x) r r > t, f (x) t. 3.8.5. X S . t R Ut := , t < 0, Ut := tS t 0. t Ut (t R) . 0 t x t2 S .
1

< t2 x t1 S , x (t1 /t2 ) t2 S . ,


3.8. 3.8.6. . pS : X R , {pS < t} tS {pS t} (t R+ )

49

{p < 0} = , S . ( 3.8.2, 3.8.4 3.8.5.) , pS (x) = inf {t > 0 : x tS } (x X ). 3.8.7. . . , , p , {p < 1} {p 1} . p S , {p < 1} S {p 1}. S pS . x X . pS (x) 0 . > 0. pS (x) = inf {t > 0 : x tS } = inf t > 0 : x = inf { > 0 : x S, > 0} = = inf { > 0 : x S } = pS (x). pS x1 , x2 X , , t1 , t2 > 0 t1 S + t2 S (t1 + t2 )S ( t1 x1 + t2 x2 = (t1 + t2 ) pS (x1 + x2 ) = inf {t > 0 : x1 + x2 tS } inf {t : t = t1 + t2 ; t1 , t2 > 0, x1 t1 S, x2 t2 S } = = inf {t1 > 0 : x1 t1 S } + inf {t2 > 0 : x2 t2 S } = pS (x1 ) + pS (x2 ). t2 t1 x1 + x2 t1 + t2 t1 + t 2 , t S =


50

. 3.

p : X R· . {p < 1} S {p 1}. Vt := {p < t}, Ut := tS t R+ Vt := Ut := t < 0. , {pS < t} Ut {pS t}; {p < t} Vt {p t}

t R. 0 t1 < t2 , Vt1 = {p < t1 } = t1 {p < 1} t1 S = Ut1 Ut2 . , Ut1 t1 {p 1} {p t1 } {p < t2 } Vt2 . , 3.8.3 3.8.4, p = pS . 3.8.8. . S X , dom pS = X . , S , pS . p {p < 1} {p 1} . 3.8.9. . H X , X/H . X/H X ( H ). X , - X . XR X X . 3.8.10. X X # . 3.8.11. . X , U X L X . L U = , H X , H L H core U = . , , core U = ( ) , , 0 core U . x L X0 := L - x. - X/X0 : X X/X0 . 3.1.8 3.4.10, , (U ) . , 3.8.7 3.8.8 p := p(U ) , dom p = X/X0 , , (core U ) core (U ) {p < 1} (U ).




51

, , , p((x)) 1 (x) (U ). 3.5.6 f x (p ). 3.5.3, f x (p ) =
(x)

(p) .

H := {f = p (x)}. , H X . , H L, . 3.5.2 (1), : H core U = . f := Re-1 f H := {f = f (x)}. , L H H . , H . 3.8.12. . 3.8.11 , core U L = . , 3.8.11 . 3.8.13. . U , V X H X . , H U V , , H , . . H = {f = t}, f (XR )# t R, V {f t} U {f t} := {-f -t}. 3.8.14. U . U V
3.1. , , . 3.2. , . 3.3. , , . . . . 3.4. . , ?

. U V , V , V .


52
3.5. S1 S2 S = 0 S S1 S2 .

. 3.
1

S1 (1 - )S2 . ,

3.6. , , . 3.7. S := {p + q 1}, p, q Sp Sq . S Sp Sq . 3.8. , RN . 3.9. . 3.10. p, q , , . . , dom p - dom q = dom q - dom p. (. 3.5.7)

(p + q ) = p + q . 3.11. p, q : X R X . (p q ) = co( p q ). 3.12. . 3.13. 2 â 2- , . ? ? 3.14. ? 3.15. R
N

K -?

3.16. ? 3.17. l .


-

3.18. , .

3.19. C X ¨ H (C ) H (C ) = {(x, t) X â R : x tC }. ¨.


4

4.1. 4.1.1. . d : X 2 R+ X , (1) d(x, y ) = 0 x = y ; (2) d(x, y ) = d(y , x) (x, y X ); (3) d(x, y ) d(x, z ) + d(z , y ) (x, y , z X ). (X, d) . d(x, y ) , X .

x y.

4.1.2. d : X 2 R+ , (1) {d 0} = IX ; (2) {d t} = {d t}-1 (t R+ ); (3) {d t1 } {d t2 } {d t1 + t2 } (t1 , t2 R+ ). 4.1.2 (1)­4.1.2 (3) 4.1.1 (1)­ 4.1.1 (3) . 4.1.3. . (X, d) R+ \ 0. B := Bd, := {d }

( ), B := B

d,

:= {d < }


54

. 4.

( ). B (x) x B x.


B (x) x. 4.1.4. , ´ , . 4.1.5. . , (X, d) X 2 , UX , Ud , , , U , , . X := UX := {}. UX (). 4.1.6. U .
-1

(1) U fil {IX }; (2) U U U U; (3) ( U U ) ( V U ) V V U ; (4) {U : U U } = IX . 4.1.7. . 4.1.6 (4), 4.1.1 (1), U . 4.1.8. X UX (x) := {U (x) : U U }. (x) x X . (1) (x) fil {x}; (2) ( U (x)) ( V (x) & V U ) ( y V ) V (y ).

4.1.9. . : x (x) , (x) x. : X , (U ) . .


4.1.

55

4.1.10. . . . , X . , 4.1.6 (4), X . 4.1.11. . G X , (: G Op( ) (( x G) G (x))). F X , (: F Cl( ) (X \ F Op( ))). 4.1.12. . . 4.1.13. . U X int U := U := {G Op(X ) : G U }; cl U := U := {F Cl(X ) : F U }. int U U , U . cl U U , U . X \ U U , U . X , , U , U . U U fr U U . 4.1.14. U x , x U . 4.1.15. . 4.1.14 Op(X ) X , , X Op(X ). , , Cl(X ) X . 4.1.16. . B X . , B x X x B ( : B x), fil B x, . . fil B (x).



56

. 4.

4.1.17. . (x ) () X . , x (: x x), x . . , x = lim x x (x ), . 4.1.18. . , , . . 4.1.19. U x : (1) x U ; (2) F , F x U F ; (3) (x ) U , x. (1) (2): x U , (x) fil {U } F := (x) fil {U }. (2) (3): F x U F . F , . xV V U V F . , xV x. (3) (1): V , (x ) V x x. , x V . , x X \ V x X \ V . 4.1.20. . 4.1.19 (2) , F , 4.1.19 (3) := N. : . 4.2. 4.2.1. f : X Y X , Y . : X Y -


4.2. (1) (2) (3) (4) (5)

57

G Op(Y ) f -1 (G) Op(X ); F Cl(Y ) f -1 (F ) Cl(X ); f (X (x)) Y (f (x)) x X ; (x X, F x) (f (F ) f (x)) F ; f (x ) f (x), x (x ). (1) (2) 4.1.11. , (1) (3) (4) (5) (2). (1) (3): V Y (f (x)), W := int V Op(Y ) f (x) W . f -1 (W ) Op(X ) x f -1 (W ). , f -1 (W ) X (x) (. 4.1.14). , f -1 (V ) f -1 (W ) , , f -1 (V ) X (x). , V f (f -1 (V )). (3) (4): F x, fil F X (x) 4.1.16. , f (F ) f (X (x)) Y (f (x)). 4.1.16 f (F ) f (x). (4) (5): (x ) f (f (x )) . (5) (2): F Y . F = , f -1 (F ) , . F x f -1 (F ). (x ) f -1 (F ), x ( 4.1.18). f (x ) F f (x ) f (x). 4.1.18, , f (x) F , , x f -1 (F ). 4.2.2. . f : X Y , ( , ) 4.2.1 (1)­4.2.1 (5), ( ) . 4.2.1 (5) x X , , f x. , f X , f X . 4.2.3. . 4.2.1 (5). 4.2.4. f : X Y UX , UY X Y . : (1) ( V UY ) ( U UX ) ( x, y )(x, y ) U (f (x), f (y )) V ;


58

. 4. f UX ; f â : X 2 Y (x), f (y )); ) UX , . . f â-1 (UY ) UX . 1.1.10 U X 2 V Y 2

(2) ( V UY ) f -1 V (3) f â (UX ) UY , f â : (x, y ) (f (4) ( V UY ) f â-1 (V , f
-1

V f =
(v1 ,v2 )V

f

-1

(v1 ) â f

-1

(v2 ) =
â-1

= {(x, y ) X 2 : (f (x), f (y )) V } = f f U f
-1

(V );

=
(u1 ,u2 )U

f (u1 ) â f (u2 ) =

= {(f (u1 ), f (u2 )) : (u1 , u2 ) U } = f â (U ). 4.2.5. . f : X Y , ( , ) 4.2.4 (1)­4.2.4 (4), ( ) . 4.2.6. . f : X Y , g : Y Z h := g f : X Z . , hâ (x, y ) = (h(x), h(y )) = (g (f (x)), g (f (y ))) = = g â (f (x), f (y )) = g â f â (x, y ) x, y X . , hâ (UX ) = g â (f â (UX )) g â (UY ) UZ 4.2.4 (3). 4.2.4 (3), , h . 4.2.7. . 4.2.8. . E X Y UX , UY . E ( ) , ( V UY )
f E

f

-1

V f UX .


4.3.

59

4.2.9. . . 4.3. 4.3.1. (X1 , d1 ) (X2 , d2 ) . , , X := X1 â X2 . x := (x1 , x2 ) y := (y1 , y2 ) d(x, y ) := d1 (x1 , y1 ) + d2 (x2 , y2 ). d X . x := (x1 , x2 ) X X (x) = fil{U1 â U2 : U1
X1

(x1 ), U2

X2

(x2 )}.

4.3.2. . X X1 X2 X1 X2 X1 â X2 . 4.3.3. . f : X R· , epi f X R.

4.3.4. . (1) f : X R . (2) f : X R· , f (x) := sup{f (x) : } (x X ) , epi f = epi f . 4.3.5. f : X R· , x X f (x) = lim inf f (y ).
y x

, ,
y x

lim inf f (y ) := lim f (y ) := sup inf f (U )
y x U (x)


60

. 4.

f x ( (x)). : x dom f , (x, t) epi f t R. , Ut x, inf f (Ut ) > t. : limyx inf f (y ) = + = f (x). x dom f , inf f (V ) > - V x. > 0 U (x), V , xU U inf f (U ) f (xU ) - . xU dom f , , xU x ( x). tU := inf f (U ) + . , tU t := limyx inf f (y ) + . (xU , tU ) epi f , (x, t) epi f f .
y x

lim inf f (y ) + f (x) lim inf f (y ).
y x

: (x, t) epi f , t < lim inf f (y ) = sup inf f (U ).
y x U (x)

, inf f (U ) > t U x. , (X â R) \ epi f . 4.3.6. . , 4.3.5, . 4.3.7. f : X R , f -f . 4.3.8. f : X R· , t R {f t}. : x {f t}, t < f (x). 4.3.5 U x t < inf f (U ). , X \ {f t} . : - x X t R limyx inf f (y ) t < f (x). > 0 t + < f (x) , 4.3.5, U (x) xU U {f inf f (U ) + }. , xU {f t + } xU x. .


4.4. 4.4.

61

4.4.1. . C X . C , E Op(X ) , C {G : G E }, E0 E , C {G : G E0 }. 4.4.2. . 4.4.1 : , . 4.4.3. . . 4.4.4. . 4.4.3 , . . , . 4.4.5. . . . 4.4.6. (. . ). , f : X R· X . t0 := inf f (X ). t0 = +, . t0 < +, T := {t R : t > t0 }. Ut := {f t} t T . , {Ut : t T } ( x : f (x) = inf f (X )). . {Gt := X \ Ut : t T } X . {Gt : t T0 }, : {Ut : t T0 } = . , Ut1 Ut2 = Ut1 t2 t1 , t2 T . 4.4.7. . , (. 9.4.4).


62

. 4. 4.4.8. . .

4.4.9. . . 4.5. 4.5.1. B X . {B 2 : B B } â 2 B X . (B1 â B1 ) (B2 â B2 ) (B1 B2 ) â (B1 B2 ) 4.5.2. . F X UX X . F , F â UX . X , . . 4.5.3. . V X 2 , U X , , U V , U 2 V . , U B , diam U := sup(U 2 ) . : , . 4.5.4. : (1) ; (2) ; (3) . (1) (2) (3) , (3) (1). Un F , B1/n . Vn := U1 . . . Un xn Vn . , V1 V2 . . . diam Vn 1/n. , (xn ) . , : x := lim xn . , F x. n0 N : d(xm , x) 1/2n m n0 . n N d(xp , y ) diam Vp 1/2n


4.5.

63

d(xp , x) 1/2n, p := n0 2n y Vp . , y Vp d(x, y ) 1/n, . . Vp B1/n (x). : F (x). 4.5.5. . , ( ) 4.5.4 (1)­4.5.4 (3), ( ) . 4.5.6. . , , , . : B , , 1.3.1, B . B , . . : B x. x . : F . B := {cl V : V F }. B . , x , x cl V V F . , F x. , V F /2 y V . y V d(x, y ) /2 , , d(x, y ) d(x, y ) + d(y , y ) , . ., , V B (x) , , B (x) F . 4.5.7. , B1 (x1 ) . . . Bn (xn ) Bn+1 (xn+1 ) . . . , (n ) , . 4.5.8. . f X UX Y UY . , , F X . V UY , f -1 V f UX 4.2.5 (. 4.2.4 (2)). F , U F U 2 f -1 V f . , f (U ) V . , f (U )2 =
(u1 ,u2 )U
2

f (u1 ) â f (u2 ) =
-1

= f U2 f

-1

f (f

-1

V f) f
-1

= (f f

-1

) V (f f

-1

) V,

, 1.1.6, f f

= Iim f IY .


64

. 4. 4.5.9. 4.5.8 4.5.4. .

4.5.10. X0 X (. . cl X0 = X ) f0 : X0 Y X0 Y . , , f : X Y , f0 , . . , f |X0 = f0 . x X Fx := {U X0 : U X (x)} X0 . , 4.5.8 , f0 (FX ) Y . Y y Y , . . f0 (Fx ) y . , (. 4.1.18). f (x) := y . f . 4.5.11. . f : (X, d) (X , d ) X X ( ), d = d f â . f X X (, ), f X X , , im f = X . 4.5.12. . (X, d) . (X , d ) : (X, d) (X , d ) (X , d ). (X , d ) , (X, d) - (X , d ) @ 1@ R @ ? (X1 , d1 ) 1 : (X, d) (X1 , d1 ) X (X1 , d1 ), : (X , d ) (X1 , d1 ) X X1 . 4.5.10. , 0 := 1 -1 . 0 (X ) X 1 (X ) X1 .


4.6.

65

0 X . , X1 . x1 X1 . (1 (xn )), xn X . , (xn ) . , ((xn )) X . x := lim (xn ), x X . (x) = lim 0 ((xn )) = lim 1 -1 ((xn )) = lim 1 (xn ) = x1 . X . X X . X : x1 x2 d(x1 (n), x2 (n)) 0. X := X / d((x1 ), (x2 )) := lim d(x1 (n), x2 (n)), : X X . : (X, d) (X , d ) : (x) := (n x (n N)). 4.5.13. . (X , d ), 4.5.12, ´ , (X, d). 4.5.14. . X0 (X, d) 2 , (X0 , d|X0 ) (X, d). 4.5.15. . . 4.5.16. X0 X . X0 X0 X . X := cl X0 : X0 X . , . X 4.5.15. 4.5.12. 4.6. 4.6.1. . 4.6.2. . U X V UX . E X V - U , U V (E ). 4.6.3. . , V UX V -.


66

. 4.

4.6.4. V UX U X V -, U . V UX W UX , W W V . W - F U , . . U W (F ). F , W - E F , . . F W (E ). U W (F ) W (W (E )) = W W (E ) V (E ), . . E V - U . U , U1 , . . . , Un U1 , . . . X V UX U , U = U1 . . . Un , Un V .

4.6.5.

4.6.6. . , 4.6.5, : , . 4.6.7. . , . 4.6.8. C (X, F) X F ¨ d(f , g ) := sup dF (f (x), g (x)) = sup |f (x) - g (x)| (f , g C (X, F)).
xX xX

UF U := (f , g ) C (X, F)2 : g f Ud = fil {U : UF }. 4.6.9. C (X, F) . 4.6.10. . E C (X, F) , E {g (X ) : g E } F.
-1

.


4.6.

67

: , {g (X ) : g E } , . E UF . U - E E . U UX , U := f -1 f
f E

(. 4.2.9). g E f E , g f =
-1

-1

,

(g f

-1 -1

)

= (f

-1 -1

)

g

-1

=f g

-1

.

, 4.6.8 g â (U ) = g U g -1 g (f -1 f ) g -1 (g f
-1

) (f g

-1

) .

g , E . : 4.5.15, 4.6.7, 4.6.8 4.6.9 UF U - E . UF , , U UX , U
g E

g

-1

g

( U E ). , {U (x) : x X } X . X , {U (x0 ) : x0 X0 }. , 1.1.10 IX
x0 X0 -1

U (x0 ) â U (x0 ) =

=
(x0 ,x0 )I
X0

U

(x0 ) â U (x0 ) = U IX0 U.


68

. 4.

{g |X0 : g E } FX0 . , -. , E E , , g E f E g IX0 f
-1

.

, gf
-1

= g IX f
-1

-1

g (U IX0 U ) f
-1

-1



g (g = (g g

g ) IX0 (f

f) f

-1 -1

= )=

-1

) (g IX0 f

-1

) (f f

= Iim g (g IX0 f

-1

) Iim f

. , 4.6.8, E U - E .

4.6.11. . - . : , U , /3 , U . ( ) , . 4.7. 4.7.1. . U , , . . int cl U = . U ( ), U ( ) , . . U nN Un , int cl Un = . , . . , , . 4.7.2. . , .


4.7.

69

4.7.3. : (1) X ; (2) ; (3) (. . X ) ; (4) . (1) (2): U := nN Un , Un = cl Un , int Un = . U . int U U int U , int U , , X . (2) (3): U := nN Gn , Gn cl Gn = X . X \U = X \nN Gn = nN (X \Gn ). X \Gn int(X \ Gn ) = ( cl Gn = X ). , int(X \ U ) = . , U , . . U . (3) (4): U X , . . U nN Un int cl Un = . , Un = cl Un . Gn := X \ Un . nN Gn = X \ nN Un . X \ U , , X \ U . (4) (1): U X , X \ U . , U . 4.7.4. . 4.7.3 (4) , () . . 4.7.5. . X (f : X R) , sup{f (x) : } < + x X . G X G0 , (f ) , . . supxG0 sup {f (x) : } +. 4.7.6. . . G x0 G. , G , . . G nN Un , int Un = Un = cl Un .


70

. 4.

0 > 0 B0 (x0 ) G. , U1 B0 /2 (x0 ), . . x1 B0 /2 (x0 ) \ U1 . U1 1 , 0 < 1 0 /2 B1 (x1 ) U1 = . , B1 (x1 ) B0 (x0 ). , d(x1 , y1 ) 1 , d(y1 , x0 ) d(y1 , x1 ) + d(x1 , x0 ) 1 + 0 /2, d(x1 , x0 ) 0 /2. B1 /2 (x1 ) U2 . x2 B1 /2 (x1 ) \ U2 0 < 2 1 /2 , B2 (x2 ) U2 = . , B2 (x2 ) B1 (x1 ). , B0 (x0 ) B1 (x1 ) B2 (x2 ) . . . , n+1 n /2 Bn (xn ) Un = . 4.5.6 x := lim xn . , , x = nN Un , , x G. , x B0 (x0 ) G. . 4.7.7. . . . f : [0, 1] R x [0, 1) D+ f (x) := lim inf
h0

f (x + h) - f (x) ; h f (x + h) - f (x) . h

D+ f (x) := lim sup
h0

D+ f (x) D+ f (x) R f x. D f C ([0, 1], R), x [0, 1) D+ f (x) D+ f (x) R, . . . D . , , (0, 1), C ([0, 1], R). . :



n=0

4n x 4n


4.8. ( x := (x - [x]) (1 + [x] - x) x ),

71



+


n=0

1 sin (n2 x) n2

, ,



n=0

bn cos (an x)
3 2

( a

, 0 < b < 1 ab > 1 +

).

4.8. 4.8.1. . , , , , R2 . , .

4.8.2. . (= ) ( ) . () . . . 4.8.3. . R2 . G1 G2 , G1 G2 = R2 \ ; = G 1 = G 2 . 4.8.4. . G1 G2 , 4.8.3, . , , . . . : .


72

. 4.

4.8.5. . D, D1 , . . . , Dn (= ) , Dm Dk = m = k D1 , . . . , Dn int D.
n

D\
k=1

int Dk

. , (= ) , . . 4.8.6. . F F . F () R2 F () () F . , 4.8.3 , , . 4.8.7. K G , K . F , K int F F G. 4.8.8. . F , 4.8.7, (K, G).
4.1. . , . 4.2. X 2 , X ? 4.3. S [0, 1]
1

d(f , g ) :=
0

|f (t) - g (t)| dt 1 + |f (t) - g (t)|

(f , g S )

( .

?). -


4.4. , NN d(, ) = 1/ min {k N : k = k }. , d N .
N

73



4.5. ? ? 4.6. ? ? 4.7. , . 4.8. A B R d(A, B ) :=
xA y B N

-

sup inf |x - y |



y B xA

sup inf |x - y |

.

, d . . ? 4.9. , RN . ? 4.10. , R .
N



4.11. ( ) . 4.12. , . 4.13. . 4.14. (Y , d) . F : Y Y , d(F (x), F (y )) d(x, y ) > 1 x, y Y . F : Y Y Y . , F . 4.15. , . 4.16. . 4.17. ? 4.18. ? 4.19. ? ?


5

5.1. 5.1.1. F p : X R· (1) (2) (3) X . dom p X ; p(x) 0 x X ; ker p := {p = 0} X;


(4) B p := {p < 1} Bp := {p 1} , p B , B p B Bp ;


(5) X = dom p , B . x1 , x2 dom p 1 , 2 F, 3.7.6 p(1 x1 + 2 x2 ) |1 |p(x1 ) + |2 |p(x2 ) < + + (+) = +.

p

, (1) . , (2) , . . x X p(x) < 0. 0 p(x) + p(-x) < p(-x) = p(x) < 0. . (3) (2) p. (4) (5) (. 3.8.8). .


5.1.

75

5.1.2. p, q : X R· . p q ( (R· )X ) , Bp Bq . : , {q 1} {p 1}. : , 5.1.1 (4), p = pBp q = pBq . t1 , t2 R , t1 < t2 . t1 < 0, {q t1 } = , , {q t1 } {p t2 }. t1 0, t1 Bq t1 Bp t2 Bp . , 3.8.3, p q . 5.1.3. X , Y pT (x) := inf p T (x) BT := T -1 (Bp x1 , x2 X , T X â Y p : Y R· . , , x X . pT : X R· , ) , pT = pBT . 1 , 2 F

pT (1 x1 + 2 x2 ) = inf p(T (1 x1 + 2 x2 )) inf p(1 T (x1 ) + 2 T (x2 )) inf (|1 |p(T (x1 )) + |2 |p(T (x2 ))) = = |1 |pT (x1 ) + |2 |pT (x2 ), . . pT . , BT , 5.1.1 (4) 3.1.8. x BT , y Bp (x, y ) T . pT (x) p(y ) 1, . . BT BpT . , , xB
pT

, pT (x) = inf {p(y ) : (x, y ) T } < 1. , y
-1

T (x) , p(y ) < 1. , x T , B
pT

(B p ) T



-1

(Bp ) = BT . = pT .

BT B

pT

. 5.1.1 (4), : p

B

T

5.1.4. . pT , 5.1.3, p T . 5.1.5. . p : X R ( 3.4.3 , dom p = X ). (X, p) . , , X . 5.1.6. . ( RX ) MX


76

. 5.

M, , X . (X, MX ), ´ X , . 5.1.7. M (R· )X , (X, p) p M. 5.1.8. . MX ( ), x X, x = 0, p MX , p(x) = 0. X ( ) . 5.1.9. . , , . X ( ) X · () · X , · | X , X . (X, · ) . , X . 5.1.10. . (1) (X, p) (X, {p}). . (2) M ( ) X . M , X . (3) (Y , N) T XâY , dom T = X . 3.4.10 5.1.1 (5) p N pT , , M := {pT : p N} X . N N T () NT . , T L (X, Y ), M = {p T : p N}. N T := M. , X Y0 Y T T := : Y0 Y . Y0 , , N . ,


5.1.

77

N Y0 . . (4) F , , | · | : F R. X f X # . f : X F, : pf (x) := |f (x)| (x X ). X X # , (X, X ) := {pf : f X } X , X . (5) (X, p) , X0 X : X X/X0 . -1 X/X0 . , p-1 , p X0 pX/X0 . (X/X0 , pX/X0 ) - (X, p) X0 . - 5.3.11. (6) X M (R· )X . M X0 := {dom p : p M}. , (X0 , {p : p M}), X0 X , : M () , M . : p
,

(f ) := sup |x f (x)| : ,
xR
N



() RN ( , . 10.11.6). (7) (X, · ) (Y , · ) ( F). T L (X, Y ) , . . T := sup { T x : x X, x 1} = sup
xX

Tx . x


78

. 5.

( , 0/0 := 0.) , · : L (X, Y ) R· . , BX := { · X 1}, T1 , T2 L (X, Y ) 1 , 2 F 1 T1 + 2 T2 = sup · 1 T1 +2 T2 (BX ) = = sup · ((1 T1 + 2 T2 )(BX )) sup 1 T1 (BX ) + 2 T2 (BX ) |1 | sup ·
T1

(BX ) + |2 | sup ·
1

T2

(BX ) =

= |1 | T

+ |2 | T2 .

B (X, Y ), , , . , B (X, Y ) ( ). , T L (X, Y ) , , . . K , T x Y K x X (x X ). T K , . (8) X F · X . , , X := B (X, F) , . . f : f = sup{|f (x)| : x 1} = sup
xX

|f (x)| . x

X := (X ) := B (X , F) X . x X f X x := (x) : f f (x). , (x) (X )# = L (X , F). , x = (x) = sup {|(x)(f )| : f
X

1} =


5.2. = sup{|f (x)| : |f (x)| x = sup{|f (x)| : f | |( ·
X X

79 (x X )} = )} = x
X

.

, , 3.6.5 3.7.9. , (x) X x X . , : X X , : x (x), , x = x x X . X , , . , , x x := x , . . X X . X , X X ( ). . , , . , , C ([0, 1], F). 5.1.11. . , 5.1.10 (8), ( ) X X . x X f X ( f x) (x, f ) := x | f := f (x). X x , . . x | x = (x, x ) = x (x). 5.2. 5.2.1. (X, p) . x1 , x2 X dp (x1 , x2 ) := p(x1 - x2 ). (1) dp (X 2 ) R+ , {d 0} IX ; (2) {dp t} = {dp t}-1 , {dp t} = t{dp 1} (t R+ \ 0); (3) {dp t1 } {dp t2 } {dp t1 + t2 } (t1 , t2 R+ ); (4) {dp t1 } {dp t2 } {dp t1 t2 } (t1 , t2 R+ ); (5) p dp . 5.2.2. . Up := fil {{dp t} : t R+ \ 0} (X, p).


80

. 5. Up -

5.2.3. . (1) (2) (3)

Up fil {IX }; U Up U -1 Up ; ( U Up ) ( V Up ) V V U . M) p M} UM , UX 5.2.3 (1) 1.3.13.)

5.2.4. . (X, . U := sup{Up : X ( . .). ( U

5.2.5. (X, M) . (1) U fil {IX }; (2) U U U
-1

U;

(3) ( U U ) ( V U ) V V U . (3). U U , 1.2.18 1.3.8 p1 , . . . , pn M , U = U{p1 ,...,pn } = Up1 . . . Upn . 1.3.13, Uk Upk U U1 . . . Un . 5.2.3 (3), Vk Upk , Vk Vk Uk . , (V1 . . . Vn ) (V1 . . . Vn ) V1 V1 . . . Vn Vn U1 . . . Un . , V1 . . . Vn Up1 . . . Upn U . 5.2.6. M X , UM , . . {V : V UM } = IX . : (x, y ) IX , . . x = y . p M p(x - y ) > 0. , (x, y ) {dp 1/2 p(x - y )}. Up , UM . , X 2 \ IX X 2 \ {V : V UM }. , IX {V : V UM }. : p(x) = 0 p M. (x, 0) V V UM , , (x, 0) IX . , x = 0.


5.2. 5.2.7. X UX (x) := {U (x) : U UX } (x X ). (x) (1) (x) (2) ( U (.

81

x X . fil {x}; (x)) ( V (x) & V U ) ( y V ) V (y ). 4.1.8).

5.2.8. . : x (x) (X, M), (x) x. : X , M , (UM ) . . 5.2.9. x X X (x) = sup{p (x) : p MX }. 5.2.10. X . x X U (x) U - x X (0). 5.2.9 1.3.13 (X, p). > 0 {dp }(x) = Bp + x, Bp := {p 1}. , p(y -x) , y = (-1 (y -x))+x -1 (y -x) Bp . , y Bp + x, p(y - x) = inf {t > 0 : y - x tBp } . 5.2.11. . 5.2.10 , () (X, p). X Bp , BX . . 5.2.12. MX , X , . . x1 , x2 X U1 X (x1 ) U2 X (x2 ) , U1 U2 = .


82

. 5.

: x1 = x2 p MX := p(x1 - x2 ) > 0. U1 := x1 + /3 Bp , U2 := x2 + /3 Bp . 5.2.10, Uk X (xk ). , U1 U2 = . , y U1 U2 , p(x1 - y ) /3 p(x2 - y ) /3. p(x1 - x2 ) 2/3 < = p(x1 - x2 ), . : (x1 , x2 ) {V : V UX }, x2 {V (x1 ) : V UX }. x1 = x2 , , 5.2.6 MX . 5.2.13. . , , , , , , . . 5.2.14. (X, p) X0 X . - (X/X0 , pX/X0 ) , X0 . : x X0 . (x) = 0, , , : X X/X0 . 0 = := pX/X0 ((x)) = p-1 ((x)) = inf {p(x + x0 ) : x0 X0 }. , x + /2 Bp X0 , . . x X0 . , X0 . - X/X0 : x x = (x) x X . pX/X0 (x) = 0, 0 = inf {p(x - x0 ) : x0 X0 }, . . (xn ) X0 , xn x. , 4.1.19, x X0 x = 0. . 5.2.15. - -. U ( ) U = ( ). 4.1.9 x, y cl U (x ), (y ) U , x x, y y . (, ) , x + y U . 4.1.19, x + y = lim(x + y ) cl U . 5.3. 5.3.1. . M N . , M N, M N, UM UN . M NN M, , M N , M N.


5.3.

83

5.3.2. . M N X : (1) M N; (2) x X M (x) N (x); (3) M (0) N (0); (4) ( q N) ( p1 , . . . , pn M) ( 1 , . . . , n R+ \ 0) Bq 1 Bp1 . . . n Bpn ; (5) ( q N) ( p1 , . . . , pn M) ( t > 0) q t(p1 . . . pn ) ( K - RX ). (1) (2) (3) (4): . (4) (5): (. 5.1.2), q pBp1 /1 . . . pBpn /n = = 1 p 1
1

...

1 p n

n



1 1 ... 1 n

p1 . . . pn .

(5) (1): , M {q } q N. V Uq , V {dq } > 0. . . . dpn {dq } dp1 t t p1 , . . . , pn M t > 0. , , Up1 . . . Upn = U{p1 ,...,pn } UM . , V UM . 5.3.3. . p, q : X R X . , p q , p q , {p} {q }. p q . 5.3.4. p q ( t > 0) q tp ( t 0) Bq tBp ;

p q ( t1 , t2 > 0) t2 p q t1 p ( t1 , t2 > 0) t1 Bp Bq t2 Bp . 5.3.2 5.1.2. 5.3.5. . p, q : FN R FN . p q ker p ker q . 5.3.6. . .


84

. 5.

5.3.7. (X, M) (Y , N) T L (X, Y ) . : (1) N T M; (2) T â (UX ) UY , T â-1 (UY ) UX ; (3) x X T (X (x)) Y (T x); (4) T (X (0)) Y (0), X (0) T -1 (Y (0)); (5) ( q N) ( p1 , . . . , pn M) q T p1 . . . pn . 5.3.8. (X, · X ) (Y , · Y ) T L (X, Y ) . : (1) T (. . T B (X, Y )); (2) · X · Y T; (3) T ; (4) T ; (5) T . 5.3.7. 5.3.9. . 5.3.7 , M - ( ) . M := {sup M0 : M0 M}. . 5.3.10. . X := F X0 X0 := F1, 1 : 1 ( ). M := {p : }, p (x) := |x( )| (x F ). , M X . : X X/X0 . , M-1 . M-1 . 5.3.11. . (X, M) X0 X . M-1 , : X X/X0 , MX/X0 . (X/X0 , MX/X0 )


5.4.

85

- X X0 . 5.3.12. - X/X0 , X0 . 5.4. 5.4.1. . (X, M) . (X, M) , d X , UM = Ud . X , M, X . X , , X . 5.4.2. . , . : UM = Ud . , , M, , n N pn M tn > 0, {d 1/n} {dpn tn }. N := {pn : n N}. , M N. V UM , V {d 1/n} n N . , V Upn UM , . . M N. , M N. Ud 4.1.7. 5.2.6, , UM UN . : , , , , : M := {pn : n N} M . x1 , x2 X


d(x1 , x2 ) :=
k=1

1 pk (x1 - x2 ) 2k 1 + pk (x1 - x2 )

( k k=1 1/2 , d ). , d . . , (t) := t(1 + t)-1 (t R+ ). , (t) = (1 + t)-2 > 0.


86

. 5.

, . : (t1 + t2 ) = (t1 + t2 )(1 + t1 + t2 )-1 = = t1 (1 + t1 + t2 )-1 + t2 (1 + t1 + t2 )-1 t1 (1 + t1 )-1 + t2 (1 + t2 )-1 = = (t1 ) + (t2 ). , x, y , z X


d(x, y ) =
k=1

1 (pk (x - y )) 2k



k=1

1 (pk (x - z ) + pk (z - y )) 2k


k=1

1 ((pk (x - z ) + (pk (z - y ))) = d(x, z ) + d(z , y ). 2k

Ud UM . , Ud UM . {d }, (x, y ) {dp1 t} . . . {dpn t}.
n

d(x, y ) =
k=1

1 pk (x - y ) + 2k 1 + pk (x - y )
n



k=n+1

1 pk (x - y ) 2k 1 + pk (x - y )



t 1+t

k=1 -n

1 + 2k



k=n+1

1 t 1 + . 2k 1 + t 2n t 0, } UM , {d }.

t(1 + t) + 2 , n t n (x, y ) {d }. , {d . , UM Ud . pn M t > 0 > 0 , {dpn t} , := 1t 1 pn (x - y ) d(x, y ) = n n 1 + p (x - y ) 2 2 1+t n x, y , pn (x - y ) t. 1t , 2n 1 + t

-1


5.5.

87

5.4.3. . V (X, M) , sup p(V ) < + p M, . . p(V ) R p M. 5.4.4. V (X, M) : (1) V ; (2) (xn )nN V (n )nN F , n 0, n xn 0 (. . p(n xn ) 0 p M); (3) V . (1) (2): p(n xn ) |n |p(xn ) |n | sup p(V ) 0. (2) (3): U X (0) , U V . 3.4.9 , ( n N) ( xn V ) xn nU . , 1/n xn U n N, . . (1/n xn ) . (3) (1): p M. n N, V nBp . , sup p(V ) sup p(nBp ) = n < +. 5.4.5. . , . : . : V . , , V = Bp p M. , p M. U M (0), nU V n N. , U p (0). 5.3.2, , p M. , p M , , 5.2.12, p . , p . 5.4.6. . 5.4.5 , . 5.5. 5.5.1. . .


88

. 5.

5.5.2. . . , , . 5.5.3. , (= ) . : n=1 xn < + (xn ). sn := x1 + . . . + xn , m > k
m m

sm - sk =
n=k+1

xn
n=k+1

xn 0.

: (xn ) . (nk )kN , xn - xm 2-k n, m nk . xn1 + (xn2 - xn1 ) + (xn3 - xn2 ) + . . . x, . . xnk x. , xn x. 5.5.4. X X0 X . - X/X0 . : X X := X/X0 . , x X x -1 (x) , 2 x x x . , n=1 xn , X , -1 xn (xn ), n=1 xn . 5.5.3 x := n=1 xn . x := (x).
n n

x-
k=1

xk x -
k=1

xk 0.

5.5.3, , X . 5.5.5. . , 5.5.3 . , (X, p) , - X/ ker p .


5.5.

89

5.5.6. . X , Y X = 0. B (X, Y ) , Y . : (Tn ) B (X, Y ). x X Tm x - Tk x Tm - Tk x 0, . . (Tn x) Y . , T x := lim Tn x. , T . | Tm - Tk | Tm - Tk ( Tn ) R, , . . supn Tn < +. , Tn x supn Tn x , : T < +. , Tn - T 0. > 0 n0 , Tm - Tn /2 m, n n0 . , x BX m n0 , Tm x - T x /2. Tn x - T x Tn x - Tm x + Tm x - T x Tn - Tm + Tm x - T x n n0 . , Tn - T = sup{ Tn x - T x : x BX } n. : (yn ) Y . x X x = 1. 3.5.6 3.5.2 (1), x | |( · ), (x, x ) = x = 1. , Tn := x yn : x (x, x )yn B (X, Y ), Tn = x yn . , Tm - Tk = x (ym - yk ) = x ym - yk = ym - yk , . . (Tn ) B (X, Y ). T := lim Tn . T x - Tn x = T x - yn T - Tn x 0. , T x (yn ) Y . 5.5.7. . ( ) . 5.5.8. . X , : XX , X X . cl (X ) X . 5.5.7, X . 5.1.10 (8) X X . 4.5.16. 5.5.9. . (1) : ,


90

. 5.

, , 5.5.4­5.5.8. (2) E . x F E x := sup |x(E )|. l (E ) := l (E , F) := dom · E . : B (E ) B (E , F). E := N m := l := l (E ). (3) F E . x c(E , F ) (x l (E ) x(F ) F). , E := N F N, c := c(E , F ) . c(E , F ) c0 (E , F ) := {x c(E , F ) : x(F ) 0}. F E , c0 (E ) := c0 (E , F ) , . E := N c0 := c0 (E ). c0 . , , l (E , F ). (4) S := (E , X, ) . , X RE , E X R , : X R (), . . # X+ xn 0, xn X xn (e) 0 e E . , , f F E ( S ) (, , ). Np (f ) := ( |f |p )1/p p 1, ( ). dom N1 . f F E Re f , Im f RE . , N1 (f ) = N (f ), N (g ) :=


5.5. := inf sup xn : (xn ) X, xn xn
+1

91 , ( e E ) |g (e)| = lim xn (e)
n

g F E . F = R , dom N1 X (dom N , N ). ¨ N1 (f g ) Np (f )Np (g ) 1 1 = 1, p > 1 . + pp

: xy - xp yp p p (x, y R+ ),

|f |/Np (f ) |g |/Np (g ) , Np (f ) Np (g ) . Np (f )Np (g ) = 0 ¨ . Lp := dom Np . |f +g |p (|f |+|g |)p 2p (|f ||g |)p = 2p (|f |p |g |p ) 2p (|f |p +|g |p ) N
p

, Np (f + g ) Np (f ) + Np (g ).

p = 1 . p > 1 Np (f ) = sup{N1 (f g )/Np (g ) : 0 < Np (g ) < +} (f Lp ), . ¨ , Np (f ) > 0 g := |f |p/p g Lp , , Np (f ) = N1 (f g )/Np (g ). , N1 (f g ) = |f |p/p +1 = Np (f )p , p/p + 1 = p (1 - 1/p) + 1 = p. , Np (g )p = |g |p = |f |p = Np (f )p , Np (g ) = Np (f )p/p . N1 (f g )/Np (g ) = Np (f )p /Np (f )p/p = = Np (f )p-p/p = Np (f )p(1
-1/p )

= Np (f ),


92

. 5.

. dom N1 . f F E Re f , Im f RE . , , N (g ) := := inf sup
n

xn : (xn ) X, xn xn

+1

, ( e E ) |g (e)| lim xn (e)
n

g F E . F := R, dom N1 , , X (dom N , N ). - Lp / ker Np , - · p , , () p- , p- Lp . , Lp (S ), Lp (E , X, ) . . , S ( , A , µ), Lp ( , A , µ), Lp ( , µ) Lp (µ), . . . Lp -

. - n t := k=1 Np (fk ), fk Lp . n := k=1 fk n sn := k=1 |fk |. , (sn ) . (sp ). , sp tp < +. n n e E g (e) := lim sp (e) , n g L1 . h(e) := g 1/p (e), , h Lp sn (e) h(e) e E . |n | sn h , e E k=1 fk (e). f0 (e) |f0 (e)| h(e), , , , f0 Lp . (= ), :


5.5.
1/p

93

|n - f0 |p 0. , Np (n - f0 ) = (Lp , Np ) . 5.5.3­5.5.5. S E , . . , X := eE R R x := eE x(e), Lp , p- . lp (E ).
p . E := N lp x p := eE |x(e)| , p- . 1/p

(5) L . X e X+ . pe , e, [-e, e], . . pe (x) := inf {t > 0 : -te x te}. Xe , dom pe , e , e Xe . ker pe ( e). - Xe / ker pe - , e ( X ). , C (Q, R) Q , 1 := 1Q : q 1 (q Q) ( ). RE 1 l (E ). S := E , X, 1 E F, N (f ) := inf {t > 0 : |f | t1} < +, . L .


94

. 5.

- L / ker N L , · . L , , ( L ) . L . L , , C (Q, F), lp (E ), c0 (E ), c, lp , Lp (p 1), . , . . , L1 ( - ). , X , X Lp p 1. (6) S := E , X, p 1. , e E (Ye , · Ye ). f eE Ye |||f ||| : e f (e) Ye . , , Np (f ) := inf {Np (g ) : g Lp , g |||f |||}. , dom Np Np . - dom Np / ker Np |||·|||p (Ye )eE p (, Lp S ). p . k=1 Np (fk ) < +. n (sn := k=1 |||fk |||) g Np (g ) < +. , e E (sn (e)), . . k=1 fk (e) Ye . - Ye , k=1 fk (e) f0 (e) Ye e E . f0 (e) Ye g (e) e E , , n f0 dom Np . , Np ( k=1 fk - f0 ) k=n+1 Np (fk ) 0. E := N Y (Yn )nN Y := (Y1 Y2 . . . )p , p . y Y -


5.5. (yn )n
N

95

, yn Yn
1/p p n Yn

|||y |||p :=
k=1

y

< +.

, Ye := X e E , X F, Fp := dom Np Fp := Fp / ker Np . X- E ( , p- ). , Fp . , Fp (, Fp = Lp ). Fp , . , ´ Fp , , , . Fp Lp ( : Lp (X), Lp (S, X), Lp ( , A , µ), Lp ( , µ) . .) X- , p- , p- X- . , Lp (X) . p = 1. , f : f= f -1 (x) x,
ximf

f

-1

(x) x im f . , |||f ||| =
ximf

f

-1

(x)

x=

=
ximf

f

-1

(x)

x=
ximf

x

f

-1

(x)

< +.


96

. 5.

f X : f :=
ximf

f

-1

(x)

x.

, , , . , , f=
ximf

f

-1

(x)

x
ximf

f

-1

(x)

x=

=
ximf

x f

-1

(x)

=

|||f |||.

4.5.10 5.3.8 B (L1 (X), X). ( E . .) . (7) , . , . . (xn ) . ( ) ( xn ), . . (xn ). (xn ) (xn ) () . n=1 xn < + (= x1 + x2 + . . . ). 5.5.3 x = n=1 xn : x = lim s , s := ( ) , n xn N. x (xn ), (xn ) x (: x = nN xn ). : ( ). dim X < + (= ). .


5.6.

97

. X 2 (tn ) , n=1 tn < +, (xn ), xn = tn n N. (X, M) . , (xe )eE ( x) x := eE xe , x (X, M) (s ), E , . . s x (X, M). p eE p(xe ), , (xe )eE (, , , ). Y T B (X, Y). T L1 (X) L1 (Y), X- f , T f : e T f (e) e E . f L1 (X) T f L1 (Y) E T f = T E f . : . 5.6. 5.6.1. X , Y , Z , T L (X, Y ) S L (Y , Z ) . S T S T , . . . x X ST x S Tx S T x.

5.6.2. . , , () F. A F, () : (a, b) ab (a, b A). , (. . (A, +, ) () ) , , , (ab) = (a)b = a(b) a, b A


98

. 5.

F. , (A, F, +, · , ). , , A. 5.6.3. . ( ) ( ), . . 5.6.4. B (X ) := B (X, X ) X . B (X ) . X = 0 B (X ) IX IX = 1. B (X ) , X . X = 0, . X = 0, 5.5.6. 5.6.5. . 5.6.4 IX , F, . ( , 1 = I0 = 0!) X = 0 F FIX . 5.6.6. . X T B (X ). r(T ) := inf T n 1/n : n N T . ( (. 8.1.12).) 5.6.7. r(T ) T . , 5.6.1, T
n

T

n

.

5.6.8. r(T ) = lim
n

T

n

.

> 0 s N , T s (r(T ) + )s . n N n s n = k (n)s + l(n), k (n), l(n) N 0 l(n) s - 1. , T
n

=T

k (n) s

T

l (n)

T

s k (n)

T

l ( n)




5.6. 1 T ... T , r(T ) T M
1/n n 1/n s-1

99 =M T
s k ( n)

T

s k (n)

.

M

1/n

T

s k(n)/n


n-l(n))/n

(r(T ) + )k

(n)s/n

=M

1/n

(r(T ) + )(

.

M 1/n 1 (n - l(n))/n 1, r(T ) lim sup T n 1/n r(T ) + . lim inf T n 1/n r(T ) . . 5.6.9. . X T B (X ). : (1) 1 + T + T 2 + . . . B (X ); (2) T k < 1 k N; (3) r(T ) < 1. k (1)­(3) = k=0 T -1 (1 - T ) . (1) (2): , (T k ) . (2) (3): . (3) (1): 5.6.8 > 0 k N r(T ) T k 1/k r(T ) + < 1. k , k=0 T . B (X ) 5.5.3, , k=0 T k B (X ). n S := k=0 T k Sn := k=0 T k . S (1 - T ) = lim Sn (1 - T ) = lim (1 + T + . . . + T n ) (1 - T ) = = lim(1 - T
n+1

) = 1;

(1 - T )S = lim(1 - T )Sn = lim(1 - T )(1 + T + . . . + T n ) = = lim 1 - T
n+1

= 1,

T n 0. , 2.2.7, S = (1 - T )-1 .


100

. 5.

5.6.10. . T < 1, (1 - T ) () (= ), . . . (1 - T )-1 (1 - T )-1 . ,


(1 - T )-1
k=0

T

k


k=0

T

k

= (1 - T )-1 .

5.6.11. . 1 - T < 1, T 1-T 5.6.9,
-1



1-T . 1- 1-T

1+

(1 - T )k =
k=1 k=0

(1 - T )k = (1 - (1 - T ))-1 = T

-1

.

:


T

-1

-1 =

(1 - T )k
k=1 k=1

(1 - T )k
k=1

1-T

k

.

5.6.12. . XY . () . T T -1 . S, T B (X, Y ) , T -1 B (Y , X ) , , T -1 S - T 1/2. T -1 S B (X ). 1-T
-1

S=T

-1

T -T

-1

ST

-1

T -S

1 < 1. 2

5.6.11, (T -1 S )-1 B (X ). R := (T -1 S )-1 T -1 . , R B (Y , X ) , , R = S -1 (T -1 )-1 T -1 = S -1 .


5.6. , S =S S S
-1 -1 -1

101

-T
-1

-1

S
-1

-1

-T

-1

= 1 S 2
-1

(T - S )T 2 T

S

T -S

T

-1

.

-1

-1

. T -S T
-1

-T

-1

S

-1

2 T

-1 2

T -S .

5.6.13. . X F T B (X ). F T , ( - T )-1 B (X ). R(T , ) := ( - T )-1 R(T , ) ( T ). res(T ). R(T , ) res(T ) B (X ) T . F \ res(T ) T Sp(T ) (T ). . 5.6.14. . X = 0, T = 0 B (X ) . , X = 0. X = 0 F := R , F := C (. 8.1.11). 5.6.15. res(T ) , 0 res(T ), 0


R(T , ) =

(-1)k ( - 0 )k R(T , 0 )k
k=0

+1

.

|| > T , res(T ) R(T , ) = 1


k=0

Tk , k

R(T , ) 0 || +.


102

. 5.

( - T ) - (0 - T ) = | - 0 |, res(T ) 5.6.12. , - T = ( - 0 ) + (0 - T ) = (0 - T )R(T , 0 )( - 0 ) + (0 - T ) = = (0 - T )(( - 0 )R(T , 0 ) + 1) = (0 - T )(1 - ((-1)( - 0 )R(T , 0 ))). , 0 5.6.9 R(T , ) = ( - T )-1 = = (1 - ((-1)( - 0 )R(T , 0 )))-1 (0 - T )-1 =


=
k=0

(-1)k ( - 0 )k R(T , 0 )k

+1

.
-1

5.6.9 || > T (1 - T /) , . . 1 R(T , ) = R(T , ) 1 1 · . || 1 - T /|| T 1-
-1

,

1 =



k=0

Tk . k

5.6.16. T . 5.6.17. . , || > r(T ) R(T , )= k=0 T k /k+1 , (. 8.1.12). 5.6.18. S T , S T . : S T R(T , )S ( - : S R(T T )S = S (0 - = T S S ( - T ) = S - S T = S - T S = ( - T )S T ) = S R(T , )S = S R(T , ) ( res(T )). , 0 ) = R(T , 0 )S S = R(T , 0 )S (0 - T ) (0 - T ) T S = ST .


5.6.

103

5.6.19. , µ res(T ), (= ) R(T , ) - R(T , µ) = (µ - )R(T , µ)R(T , ). µ - = (µ - T ) - ( - T ) R(T , ) , R(T , µ) , . 5.6.20. , µ res(T ), R(T , )R(T , µ) = R(T , µ) R(T , ). 5.6.21. res(T ) dk R(T , ) = (-1)k k ! R(T , )k dk
+1

.

5.6.22. . Sp(S T ) Sp(T S ) . , 1 Sp(S T ) 1 Sp(T S ). , Sp(S T ) = 0 1 1 Sp(S T ) 1 Sp 1 ST 1 Sp 1 TS Sp(T S ).

, 1 Sp(S T ). (1 - S T )-1 1 + S T + (S T )(S T ) + (S T )(S T )(S T ) + . . . , T (1 - S T )-1 S T S + T S T S + T S T S T S + . . . (1 - T S )-1 - 1 , (1 - T S )-1 = 1 + T (1 - S T )-1 S


104

. 5.

( 1 Sp(T S )). : (1 + T (1 - S T )-1 S )(1 - T S ) = = 1 + T (1 - S T )-1 S - T S + T (1 - S T )-1 (-S T )S = = 1 + T (1 - S T )-1 S - T S + T (1 - S T )-1 (1 - S T - 1)S = = 1 + T (1 - S T )-1 S - T S + T S - T (1 - S T )-1 S = 1; (1 - T S )(1 + T (1 - S T )-1 S ) = = 1 - T S + T (1 - S T )-1 S + T (-S T )(1 - S T )-1 S = = 1 - T S + T (1 - S T )-1 S + T (1 - S T - 1)(1 - S T )-1 S = = 1 - T S + T (1 - S T )-1 S + T S - T (1 - S T )-1 S = 1 , .
5.1. , , . 5.2. , . 5.3. , , . 5.4. , . 5.5. RN N ? 5.6. , . 5.7. . ? 5.8. . 5.9. . 5.10. .




105

5.11. lp lq , Lp Lq . ? 5.12. , , . 5.13. , C.

5.14. , ( ) . 5.15. ? 5.16. F C (Q, F), Q ? 5.17. , Lp (X ) = Lp (X ), X . 5.18. (Xn )



X0 :=

x
nN

Xn : x

n Xn

0

c0 ( x := sup{ xn : n N}, l ). , X0 , Xn . 5.19. , C (p) [0, 1] , C [0, 1].


6

6.1. 6.1.1. . H F. f : H 2 F , (1) f (· , y ) : x f (x, y ) H # y Y ; (2) f (x, y ) = f (y , x) x, y H , F, . . . 6.1.2. . , f # x H f (x, · ) : y (x, y ) H , H H (. 2.1.4 (2)). , F := R , . . , F := C , . . - . 6.1.3. f : f (x + y , x + y ) - f (x - y , x - y ) = 4 Re f (x, y ) (x, y H ).

-

f (x + y , x + y ) = f (x, x) + f (x, y ) + f (y , x) + f (y , y ) f (x - y , x - y ) = f (x, x) - f (x, y ) - f (y , x) + f (y , y ) 2(f (x, y ) + f (y , x))


6.1.

107

6.1.4. . f , , f (x, x) 0 x H . : (x, y ) := x | y := f (x, y ) (x, y H ). , (x, x) = 0 x = 0 (x H ). 6.1.5.

|(x, y )|2 (x, x)(y , y ) (x, y H ). (x, x) = (y , y ) = 0, 0 (x + ty , x + ty ) = t(x, y ) + t (x, y ). t := -(x, y ), -2|(x, y )|2 0, . . . , , (y , y ) = 0,


0 (x + ty , x + ty ) = (x, x) + 2t Re(x, y ) + t2 (y , y ) (t R) : Re(x, y )2 (x, x)(y , y ). (x, y ) = 0, . (x, y ) = 0, := |(x, y )| (x, y )-1 x := x. || = 1 , , (x, x) = (x, x) = (x, x) = ||2 (x, x) = (x, x); |(x, y )| = (x, y ) = (x, y ) = (x, y ) = Re(x, y ). , |(x, y )|2 = Re(x, y )2 (x, x)(y , y ). 6.1.6. ( · , · ) H , · : x (x, x)1/2 H . . , x+y
2

= (x, x) + (y , y ) + 2 Re(x, y ) y = ( x + y )2 .

(x, x) + (y , y ) + 2 x

6.1.7. . H (· , ·) · . H , (H, · ) .


108

. 6.

6.1.8. H x+y
2

+ x-y

2

= 2( x

2

+ y 2 ) (x, y H )

. x+y x-y
2 2

= (x + y , x + y ) = x = (x - y , x - y ) = x

2 2

+ 2 Re(x, y ) + y 2 ; - 2 Re(x, y ) + y
2

6.1.9. . (H, · ) , H , . . , , (· , ·) H , x = (x, x)1/2 x H . HR H x, y HR (x, y )R := 1 4 x+y
2

- x-y

2

.

, (· , y )R (x1 , y )R + (x2 , y )R = 1 4 1 = 4 = = x1 + y x1 + y 1 4 1 2
2

-

x1 - y
2

2

+ x2 + y x1 - y
2

2

- x2 - y + x2 - y
2

2

= =

2

+ x2 + y

-

2

2

1 ( (x1 + y ) + (x2 + y ) 2 (x1 - y ) + (x2 - y ) 1 x1 + x2 + 2y 2
2 2

+ x1 - x2

-

- =

+ x1 - x2 2 ) =
2

1 4

-

1 x1 + x2 - 2y 2

=


6.1. = 1 2 (x1 + x2 )/2 + y
2

109
2

- (x1 - x2 )/2 - y

=

= 2 ((x1 + x2 )/2, y )R . , x2 := 0 (x2 , y )R = 0, . . 1/2(x1 , y )R = (1/2 x1 , y )R . x1 := 2x1 x2 := 2x2 (x1 + x2 , y )R = (x1 , y )R + (x2 , y )R . (· , y )R , (· , y )R (HR )# . (x, y ) := Re
-1

((· , y )R )(x),

Re-1 (. 3.7.5). F := R , (x, y ) = (x, y )R = (y , x) (x, x) = x 2 , . . . F := C, (x, y ) = (x, y )R - i(ix, y )R . , (y , x) = (y , x)R - i(iy , x)R = (x, y )R - i(x, iy )R = = (x, y )R + i(ix, y )R = (x, y ) , (x, iy )R = 1 |i| y - ix 4 , = 1 4
2

x + iy

2

- x - iy
2

2

=

- |-i| ix + y

= -(ix, y )R .

(x, x) = (x, x)R - i(ix, x)R = = x2 - =x
2

i ix + x 2 - ix - x 2 = 4 i 1- |1 + i|2 - |1 - i|2 = x 2. 4

6.1.3.


110

. 6.

6.1.10. . (1) L2 ( - ). : (f , g ) := f g f , g L2 . , l2 (E ) (x, y ) := eE xe ye x, y l2 (E ). (2) H (· , ·) : H2 F H . , HR (· , ·)R : (x, y ) Re(x, y ) , H , H HR . (HR , (· , ·)R ) (H, (· , ·)). , , . (3) H H H . x, y H (x, y ) := (x, y ) . , (· , ·) H . H H . (4) H H0 := ker · · H . , 2.3.8 6.1.10 (3), , H/H0 : x1 := (x1 ) x2 := (x2 ), x1 , x2 H : H H/H0 , (x1 , x2 ) := (x1 , x2 ). H/H0 - (H, · ) · . , H/H0 , , H . H/H0 , (, ). . (5) (He )eE H 2, . . h H


6.2. , h := (he )e
1/2 E

111 , he He e E ,

h :=
eE

h

e

2

< +.

5.5.9 (6), H . f , g H , , 1 2 = 1 2 =
eE

f +g

2

+ f -g
2

2

=
2

fe + ge
eE

+
eE

fe - ge
2

=

1 2 fe

fe + ge
2

2

+ fe - ge =f
2

=

=
eE

+ ge

2

+ g 2,

, , H . H (He )eE eE He . E := N H := H1 H2 . . . . (6) H S . L2 (S, H ), H - , , . 6.2. 6.2.1. U (r + )BH \ rBH , 0 < r, H . : diam U 12r. x, y U , , 1/2(x + y ) U , , x-y
2

=2

x

2

+y

2

- 4 (x + y )/2

2




112

. 6. 4(r + )2 - 4r2 = 8r + 42 12r.

6.2.2. . U H x H \ U . , , u0 U , x - u0 = inf { x - u : u U }. U := {u U : x - u inf U - x + }. 6.2.1 (U )>0 U . 6.2.3. . u0 , 6.2.2, x U x U . 6.2.4. H0 H x H \ H0 . x0 H0 x H0 , (x - x0 , h0 ) = 0 h0 H0 . (H0 )R H0 . (H0 )R f (h0 ) := (h0 - x, h0 - x). x0 H0 x H0 , 0 x0 (f ). 3.5.2 (4) , (x - x0 , h0 ) = 0 h0 H0 , f (x0 ) = 2(x0 - x, ·). 6.2.5. . x, y H x y , (x, y ) = 0. U , U , . . U := {y H : x U x y }. U U . 6.2.6. H0 H . H0 , H = H0 H0 .
H0 H . , H0 H0 = H0 H0 = 0. , H0 H0 = H0 + H0 = H . h H \ H0 . 6.2.2 h0 H0 , , 6.2.4, h - h0 H0 . , h = h0 + (h - h0 ) H 0 + H 0 .


6.2.

113

6.2.7. . H0 H0 H0 PH0 . 6.2.8. . x y x + y
2

=x

2

+ y 2.

6.2.9. . : H = 0, H0 = 0 PH0 = 1. 6.2.10. . P L (H ) , P 2 = P , : (1) P H0 := im P ; (2) h 1 P h 1; (3) (P x, P d y ) = 0, P d := IH - P x, y H ; (4) (P x, y ) = (x, P y ) x, y H . (1) (2): 6.2.9. (2) (3): H1 := ker P = im P d . x H1 . d d 2 2 d x = P x + P x x P x, x P x = (x - P x, x - P d x) = (x, x) - 2 Re(x, P d x) + (P d x, P d x) = x 2 + P d x 2 . P d x = 0, . . x im P . H1 = ker P H1 im P d 6.2.6 : H1 = im P = H0 . , (P x, P y ) = 0 x, y H , P x H0 , P d y H1 . (3) (4): (P x, y ) = (P x, P y + P d y ) = (P x, P y ) = (P x, P y ) + d (P x, P y ) = (x, P y ). (4) (1): , H0 . h0 := lim hn hn H0 , . . P hn = hn . x H (· , x) (· , P x) (h0 , x) = lim (hn , x) = lim (P hn , x) = lim (hn , P x) = (P h0 , x). (h0 P x, h0 ) = (P x - P x, P x = PH0 x. - P h0 , h0 - P h0 ) = 0, . . h0 im P . x H h0 H0 (x - (x - P x, P h0 ) = (P (x - P x), h0 ) = (P x - P 2 x, h0 ) = h0 ) = 0. , 6.2.4,

6.2.11. P1 , P2 , P1 P2 = 0. P2 P1 = 0. P1 P2 = 0 im P2 ker P1 im P1 = (ker P1 ) (im P2 ) = ker P2 P2 P1 = 0


114

. 6.

6.2.12. . P1 P2 ( P1 P2 P2 P1 ), P1 P2 = 0. 6.2.13. . P1 , . . . , Pn . P := P1 + . . . + Pn , Pl Pm l = m. : , 2 P0 6.2.10 P0 x 2 = (P0 x, P0 x) = (P0 x, x) = (P0 x, x). , x H l = m Pl x
n n 2

+ Pm x

2


2


k=1

Pk x

2

=
k=1

(Pk x, x) = (P x, x) = P x

x 2.

, x := Pl x, Pl x
2

+ Pm Pl x

2

Pl x

2

Pm P

l

= 0.

: , P . ,
n 2 n n 2

-

n

P=
k=1

Pk

=
l=1 m=1

Pl Pm =
k=1

2 Pk = P.

, 6.2.10 (4), (Pk x, y ) = (x, Pk y ) , , (P x, y ) = (x, P y ). 6.2.10 (4). 6.2.14. . 6.2.13 . 6.3. 6.3.1. . (xe )eE H , e1 = e2 xe1 xe2 . E H , (e)eE .


6.3.

115

6.3.2. . (xe )eE () , ( xe 2 )eE .
2

xe
eE

=
eE

xe 2 .

s := eE xe , E . 6.2.8, s 2 = e xe 2 . , , , s - s
2

= s

\

2

=
e \

xe 2 .

, (s ) ( xe 2 )eE . 5.5.3, . 6.3.3. . (Pe )eE H . x H () (Pe x)eE . P x := eE Pe x H :=
eE

xe : xe He := im Pe ,
eE

xe

2

< + .

E s := e Pe . 6.2.13, s . , 6.2.8, s x 2 = Pe x 2 x 2 x H . e , ( Pe x 2 )eE ( ). P x := eE Pe x, . . P x = lim s x. P 2 x = lim s P x = lim s lim s x = lim lim s s x = lim lim s x= lim s x = P x. P x = lim s x = lim s x x , , P 2 = P . 6.2.10, , P im P . x im P , . . P x = x, x = eE Pe x eE Pe x 2 = x 2 = P x 2 < +. Pe x


116

. 6.

2 He (e E ), x H . xe He < + , eE xe x := eE xe ( ) x = eE xe = eE Pe xe = P x, . . x im P . , im P = H .

6.3.4. . H (He )eE . , , , . 6.3.5. . h H : h = 1. , , H0 := Fh H , h0 . x H F (x - (x, h)h, h) = ((x, h) - (x, h))(h, h) = 0. , 6.2.4, PH0 = (· , h) h. h . , h : x (x, h)h (x H ). 6.3.6. . ( ), , -, , -, . . 6.3.7. E H x H ( e x)eE () . : x
2


eE

|(x, e)|2 .

,
2 2 2

x


eE

ex

=
eE

(x, e)e

=
eE

(x, e)e

2

.


6.3.

117

6.3.8. . E H ( H ), x H x = eE e x. , . 6.3.9. E H , L (E ) H . 6.3.10. . , E , E = 0. 6.3.11. . , . : h E . h = eE e h = eE (h, e)e = 0 = 0. eE : x H , 6.3.3 6.2.4, x - eE e x E . 6.3.12. . . H E . h H \ H0 , H0 := cl L (E ), h1 := h - PH0 h E , , H = 0 E { h1 -1 h1 } = E . . H = 0 . 6.3.13. . , H . H . 6.3.14. . (xn )nN H . x0 := 0, e0 := 0,
n-1

yn := xn -
k=0

ek xn ,

en :=

y y

n n

(n N).


118

. 6.

, (yn , ek ) = 0 0 k n - 1 (, 6.2.13). , yn = 0, H . (en )nN , , , (xn )nN . , , , , . . . 6.3.15. . E H x H . x := (xe )eE F E , xe := (x, e), x ( E ). 6.3.16. . E H . F : x x ( E ) H l2 (E ). F -1 : l2 (E ) H -1 F (x) := eE xe e x := (xe )eE l2 (E ). x, y H (x, y ) =
eE xe ye .

l2 (E ). 6.3.3, . , . , F -1 x = x x H F -1 (x) = x x l2 (E ), . x
2

=
eE

xe

2

=x

2 2

(x H )

. (x, y ) =
eE

xe e,
eE

ye e

=
e,e E

xe ye (e, e ) = eE

xe ye .

6.3.17. . , . ,


6.4.

119

, . . , . ( ) . 6.4. 6.4.1. . H . x H x := (· , x). x x H H . , x = 0 x = 0. x = 0, x x
H

= sup |(y , x)| sup
y 1 y 1

y

x x;

H

= sup |(y , x)| |(x/ x , x)| = x .
y 1

, x x H H . , . l H H0 := ker l = H ( l , ). e = 1 , e H0 , grad l := l(e) e. x H0 , (grad l) (x) = (x, grad l) = (x, l(e) e) = l(e) (x, e) = 0. , F x H 2.3.12 (grad l) (x) = l(x). , x := e (grad l) (e) = (e, grad l) = l(e)(e, e) = l(e), . . = 1. 6.4.2. . , H x x H H . l grad l. 6.4.1 .


120

. 6.

6.4.3. . : H H , . . H H , x (l) = (x)(l) = l(x), x H l H (. 5.1.10 (8)). , . f H . y f (y ) y H . , H , , x H = H , (y , x) = (x, y ) = f (y ) y H . (x)(y ) = y (x) = (x, y ) = f (y ) y H . y y H , (x) = f . 6.4.4. H1 , H2 T B (H1 , H2 ). , , T : H2 H1 , x H1 , y H2 (T x, y ) = (x, T y ). T B (H2 , H1 ) T = T . y H2 . x (T x, y ) y T , . . H1 . x H1 , x = y T . T y := x. , T L (H2 , H1 ). , , |(T y , T y )| = |(T T y , y )| T T y yT


T y

y.

, T y T y y H2 , . . T T = T := (T ) , . . T = T T .

T .

6.4.5. . T B (H2 , H1 ), 6.4.4, T B (H1 , H2 ). 6.4.6. H1 , H2 , , S, T B (H1 , H2 ) F. (1) T = T ; (2) (S + T ) = S + T ; (3) (T ) = T ; (4) T T = T 2 .


6.4. (1)­(3) Tx
2

121

. x 1, = (T x, T x) = |(T x, T x)| = |(T T x, x)| T T x x T T .

, 6.4.4, T T T T = T 2 , (4). 6.4.7. H1 , H2 , H3 , T B (H1 , H2 ) S B (H2 , H3 ). (S T ) = T S . (S T x, z ) = (T x, S z ) = (x, T S z ) (x H1 , z H3 ) 6.4.8. . T T H1 H2 . H1 - H2 . , , , . 6.4.9. . , . 6.4.7 6.4.6 (1). 6.4.10. . T B (H1 , H2 ) T B (H2 , H1 ). T , T . T -1 = T -1 . 6.4.11. . T B (H ) Sp(T ) Sp(T ). 6.4.12. (. 7.6.13). . . . - H
k-1
k - Hk - H

T

Tk

+1

k+1

- . . .

, . . . - H
k-1
k - Hk - H

T



Tk+1

k+1

- . . . .


122

. 6.

6.4.13. . - ( F) A , . . a a A , (1) a = a (a A); (2) (a + b) = a + b (a, b A); (3) (a) = a ( F, a A); (4) (ab) = b a (a, b A). A , a a = a 2 a A, C -. 6.4.14. B (H ) H C - ( ). 6.5. 6.5.1. . H F T B (H ). T ( ), T = T . 6.5.2. . T T = sup |(T x, x)|.
x 1

Tx x . . (x, y )

t := sup{|(T x, x)| : x 1}. , T , x 1. , t T = T , (T x, y ) = (x, T y ) = (T y , (T x, y ) . ,
2

|(T x, x)| T. x) = (y , T x) , 6.1.3 6.1.8

4 Re(T x, y ) = (T (x + y ), x + y ) - (T (x - y ), x - y ) t( x + y + x - y 2 ) = 2t( x
2

+ y 2 ).

T x = 0, T x t. T x = 0. x 1 y := T x -1 T x Tx = Tx = (T x, y ) = Re(T x, y ) . . T = sup{ T x : Tx , Tx
2

Tx Tx

=
2

1 tx 2 x 1} t.

+ T x/ T x

t,


6.5.

123

6.5.3. . 6.5.2, T H fT (x, y ) := (T x, y ). , , f , y H f (· , y ) . T y H , f (·, y ) = (T y ) . , T L (H ) (x, T y ) = f (x, y ) = f (y , x) = (y , T x) = (T x, y ). , T B (H ) T = T . , f = fT . , 6.5.1 T B (H ) T L (H ) ( ¨ , . 7.4.7). 6.5.4. . T , inf
x =1

x - T x = 0.

: t := inf { x - T x : x H, x = 1} > 0. , Sp(T ). x H x - T x t x . / , -, ( - T ) , -, H0 := im(-T ) ( (-T )xm -(-T )xk t xm - xk , . . ) , , -, ( - T )-1 B (H ), H = H0 ( R(T , ) t-1 ). , , H = H0 . y H0 , y = 1. x H 0 = (x - T x, y ) = (x, y - T y ), . . y = T y . , = (T y , y )/(y , y ) T R. = y ker( - T ). : 1 = y = 0 = 0. : Sp(T ), R(T , ) B (H ). / inf { x - T x : x = 1} R(T , ) -1 . 6.5.5. . T . mT := inf (T x, x),
x =1

-

MT := sup (T x, x).
x =1

Sp(T ) [mT , MT ] mT , MT Sp(T ).


124

. 6.

T - Re H , x - T x
2

= | Im |2 x

2

+ T x - Re x

2

6.5.4 Sp(T ) R. < mT , x H x = 1 6.1.5 x - T x = x - T x x |(x - T x, x)| =

= | - (T x, x)| = (T x, x) - mT - > 0. 6.5.4 : res(T ). > MT , x - T x |(x - T x, x)| = | - (T x, x)| = - (T x, x) - MT > 0. res(T ). Sp(T ) [mT , MT ]. (T x, x) R x H , 6.5.2 T = sup{|(T x, x)| : = sup{(T x, x) (-(T x, x)) : x 1} =

x 1} = MT (-mT ).
2 2

, := T = MT . x = 1, x - T x
2

= 2 - 2(T x, x) + T x

2 T

- 2 T (T x, x).

, inf
x =1

x - T x

2

2 T

inf ( T - (T x, x)) = 0.
x =1

6.5.4, : Sp(T ). S := T - mT . , MS = MT - mT 0 mS = mT - mT = 0. , S = MS MS Sp(S ). , MT Sp(T ), T = S + mT , MT = MS + mT . , mT = -M-T Sp(T ) = - Sp(-T ). 6.5.6. . ( ). 6.5.7. . , .


6.6. 6.6.

125

6.6.1. . X Y . T L (X, Y ) ( T K (X, Y )), T (BX ) BX X Y . 6.6.2. . . . 8. 6.6.3. T . 0 = Sp(T ), T , . . ker( - T ) = 0. (xn ) , xn = 1, xn - T xn 0. , , (T xn ) y := lim T xn . xn = (xn - T xn ) + T xn , (xn ) y = lim xn . , T y = T (lim xn ) = lim T xn = y . y = ||, , y T . 6.6.4. 1 , 2 T , x1 , x2 1 2 (. . xs ker(s - T ), s := 1, 2). x1 x2 . (x1 , x2 ) = 1 1 2 (T x1 , x2 ) = (x1 , T x2 ) = (x1 , x2 ) 1 1 1

6.6.5. > 0 [-, ] . (n )nN T , |n | > . , , xn , n , xn = 1. 6.6.4 (xk , xm ) = 0 m = k . , T xm - T xk
2

= T xm

2

+ T xk

2

= 2 + 2 22 , m k

. . (T xn )nN . T .


126

. 6.

6.6.6. . T H 0 = Sp(T ). H := ker( - T ). H H = H H T . 0 T , 0 T T T H Sp(T ) = Sp(T ) \ {}.


,

H T . , H T . , H H T (= T ), ( x H )(x, h) = 0 ( x H )(T h, x) = (h, T x) = 0. T H . T T H . , µ = µ-T µ- 0 0 µ-T



, µ - T . , T . 6.6.7. . H T H . , , P ker( - T ) Sp(T ). T= P .
Sp(T )

6.5.6 6.6.6, Sp(T ) T-


P



= sup{|| : (Sp(T ) 0) \ }.

6.6.5.


6.6.

127

6.6.8. . , T , . . , , H0 (H0 := ker T ). , T , . . , H0 , ,
n n

T=
k=1

k ek =
k=1

k ek ek ,

1 , . . . , n T , , {e1 , . . . , en } H0 , . , , . , = µ, , µ T , H Hµ . Sp(T )\0 H H0 = cl im T , H0 = (im T ) . H ( , . . 1 := 2 := . . . := dim H1 := 1 ; dim H1 +1 := . . . := dim H1 +dim H2 := 2 . .), H = H0 H1 H2 . . .


T=
k=1

k ek =
k=1

k ek ek ,

. 6.6.9. . T K (H1 , H2 ) , H1 H2 . (ek )kN H1 , (fk )kN H2 (µk )kN R+ \ 0, µk 0,


T=
k=1

µk ek fk .


128

. 6.

S := T T . , S B (H1 ) S . , (S x, x) = (T T x, x) = (T x, T x) = T x 2 . , 6.4.6, S H0 := ker S = ker T . , Sp(S ) R+ 6.5.5. (ek )kN H0 S (k )kN k > 0, k N (. 6.6.8). x H1


x - PH0 x =
k=1

(x, ek )ek . = 0, µk :=


, , T P fk := µ-1 T ek , k




H0

k

Tx =
k=1

(x, ek )T ek =
k=1 N

(x, ek )

µk T ek = µk

µk (x, ek )fk .
k=1

(fk )k

, T en T em , µn µm = 1 (T en , T em ) = µn µm

(fn , fm ) =

=

1 1 (T T en , em ) = (S en , em ) = µn µm µn µm = 1 µn (n en , em ) = (en , em ). µn , µm µm

, :
n 2 2

T-
k=1

µk ek fk

x

=
k=n+1

µk (x, ek )fk

=

=
k=n+1

µ2 |(x, ek )|2 k

n+1 k=n+1

|(x, ek )|2

n+1

x 2.




129

, k 0,
n

T-
k=1

µk ek fk µn

+1

0.

6.6.10. . 6.6.9 , , ( ) . : .
6.1. . 6.2. , , . 6.3. - ? 6.4. ? 6.5. ? 6.6. . 6.7. , . 6.8. L2 n + 1 n. x
2

6.9. , x y , x + y + y 2 x + iy 2 = x 2 + y 2 . 6.10. T (ker T )


2

=

= cl im T ,

(im T )



= ker T .

6.11. . 6.12. , , . 6.13. , , . ?


130

. 6.
.

6.14. , T T ?

6.15. , . ? 6.16. ? 6.17. , . 6.18. , P , P P . 6.19. (akl )k,lN , a k, l , , pk , > 0 ,
kl

0

akl pk pl ;
k=1 l=1

akl pl p

k

(k , l N).

T B (l2 ) , (ek , el ) = akl T = ( ek l2 , N).


7

7.1. 7.1.1. . U () : int U = . (1) 0 < 1 cl U + (1 - ) int U int U ; (2) core U = int U ; (3) cl U = cl int U ; (4) int cl U = int U . (1) u0 int U 5.2.10 int U - u . 0 < 1 cl U cl U U + (1 - )(int U - u0 ) = = U + (1 - ) int U - (1 - )u0 U + (1 - )U - (1 - )u0 U - (1 - )u0 . , (1 - )u0 + cl U U , , U (1 - ) int U + cl U . , cl U (1 - ) int U . (2) , int U core U . u0 int U u core U , u1 U 0 < < 1 u = u0 + (1 - )u1 . u1 cl U , (1) : u int U .
0

-


132

. 7.

(3) , cl int U cl U , int U U . , , u cl U , , u0 int U u := u0 +(1-)u, : u u 0 u int U , 0 < < 1. , u cl int U . (4) int U U cl U , int U int cl U . u int cl U , , (2), u core cl U . , u0 int U , u1 cl U 0 < < 1, u = u0 + (1 - )u1 . (1), : u int U . 7.1.2. . c int U = 7.1.1 (2) 7.1.1 (4) . , , . , U := Bc0 X , c0 , X c0 , . . . , , core U = cl U = Bc0 . 7.1.3. . U () X , U . , U , , (n )nN (un )nN , n R+ , n=1 n = 1 un U , n=1 n un X u, u U . 7.1.4. . (1) ( u0 ) x x + u0 . (2) . (3) . , U . U = , . U = , 7.1.4 (1) , 0 U , , U = {pU < 1}, pU U . (un )nN (n )nN U R+ , n=1 n = 1 u := n=1 n un U . 7.1.4 (2), u cl U = {pU 1} , , pU (u) = 1. , , pU (u) n=1 n pU (un ) 1 = n=1 n (. 7.2.1). , 0 =


7.1.
n=1

133

(n - n pU (un )) = n=1 n (1 - pU (un )). n = 0 n N. . (4) . (5) . 7.1.5. . . U . X X = nN n cl U . X , , n N, int n cl U = . , int cl U = 1/n int n cl U = . , 0 core cl U . , 7.1.1 : 0 int cl U . , > 0 , cl U BX . , : 1 > 0 cl U BX . , U /2 BX . x0 /2 BX . := 2, y1 1/ U y1 - x0 1/2 . u1 U , 1/2 u1 - x0 1/2 = 1/4 . x0 := -1/2 u1 + x0 := 4 , u2 U , 1/4 u2 + 1/2 u1 - x0 1/2 = 1/8 . , (un )nN U , , n=1 1/2n un n x0 . = 1 U n=1 1/2 , : x0 U. 7.1.6. , , . , int U core U core cl U . u core cl U , cl(U - u) = cl U - u . (. 7.1.4 (1)). , U - u 7.1.5. 5.2.10, u


134

. 7.

int U . , int U = core U = core cl U . 7.1.1, int cl U = int U. 7.1.7. . . 7.1.8. . 7.1.5 , 7.1.7 . , . , , . , , . . , . 7.1.9. . , . , , , f . {|f | 1} . 7.2. 7.2.1. p : X R (X, · ). : (1) p ; (2) p ; (3) p ; (4) {p 1} ; (5) p := sup{|p(x)| : x 1} < +, . . p . (1) (2) (3) (4) . (4) (5): t > 0, t-1 BX {p 1}. x 1 p(x) t. , -p(-x) p(x) , -p(x) t x BX . p t < +. (5) (1): p x, y X p(x) - p(y ) p(x - y ); p(y ) - p(x) p(y - x).


7.2. |p(x) - p(y )| p(x - y ) p(y - x) p x-y .

135

7.2.2. . , , . p . {p 1} (. 4.3.8). dom p , , 3.8.8, {p 1} . {p 1} . 7.2.1. 7.2.3. . : X , 7.2.1 (1)­7.2.1 (5) : p . , dom p = X , dom p , X . 7.2.4. . X Y () . E X Y : (1) E , . . x X Y {T x : T E }; (2) E . (1) (2): q (x) := sup{p(T x) : T E }, p Y . , q , , q < +, . . p(T (x - y )) q x - y T E . , T â-1 ({dp }) {d · / q } T E , > 0 . E . (2) (1): . 7.2.5. . X Y . (T ) : (1) x X sup T x < +; (2) sup T < +.


136

. 7. , 7.2.5 (2) 7.2.4

(2). 7.2.6. X U X . : (1) U X ; (2) x X { x | x : x U } F. 7.2.5. 7.2.7. X U X . : (1) U X ; (2) x X { x | x : x U } F. (2) (1). X (. 5.5.7), X X (. 5.1.10 (8)), 7.2.6. 7.2.8. . 7.2.7 (2) : U (X, (X, X )) , 5.1.10 (4), : U . 7.2.6 7.2.7 10.4.6. 7.2.9. . X, Y (Tn )nN , Tn B (X, Y ), . E := {x X : lim Tn x}. : (1) E = X ; (2) supnN Tn < + E X . (1), (2) T0 : X Y , T0 x := lim Tn x, T0 lim inf Tn . E = X , , , cl E = X . , x X (Tn x)nN Y ( ). , supnN Tn < + (1) (2) .


7.2.

137

(2) x X , x E m, k N Tm x - Tk x = Tm x - Tm x + Tm x - Tk x + Tk x - Tk x Tm x - Tm x + Tm x - Tk x + Tk x - Tk x T
m

x - x + Tm x - Tk x + T
n nN

k

x-x

2 sup T

x - x + T m x - Tk x .

> 0 , -, x E , 2 supn Tn x - x /2, -, n N , Tm x - Tk x /2 m, k n. Tm x - Tk x , . . (Tn x)nN Y . Y , : x E . , (2) (1) . , x X T0 x = lim Tn x lim inf . T
n

x,

7.2.10. . 7.2.9 (1) 7.2.9 (2) , (Tn ) T0 X . , () Q X sup
xQ

Tn x - T0 x 0.

, pn (x) := sup{ Tm x - T0 x : m n} . pn (x) pn+1 (x) pn (x) 0 x X . , : , , .


138

. 7. X (Tn )nN Tn = +, Tn x = +. .

7.2.11. . Y . B (X, Y ) supn x X , supn

. 7.2.3 4.7.4. 7.2.12. . X Y . (Tn,m )n,mN B (X, Y ) , supn Tn,m = + m N, x X , supn Tn,m x = + m N. 7.3. 7.3.1. X Y . F X â Y , x1 , x2 X 1 , 2 R+ , 1 + 2 = 1, F (1 x1 + 2 x2 ) 1 F (x1 ) + 2 F (x2 ). : (x1 , y1 ), (x2 , y2 ) F 1 , 2 0, 1 + 2 = 1, 1 y + 2 y2 F (1 x1 + 2 x2 ), y1 F (x1 ) y2 F (x2 ). : x1 x2 dom F , . x1 , x2 dom F y1 F (x1 ), y2 F (x2 ), 1 (x1 , y1 ) + 2 (x2 , y2 ) F 1 , 2 0, 1 + 2 = 1 (. 3.1.2 (8)). 7.3.2. . X, Y . , X â Y , X Y . , (x, y ) := x X + y Y , . . X â Y X Y 1. , , . . ( , ()). .


7.3.

139

7.3.3. . F X â Y , X Y , , , , , F . 7.3.4. . . F X â Y U X . U dom F = , F (U ) = . , (yn )nN F (U ), . . yn F (xn ), xn U n N. , , (n ) , n = 1 , , Y y := n=1 n=1 n yn . ,


n xn =
n=1 n=1

n xn
n=1

n sup U = sup U < +

U . X , 5.5.3 X x := n=1 n xn . , X â Y


(x, y ) =
n=1

n (xn , yn ).

F U , : (x, y ) F x U . , y F (U ). 7.3.5. . X Y , F X â Y (x, y ) F . F x y , y core F (X ). : . : 7.1.4 : x = 0 y = 0. U BX > 0, U := BX . U , 7.3.4, F (U ) . , F (U ) 7.1.6.


140

. 7.

y Y . , 0 core F (X ), R+ , y F (X ). , x X y F (X ). x 1, . x > 1, := x -1 < 1. , 7.3.1, : y = (1 - )0 + y (1 - )F (0) + F (x) F ((1 - )0 + x) = F (x) F (BX ) = F (U ). , x = 1, . . x BX . 7.3.6. . F , 7.3.5, F (x, y ). 7.3.7. . , 7.1.5. . 7.3.5 , , y core cl F (X ), F (X ). 7.3.4 , dom F . 7.3.5 7.1.5 . 7.3.5 . 7.3.8. . X Y F X âY . F , F . 7.3.9. . . 7.3.10. F , (xn ) X (yn ) Y , xn dom F, yn F (xn ) xn x, yn y , x dom F y F (x). 7.3.11. X Y F X â Y . , , (x, y ) F y core im F . F x y . , ¨ 7.3.5.


7.4.

141

7.3.12. . F X â Y , X Y . 7.3.13. . X, Y F X â Y , im F . F . U X . y F (U ), x U , (x, y ) F . , y core im F . 7.3.5, F (U ) y , U x. , F (U ) . 7.4. 7.4.1. . T L (X, Y ) , T B (X, Y ) T . 7.4.2. X , Y T X Y . im T = Y Y . , im T = Y , . , T , T -1 L (Y , X ). - T T -1 B (Y , X ), Y ( ). coim T := X/ ker T , -. 5.5.4, coim T . , 2.3.11 T T coim T . - 5.1.3, , T . . , im T = im T = Y . 7.4.3. . T : coim T Y T , T = T . 7.4.4. . .


142

. 7.

T B (X, Y ) im T = Y . T , . 7.4.5. . X, Y T B (X, Y ). T X Y , . . ker T = 0 im T = Y , T -1 B (Y , X ). 7.4.4. 7.4.6. . 7.4.5 : . , : T x = y , T B (X, Y ), X, Y , , x y . 7.4.7. . X, Y T L (X, Y ) . T . T
-1

, T

-1

(Y ) = X .

7.4.8. . X, Y T L (X, Y ). : (1) T B (X, Y ); (2) (xn )nN X x X , xn x T xn y , y Y , y = T x. (2) T . 7.4.9. . X1 X ( ), X1 , , X2 , X = X1 X2 (. . X1 X2 = 0, X1 X2 = X ). 7.4.10. . X1 X : (1) X1 ; (2) X1 , . . P B (X ) , P 2 = P im P = X1 .


7.4.

143

(1) (2): P X X1 X2 (. 2.2.9 (4)). (xn )nN X xn x, P xn y . , P xn X1 n N. X1 , 4.1.19, y X1 . (xn - P xn X2 n N) , x - y X2 . , P (x - y ) = 0. , y = P y , . . y = P x. 7.4.8. (2) (1): , X1 = im P . (xn )nN X1 , xn x X . P xn P x P . P xn = xn , xn im P , P . x = P x, . . x X1 , . 7.4.11. . (1) . (2) c0 l . X := l (Q) Y := c0 (Q), Q . t R t (tn ) , tn t. Qt := {tn : n N}. , Qt Qt t = t . t , Qt - X/ Y V := {t : t R}. t = t t = t , V . f (X/ Y ) Vf := {v V : f (v ) = 0}. , Vf = nN Vf (n), Vf (n) := {v V : |f (v )| 1/n}. m N, v1 , . . . , vm Vf (n) , v1 , . . . , vm Vf (n) n k := |f (vk )|/f (vk ), x = k=1 k vk x 1 f m m |f (x)| = | k=1 k f (vk )| = | k=1 |f (vk )|| m/n. , Vf (n) . , Vf . , F (X/ Y ) v V , ( f F ) f (v ) = 0. q : x x(q ) (q Q) l (Q), . . ( q Q) q (x) = 0 x = 0 x l (Q). . (3) ( 6.2.6). ,


144

. 7.

X , dim X 3, P P 1, X (= ). : . , , ( ) . 7.4.12. XA = B . X, Y , Z ; A B (X, Y ), B B (Y , Z ). , , im A Y . A X @ @ B@ -Y X @ R @? Z

X B (Y , Z ) , ker A ker B . . im A = Y X0 L (Y , Z ) , X0 A = B , . , U Z X0-1 (U ) = A(B -1 (U )). B -1 (U ) B , A(B -1 (U )) . X0 B (im A, Z ) X X0 P , P - Y im A. . 7.4.13. . Z . 7.4.14. AX = B . X, Y , Z , A B (Y , X ), B B (Z, X ). , , ker A Y .


7.4. A X I @ @ B@ @ Z Y 6 X

145

X B (Z, Y ) , im A im B . . Y ker A Y0 , Y0 . 5.5.9 (1), Y0 . A0 A Y0 . , im A0 = im A im B . , 2.3.13 2.3.14 A0 X0 = B , , X0 := A-1 B . , X0 , 0 L (Z, Y0 ), . X0 . (. 7.4.8), zn z A-1 B zn y , B zn B z , B . 0 , A0 A-1 X â Y0 , 0 , , 7.3.10 y = A-1 B z . 0 7.4.15. . X . 7.4.16. . , . . (. 2.3.15). 7.4.17. . . . ·
2

·

1

X .


146 (X, ·

. 7. IX ) I @ @ IX @ (X, · 6 X (X, ·
1

1

2

)

)

X . IX . 7.4.18. . X, Y T L (X, Y ) . x gr T := x X + T x Y x X . · gr T · X . , (X, · gr T ) . , · gr T · X . . 7.4.19. . X , X , - . 7.4.20. . X X = X1 X2 , X1 , X2 Lat(X ). X1 X2 , . : . : Z - , . . Y T B (Y , Z ) : Z = T (Y ). , , , , T . z 0 := T -1 z Y . , (Z, · 0 ) z = T T -1 z T T -1 z = T z 0 , . . · 0 · Z . X1 X2 , (X1 , · 1 ) (X2 , · 2 ). · k · X Xk k := 1, 2. x1 X1 x2 X2 x1 + x2 0 := x1 1 + x2 2 . X · , · X . (X, · 0 ) . 7.4.17.


7.5. 7.5.

147

7.5.1. . f : X R· () X . : (1) U := int dom f = f |U ; (2) V , sup f (V ) < +. (1) (2): . (2) (1): , U = . 7.1.1, , u U W , f , . . t := sup f (W ) < +. , , u := 0, f (u) := 0 W . f R+ , 1, v W : f (v ) = f (v + (1 - )0) f (v ) + (1 - )f (0) = f (v ); f (v ) + f (-v ) f (v ) + f ((-v )) = =2 1 1 f (v ) + f (-v ) 2 2 2f (0) = 0.

, |f (W )| t, f u := 0. 7.5.2. . x int dom f f x, x (f ) . l x (f ), ( x X ) l(x) l(x) + f (x) - f (x) , , l x. , l 7.5.1. 5.3.7, , l . 7.5.3. . . 7.5.4. . f : X R· , epi f .


148

. 7.

7.5.5. . . f . core dom f = , . x core dom f , t := f (x) F := (epi f )-1 R â X . , > 0 F (t + BR ) x + BX . , , f (x + BX ) t + 1. 7.5.1, f int dom f . x int dom f , , 7.1.1, core dom f = int dom f . 7.5.6. . 7.3.6, , f , , int dom f . , x0 int dom f , -, L > 0, -, U , f (x) - f (x0 ) L x - x0 , x U . 7.5.7. . f : X R· X x core dom f . f (x) x (f ) X . . 7.5.8. . 7.5.7 f : X R· x X , . . x (f ) := x (f ) X . () . ( ) , X # , ( ) X , , . 7.5.2 7.5.7 . , , , f := p X , : | |(p) := | |(p) X .


7.5.

149

7.5.9. . f : Y R· Y . , , X T B (X, Y ). x X , T x core dom f , x (f T ) = T x (f ) T . . l X x (f T ), 3.5.3 l1 f T x, l = l1 T . , , 7.5.7, l1 Y , , T x (f ). 7.5.10. . X, Y , T B (X, Y ) p : Y R . | |(p T ) = | |(p) T . l | | (p T ), l = l1 T l1 p (. 3.7.11). 7.5.2 , l1 . , | |(p T ) | | (p) T . . 7.5.11. . X0 X l0 X0 . l X , l0 . ( , l = l0 .) p := l0 · , : X0 X . 7.5.10 l0 | | (p ) = | | (p) = l0 | |( · ) . , | | ( · X ) = BX . 7.5.12. . U X . L X L int U = , H X , H L H int U = .


150

. 7.

7.5.13. . 7.5.12 , . 7.5.14. . X
0

X .

cl X0 = {ker f : f X , ker f X0 }. , (f X , ker f X0 ) ker f cl X0 . x0 cl X0 , x0 , / cl X0 . 7.5.12 7.5.13 f0 (XR ) , ker f0 cl X0 f0 (x0 ) = 1. , Re-1 f0 X0 x0 . , . 7.6. 7.6.1. X, Y () ( F) X , Y . , , T X Y . y Y y T X y y T . 7.6.2. . T : Y X , 7.6.1, T : X Y . 7.6.3. . T T B (X, Y ) B (Y , X ). , B (X, Y ) L (Y , X ), . , y = sup{|l(y ) : l | |( · )}, T = sup{ T y y : y 1} =

= sup{|y (T x)| : = sup{ T x : .

1, x 1} = x 1} = T ,


7.6.

151

7.6.4. . (1) X, Y , T B (X, Y ). , T B (X, Y ) T B (X , Y ). (·)X : X X X , . . x x := ( · , x) (·)Y : Y Y Y , . . y y := ( · , y ). T B (Y , X ) T B (Y , X ) : X -Y (·)X (·)Y X -Y , , y Y T y = (T y ) . x X T y (x) = y (T x) = (T x, y ) = (x, T y ) = (T y ) (x). x . (2) : X0 X X0 X . : X X0 , (x )(x0 ) = x (x0 ) x0 X0 x X , . . X - X0 0
T T T T


.

7.6.5. . X Y . Y - X . , , , . 7.6.6. . X - Y T , X - Y . X -Y X -Y
T T T


152

. 7.

: X X : Y Y X X Y Y (. 5.1.10 (8)). x X . , T x = (T x) . y Y . T x (y ) = x (T y ) = T y (x) = y (T x) = (T x) (y ). y Y . 7.6.7. . , . , X - Y
R S T

X - Y
R S

T

Z

Z

. R = S T R = (S T ) = T S , . , R = S T . 7.6.6, (Rx) = R x = S T x = S (T x ) = S (T x) = (S T x) x X . , R = S T . 7.6.8. . X X .
0

X , X

0

X0 := {f X : ker f X0 } = | |( (X0 ));

X0 := {x X : f X0 f (x) = 0} = {ker f : f X0 }.

X0 () X0 , X0 () X0 . .

7.6.9. . X, Y . T B (X, Y ) , im T .


7.6.

153

7.6.10. T B (X, Y ) , T , X im T , . : . : 7.4.2. 7.6.11. . T B (X, Y ). (1) (im T ) = ker(T ); (2) T , im T =


ker(T ),

(ker T ) = im(T ).

(1) y ker(T ) T y = 0 ( x X ) T y (x) = 0 ( x X ) y (T x) = 0 y (im T ) . (2) cl im T = ker(T ) 7.5.13. , im T . x = T y T x = 0, x (x) = T y (x) = y (T x) = 0, . . x (ker T ) . , im(T ) (ker T ) . x (ker T ) . , T im T , , X - im T x y0 F
T

- Y y

y 0 (im T ) , y 0 T = x . y Y , y y 0 . , x = T y , . . x im(T ). 7.6.12. . X, Y . T B (X, Y ) , T B (Y , X ). : 7.6.11 (2), im(T ) = (ker T ) . (ker T ) , , . : cl im T = Y . , 0 = Y = (cl im T ) = (im T ) = ker(T ) 7.6.11. S B (im(T ), Y ), S T = IY . r := S = 0 . , T y 1/r q y y Y .


154

. 7.

, cl T (BX ) 1/2r BY . , T (BX ) T (BX ) 1/4r BY . , T . y cl T (BX ). , y / , T (BX ). , , X Y , , F := R. 7.5.12 y Y , y y y (y ) sup y (T x) = T y
x 1



1 y. r

y 1/r > 1/2r. , T . . Y0 := cl im T , : Y0 Y . T = T , T : X Y0 , T x = T x x X . , im(T ) = im(T ) = T (im( )) = T (Y0 ), (Y ) = Y0 (. 7.6.4 (2)). , T . , T . , im T = im T . 7.6.13. . . . . - X
k-1
k - Xk - X

T

Tk

+1

k+1

- . . .

, . . . - X
k-1

k Xk - X -

T

Tk

+1

k+1

- . . . . .

: im Tk+1 = ker Tk+2 , T , ker(Tk ) = (im Tk ) = (ker T
k+1

k+1

) = im(T

k+1

).




155
k+1

: T 7.6.11 (2),

. ) .
k

(im Tk ) = ker(Tk ) = im(T

k+1

) = (ker T

k+1

Tk 7.6.12, im T . 7.5.14, im T k = ((im Tk ) ) = ((ker T , ker T
k+1 k+1

) ) = ker T

k+1

.

.

7.6.14. . T (ker T ) coker(T ) (coker T ) ker(T ). 2.3.5 (6) 0 ker T X Y coker T 0 . 7.6.13 , 0 (coker T ) Y X (ker T ) 0 . 7.6.15. . T T .
T T

7.6.16. . Sp(T ) = Sp(T ).
7.1. , . 7.2. , . 7.3. ? 7.4. X, Y T : X Y . , t R T x Y t x X , ker T = 0 im T . 7.5. .


156

. 7.

7.6. T X l1 (E). ker T . 7.7. , C ([a, b]), C (1) ([a, b]), . 7.8. X Y , X Y . , X Y . 7.9. X1 , X2 , X1 X2 = 0. , X1 + X2 , inf { x1 - x . 7.10. (amn ) , , (x(m) ) l1 , (m) ax (). , n=1 mn n x l1 , a x () n=1 mn n m N. 7.11. T H , T x | y = x | T y x, y H . T . 7.12. X + X : X = X + - X + . , t > 0 , x X x = x1 - x2 , x1 , x2 X + , : x1 t x , x2 t x . 7.13. p, q X , dom p dom q dom p - dom q = dom q - dom p X . , (. 3.10) (p + q ) = p + q . 7.14. p , X , T X . , T p. , p T . 7.15. f : X R· X f f (x ) := sup{ x | x - f (x) : x dom f }
2

/x

1

: x1 = 0, x1 X1 , x2 X2 }

(x X ); (x X ).

(x) := sup{ x | x - f (x ) : x dom(f )}


, f f = f

.


7.16. , l .


157


7.17. X , X . , c0 lp (1 p +) . 7.18. X Y T B (X, Y ) , im T . T . 7.19. X0 X , X0 X/X0 . X .


8

8.1. 8.1.1. . X . BX X ( X ), x X x = sup{|l(x)| : l }. , , U X , sup{|l(u)| : u U } < + l , sup U < +, . 8.1.2. . (1) BX 5.1.10 (8) 7.2.7. (2) 0 () 0 BX , 1 () . 1 (3) ext(BX ) 3.6.5 BX = | |( · X ), . (, , C ([0, 1], R)). (4) X, Y ( F) Y Y .
B

:= {

(y , x)

:y

Y

, x BX },


8.1.
(y , x)

159

(T ) := y (T x) y Y , x X T B (X, Y ). , |
(y , x)

(T )| = |y (T x)| y

Tx y

T

x,

. .

(y , x)

B (X, Y ) . , T B (X, Y ) x 1} = sup{|y (T x)| : y
(y , x) Y

T = sup{ T x :

, x 1} =

= sup{|

(T )| :

(y , x)



B

}.

, B ( B (X, Y )). Y , B . , U , {|y (T x)| : T U } x BX y Y , {T x : T U } Y x X . 7.2.5 , sup U < +. 8.1.3. . X X . , , f : D X D C X , D ( C R R2 ). : (1) z0 D lim f (z ) - f (z0 ) ; z - z0

z z0

(2) z0 D l lim

z z0

l f (z ) - l f (z0 ) , z - z0

. . l f : D C l . (1) (2): . (2) (1): , z0 = 0 f (z0 ) = 0. 2, D , . . 2D D , D := BC . , D () T,


160

. 8.

T ( ) T := {z C : |z | = 1}. z1 , z2 D \ 0 l f ( l ) : 1 l f (zk ) = zk 2 i
2T

l f (z ) dz z (z - zk )

(k := 1, 2).

, z1 = z2 , , z 2T |z - zk | (k := 1, 2), l f D , 1 f (z1 ) f (z2 ) l = - z1 - z2 z1 z2 1 1 · z1 - z2 2 i
2T

=

l f (z )

1 1 - z (z - z1 ) z (z - z2 )

dz =

=

1 2
2T

l f (z )

1 dz z (z - z1 )(z - z2 )

M sup |l f (z )| < +
z 2T

M > 0. , : sup
z1 =z2 ;z1 ,z2 =0 |z1 |,|z2 |

-

1 |z1 - z2 |

f (z1 ) f (z2 ) < +. - z1 z2

. 8.1.4. . f : D X , 8.1.3 (1) (, , 8.1.3 (2) - ), .


8.1.

161

8.1.5. . . , f 8.1.3 (1), f . , f 8.1.3 (2) := BX , f . 8.1.3 (2) 8.1.2 (4), . . f : D B (X, Y ), Y := BY := B , . , : . 8.1.6. . X - f (z )dz (. 4.8.5), . . , () : T ( ) f (z )dz :=
T

f d ,

, , (. 5.5.9 (6)). , . . . 8.1.7. . D f : D X X . , , F (, D ). f (z )dz = 0.
F

z0 int F f (z0 ) = 1 2 i
F

f (z ) dz . z - z0


162

. 8.

8.1.3 . , , , , 8.1.2 (1) 5.5.9 (6) . 8.1.8. . X - . 8.1.9. . f : D X z0 D . U := {z C : |z - z0 | < } , cl U D , ( )


f (z ) =
n=0

cn (z - z0 )n ,

cn cn = 1 2 i
U

f (z ) (z - z0 )n

+1

dz =

1 dn f (z0 ). n! dz n

u (u - z )-1 f (z ) = z - z0 , . . 1 1 = u-z (u - z0 ) 1 -
z -z0 u-z0

1 2 i
U

f (u) du u-z

(z cl U )

=

=
n=0

(z - z0 )n . (u - z0 )n+1

u U . ( U = U + q D - q > 0, cl U D .) ,


8.1.

163

sup f ( U ) < +, , f (z ) z cl U . U 8.1.7, , U . U , U . 8.1.10. . f : C X sup f (C) < +, f . > 0, D 8.1.9, cn sup f (z ) ·
z T -n

sup f (C) ·

-n

n N > 0. , cn = 0 n N. 8.1.11. . T . Sp(T ) = , R(T , · ) C, , 5.6.21. , 5.6.15, R(T , ) 0 || +. 8.1.10 , R(T , · ) = 0. , 5.6.15, , || > T R(T , )( - T ) = 1. . 8.1.12. ¨ r(T ) = sup{|| : Sp(T )} T B (X ), X , . . . , r(T ) , 5.6.16. , r(T ) = 0 . r(T ) > 0. C , || > sup{|µ| : µ Sp(T )}. ||-1 (. 5.6.15) f (z ) := R (T , z -1 ), z = 0, z 0, z = 0.
-1

:

res(T ),

8.1.9 5.6.17, , ||-1 < r(T )-1 . , || > r(T ).


164

. 8.

8.1.13. K C H (K ) K , . . (f H (K ) f : dom f C , dom f K ). f1 , f2 H (K ) f1 f2 , D dom f1 dom f2 , K D f1 |D = f2 |D . H (K ). 8.1.14. . 8.1.13 H (K ) := H (K )/. f H (K ), f H (K ), f K . 8.1.15. f , g H (K ). f1 , f2 f , g1 , g2 g . , ,

x dom f1 dom g1 1 (x) := f1 (x) + g1 (x), x dom f2 dom g2 2 (x) := f2 (x) + g2 (x). 1 , 2 H (K ), 1 = 2 . K D1 dom f1 dom f2 K D2 dom g1 dom g2 , f1 f2 g1 g2 , , D1 D2 1 2 . 8.1.16. . , 8.1.15, f1 f2 f1 + f2 . . 8.1.17. H (K ) , 8.1.16, . 8.1.18. . H (K ) K . 8.1.19. K C, R : C\K X X . , , f H (K ) f1 , f2 f . F1 (K, dom f1 ), F2 (K, dom f2 ), f1 (z )R(z )dz =
F
1

f2 (z )R(z )dz .
F
2


8.2.

165

K D int F1 int F2 , D f1 |D = f2 |D . K F D . f1 R dom f1 \ K f2 R dom f2 \ K , f1 (z )R(z )dz =
F F
1

f1 (z )R(z )dz ,

f2 (z )R(z )dz =
F F
2

f2 (z )R(z )dz

( ). f1 f2 D . 8.1.20. . h H (K ), 8.1.19 h R h(z )R(z )dz :=
F

f (z )R(z )dz ,

h = f F

(K, dom f ).

8.1.21. . h(z ) 8.1.20 . , z K f1 , f2 h w := f1 (z ) = f2 (z ). w h z h(z ) = w. , 8.1.20 R U \ K , int U K . 8.2. 8.2.1. . X () T X , . . T B (X ). h H (Sp(T )) R(T , · ) T RT h := 1 2 i h(z )R(T , z )dz


166

. 8.

( h). f , Sp(T ), f (T ) := RT f := RT f . f (T ) = 1 2 i f (z ) dz . z-T

8.2.2. . , , . . . A1 , A2 ( ). A1 A2 A1 A2 ( A2 ) R, . . R L (A1 , A2 ) , R(ab) = R(a)R(b) a, b A1 . R , ker R = 0. R : A1 A2 A1 A2 . A2 () L (X ) X ( ), A1 A2 () A1 X A1 . X A1 . X R A X1 , R(a) a A, R1 : A L (X1 ), R1 (a)x1 = R(a)x1 x1 X1 a A, R ( X1 ). X = X1 X2 R(a) a A, , R () R1 R2 ( X1 X2 ). (= , ). 8.2.3. . RT T X n T . f (z ) = n=0 cn z


8.2.


167

( Sp(T )), f (T ) = n=0 cn T n ( B (X )). , RT , . RT . f1 , f2 H (Sp(T )) F1 , F2 , Sp(T ) int F1 F1 int F2 F2 D , f1 f1 , f2 f2 D . , 5.6.19, RT f1 RT f2 = f1 (T )f2 (T ) = 11 2 i 2 i
F
1

f1 (z1 ) dz1 z1 - T
F
2

f2 (z2 ) dz2 = z2 - T

= 11 2 i 2 i
F
2

f1 (z1 )R(T , z1 )dz1 f2 (z2 )R(T , z2 )dz2 =
F
1



=

11 2 i 2 i
F1 F
2

f1 (z1 )f2 (z2 )R(T , z1 )R(T , z2 )dz2 dz1 = R(T , z1 ) - R(T , z2 ) dz2 dz1 = z2 - z1 f2 (z2 ) dz2 R(T , z1 )dz1 - z2 - z1
F
2

=

11 2 i 2 i
F1 F
2

f1 (z1 )f2 (z2 )

1 = 2 i
F
1

1 f1 (z1 ) 2 i 1 f2 (z2 ) 2 i

1 - 2 i
F
2

f1 (z1 ) dz1 R(T , z2 )dz2 = z2 - z1
F
1

=

1 2 i


f1 (z1 )f2 (z1 )R(T , z1 )dz1 - 0 = f1 f2 (T ) = RT (f1 f2 ).

:= T, res(T ), f (z ) = n=0 cn z n . 5.6.16 5.5.9 (6),


168

. 8. 1 2 i


f (T ) =

f (z )
n=0

z

-n-1

T n dz =

=


1 2 i

f (z )z
n=0

-n-1

T n dz =


=
n=0

1 2 i


f (z ) n dz T = z n+1

cn T
n=0

n

8.1.9. 8.2.4. . 8.2.3 . 8.2.5. . f H (Sp(T )), T B (X ), f (Sp(T )) = Sp(f (T )). , Sp(f (T )) f -1 () z (C \ f -1 ()) dom f g (z ) := g Sp(T ), f ) = ( - f )g = 1C . 8.2.3, , . , f -1 () Sp Sp(f (T )) f (Sp(T )). Sp(T ). = z g (z ) := f () - f (z ) ; -z Sp(T ) = . ( - f (z ))-1 . g ( - res(f (T )). (T ) = , . .

g () := f ().

, g ( ). 8.2.3 g (T )( - T ) = ( - T )g (T ) = f () - f (T ). , f () res(f (T )), R(f (T ), f ())g (T ) - T . , res(T ), . , f () C \ res(f (T )) = Sp(f (T )), . . f (Sp(T )) Sp(f (T )).


8.2.

169

8.2.6. K ; g : dom g C , dom g K . f H (g (K )) g (f ) := f g . g H (g (K )) H (K ). 8.2.7. . g : dom g C, dom g Sp(T ) T B (X ), : g H (Sp(T )) H (Sp(g (T ))) @ @ Rg(T ) @ RT @ R @? B (X ) f H (g (Sp(T ))) f : D C , f f D g (Sp(T )) = Sp(g (T )). F1 (Sp(g (T )), D ) F2 (Sp(T ), g -1 (int F1 )). , g ( F2 ) int F1 , , z2 (z1 - g (z2 ))-1 int F2 z1 F1 . , 8.2.3 R(g (T ), z1 ) = 1 2 i
F
2



R(T , z2 ) dz z1 - g (z2 )

2

(z1 F1 ).

, Rg
(T )

f=

1 2 i
F
1

f (z1 ) dz1 = z1 - g (T ) R(T , z2 ) dz2 dz1 = z1 - g (z2 )
F
2

11 = 2 i 2 i
F
1

f (z1 )

f (z1 ) dz1 R(T , z2 )dz2 = z1 - g (z2 )
F
1

=

11 2 i 2 i
F
2




170 = 1 2 i
F
2

. 8. f (g (z2 ))R(T , z2 )dz2 = RT g (f )


( g (z2 ) int F1 z2 F2 , f (g (z2 )) = 1 2 i
F
1

f (z1 ) dz1 . z1 - g (z2 )

8.2.8. . : f g (T ) = f (g (T )) f H (g (Sp(T ))). 8.2.9. . Sp(T ) T , , := Sp (T ) \ . 8.2.10. () , . , , P := (T ) := 1 2 i (z ) dz . z-T

P X () X := im P T . 2 = , , 8.2.3, (T )2 = (T ). , T = RT IC , IC : z z , T P = P T ( IC = IC ). , 2.2.9 (4), X T . 8.2.11. . P 8.2.10 , . 8.2.12. . T B (X ). X X = X X , T T T 0 0 T ,


8.2. T T X T T X Sp(T ) = , Sp(T ) = .


171 ,

+ = Sp(T ) = 1C , 8.2.3 8.2.10 T . 8.2.5 8.2.3 0 = IC (Sp(T )) = Sp ( IC (T )) = Sp (RT ( IC )) = = Sp(RT RT IC ) = Sp(P T ). P T T 0 0 0 .

. - P T -T 0


0

,

. . - P T ( 0) \ 0 . , 0 Sp D z

, - T . , Sp(T ) \ 0 Sp(P T ) \ 0 = (T ) 0 . / D , D , 0 D D , / D h(z ) :=


zD

1 ; z h(z ) := 0.

8.2.3, h(T )T = T h(T ) = P . , h = h, X = X X h(T ) h(T ) h(T ) X h(T ) T = T h(T ) = 1. , T , . . 0 Sp(T ). , , / 0 . , Sp(T ) . , res(T ) = res(T ) res(T ). , Sp(T ) = C \ res(T ) = C \ (res(T ) res(T )) = = (C \ res(T )) (C \ res(T )) = Sp(T ) Sp(T ) = Sp(T ). , = , .


172

. 8.

8.2.13. . T B (X ). X = X X RT H (Sp(T )) X R R . : H (Sp(T )) @ @ R


-

H ( ) R
T

H (Sp(T )) @ @

H ( )

@

@ R @? B (X )

RT @ R @ R @? B (X )

(f ) := f , (f ) := f f H (Sp(T )) , f . 8.3. 8.3.1. X, Y . K L (X, Y ) : (1) K : K K (X, Y ); (2) U X V Y , K (U ) V ; (3) K X Y ; (4) X ( K ) Y ; (5) (xn )nN BX (K xn )nN . 8.3.2. . X, Y . (1) K (X, Y ) B (X, Y ); (2) W Z B (Y , Z ) K (X, Y ) B (W, X ) K (W, Z ),


8.3.

173

. . S B (W, X ), T B (Y , Z ), K K (X, Y ), T K S K (W, Z ); (3) IF K (F) := K (F, F) F. , K (X, Y ) B (X, Y ), 8.3.1. Kn K (X, Y ) Kn K , > 0 n K x - Kn x K - Kn x , x BX . , Kn (BX ) - (= B -) K (BX ). 4.6.4, K (X, Y ). . 8.3.3. . 8.3.2 : . , K (X ) := K (X, X ) ( ) B (X ), . . K (X ) B (X ) K (X ) B (X ) K (X ) K (X ). 8.3.4. . 0, K (l2 ), B (l2 ) B (l2 ) l2 . 8.3.5. . 8.3.4 , B (X )/K (X ), ( X ). 8.5. 8.3.6. . T L (X, Y ) , T B (X, Y ) im T . T F (X, Y ). 8.3.7. : T F (X, Y )
n

( x1 , . . . , xn X , y1 , . . . , yn Y ) T =
k=1

xk yk .

8.3.8. . Q T B (X, Y ) T
Q

() X .

:= sup T (Q) .


174

. 8.

· Q B (X, Y ) B (X, Y ) B (X,Y ) . . 8.3.9. . X . : (1) > 0 Q X T F (X ) := F (X, X ) , T x - x x Q; (2) W F (W, X ) B (W, X ) B (W,X ) ; (3) Y F (X, Y ) B (X, Y ) B (X, Y ) . , (2) (1) (3) (1). , (1) (2) (1) (3). (1) (2): T B (W, X ) = Q W W , , 4.4.5, T (Q) X , , > 0 T0 F (X ) , T0 - IX T (Q) = T0 T - T Q . , T0 T F (W, X ). (1) (3): T B (X, Y ). T = 0, . T = 0, > 0 Q X . T0 F (X ) , T0 - IX Q T -1 . T T0 - T Q T T0 - IX Q . , T T0 F (X, Y ). 8.3.10. . , ( , ) 8.3.9 (1)­8.3.9 (3), . 8.3.11. . X , W cl F (W, X ) = K (W, X ), . 8.3.12. . (, , ), -


8.4.



175

. . 70- . . 8.3.13. . . B (l2 )

8.3.14. . lp p = 2 c0 , . 8.4.

8.4.1. -. X0 X X = X0 . > 0 X - X0 , . . x X , x = 1 d(x , X0 ) := inf d · ({x } â X0 ) 1 - . 1 > x X \ X0 . , d := d(x, X0 ) > 0. X0 x , x - x d/(1 - ) ( , d/(1 - ) > d). x := (x - x ) x - x -1 . x = 1. , x0 X0 x-x = x-x d(x, X0 ) ( x - x x0 + x ) - x 1 - . x -x x0 - x = x0 -

=

1 x -x

8.4.2. . X . X , X . . , X , X X1 X2 . . . , Xn+1 = Xn n N. 8.4.1 (xn ), xn+1 Xn+1 , xn+1 = 1 d(xn+1 , Xn ) 1/2, . . 1/2- Xn Xn+1 . , d(xm , xk ) 1/2 m = k . , (xn ) . , 8.3.1 IX .


176

. 8.

8.4.3. T K (X, Y ), X, Y . T , T . . Y0 := im T Y . 7.4.4 T (BX ) Y0 . , T T (BX ) Y0 . 8.4.2 Y0 . 8.4.4. X K K (X ). 1 - K . T := 1 - K . X1 := ker T . , X1 8.4.2. 7.4.11 (1) . X2 X1 . , X2 T (X ) = T (X2 ), , t > 0 T x t x x X2 . (xn ) , xn = 1, xn X2 T xn 0. K , , (K xn ) . y := lim K xn . (xn ) y , y = lim(T xn + K xn ) = lim xn . T y = lim T xn = 0, . . y X1 . , , y X2 . , y X1 X2 , . . y = 0. ( y = lim xn = 1). 8.4.5. > 0 . , (n )nN K , |n | n N. , , 0 = xn ker(n - K ) , n . , {xn : n N} . , , n {x1 , . . . , xn }. , xn+1 = k=1 k xk . n 0 = (n+1 - K )xn+1 = k=1 k (n+1 - k )xk . , k = 0 k := 1, . . . , n. xn+1 = 0.


8.4.



177

Xn := L ({x1 , . . . , xn }). X1 X2 . . . , , , Xn+1 = Xn n N. 8.4.1 (xn ) , xn+1 Xn+1 , xn+1 = 1 d(xn+1 , Xn ) 1/2. m > k , z := (m+1 - K )xm+1 Xm z + K xk Xm + Xk Xm . , K xm+1 - K xk = - =
m+1 xm+1 m+1 xm+1

+ K xm+1 +
m+1

m+1 xm+1

- K xk =

. 2 , (K xn ) . - (z + K xk ) | |d(xm+1 , Xm ) 8.4.6. . X, Y ( F). K K (X, Y ) K K (Y , X ). : , x x |BX X l (BX ). K (BY ) V := {K y |BX : y BY }. , x BX y BY K y |BX (x) = y K |BX (x) = y (K x), Q := cl K (BX ) K : C (Q, F) l (BX ), K g : x


g (K x). , K , , . S := {y |Q : y BY }. , S C (Q, F). , 4.6.10, S . 4.4.5 ,


K (S ). , y BY K y |Q = K y |BX , . . K (S ) = V . : K K (Y , X ), K K (X , Y ). 7.6.6, K |X = K . , K . 8.4.7. (. . ).



178

. 8.

8.4.4 7.6.13, , , . 8.4.5 8.4.6, , . 8.4.8. . , , . , . . K K (X ) 0 = Sp(K ) ker( - K ) = 0. F := C. , {} . g (z ) := 1/z g (z ) := 0 z {} , : {} = g IC . , 8.2.3 8.2.10, P{} = g (K )K . 8.3.2 (2), P{} K (X ). 8.4.3 , im P{} . 8.2.12. F := R . , X 2 C, i(x, y ) := (-y , x). X iX . X iX K (x, y ) := (K x, K y ). X iX (. 7.3.2), , K , Sp(K ). , K . , K . 8.4.9. . X , f : C C , , T B (X ) f (T ) K (X ). T P{} .


8.5. ¨

179

, . . (n )nN Sp(T ) , n = 0 ( , X ). f (n ) f (), f () = 0 . 8.2.5, Sp(f (T )) = f (Sp(T )). , 8.4.8 n f (n ) = f (). , f (z ) = f () z C , , f (T ) = f (). 8.4.2 X . , , Sp(T ). g (z ) := f (z )-1 , , g f = {} . , 8.2.3, P{} = g (T )f (T ), . . 8.3.2 (2) P{} . 8.4.10. . 8.4.9 . 8.5. ¨ 8.5.1. . X, Y ( F). T B (X, Y ) ¨ T N (X, Y ), ker T := T -1 (0) coker T := Y / im T , . . (T ) := dim ker T ; (T ) := dim coker T . ind T := (T ) - (T ) T . 8.5.2. . ¨ . 8.5.3. ¨ . 7.4.20. 8.5.4. T B (X, Y ) T N (X, Y ) T N (Y , X ). ind T = - ind T . 2.3.5 (6), 8.5.3, 5.5.4 7.6.13 : 0 ker T X Y coker T 0;
T


180

. 8. 0 (ker T ) X Y (coker T ) 0; 0 ker(T ) Y X coker(T ) 0; 0 (ker(T )) Y X (coker(T )) 0
T T T

. (T ) = (T ) (T ) = (T ) (. 7.6.14). 8.5.5. , . 8.5.4. 8.5.6. . T . (1) T x = 0 . T y = 0 . T x = y , , . T y = x , , . (2) T x = 0 . T y = 0 . T x = 0 x1 , . . . , xn . T y = 0 y 1 , . . . , y n . T x = y , y 1 (y ) = . . . = y n (y ) = 0. x x0 , . .
n

x = x0 +
k=1

k xk

(k F ).


8.5. ¨

181

T y = x , x (x1 ) = . . . = x (xn ) = 0. y y 0 , . .
n

y = y0 +
k=1

µk y

k

(µk F ).

8.5.5 7.6.11. 8.5.7. . (1) T , T . (2) T L (F n , F m ). rank T . (T ) = n - rank T ; (T ) = m - rank T . T N (F n , F m ) ind T = n - m. (3) X = X1 X2 T B (X ). X T1 0 T . 0 T2

T := dim im T , , T

, T ¨ , ¨ . (T ) = (T1 ) + (T2 ), (T ) = (T1 ) + (T2 ), . . ind T = ind T1 + ind T2 . 8.5.8. . K K (X ). 1 - K . , F := C. 1 / Sp(K ), 1 - K ind (1 - K ) = 0. 1 Sp(K ), 8.4.8 8.2.12 X = X1 X2 , X1 , 1 Sp(K2 ), K2 / K X2 , 1-K 1-K 0
1

0 1-K

.
2

8.5.7 (2), ind (1 - K1 ) = 0. 8.5.7 (3) ind (1 - K ) = ind (1 - K1 ) + ind (1 - K2 ) = 0.


182

. 8.

F := R , 8.4.8. , X iX K (x, y ) := (K x, K y ). ind (1 - K ) = 0. , R C (1 - K ) = (1 - K ) (1 - K ) = (1 - K ). ind (1 - K ) = 0. 8.5.9. . T B (X, Y ). L B (Y , X ) T , LT - 1 K (X ). R B (Y , X ) T , T R - 1 K (Y ). S B (Y , X ) T B (X, Y ), S T . T , T . 8.5.10. L R T . L - R K (Y , X ). LT = 1 + KX (KX K (X )) LT R = R + KX R; T R = 1 + KY (KY K (Y )) LT R = L + LKY 8.5.11. L T K K (Y , X ), L + K T . (L + K )T - 1 = (LT - 1) + K T K (X ) 8.5.12. , . K := L - R K T . . L, R T . 8.5.10, (Y , X ). , 8.5.11, R = L - K , R T .

8.5.13. . , X = Y S T , (S )(T ) = (T )(S ) = 1, : B (X ) B (X )/K (X ) . , . .


8.5. ¨

183

8.5.14. ¨ . ¨ , . : T N (X, Y ). 7.4.10, X = ker T X1 Y = im T Y1 P B (X ) ker T X1 Q B (Y ) Y1 im T . , T1 := T |X1 - T1 : X1 im T . S := T1 1 (1 - Q). S B (Y , X ). , S T + P = 1 T S + Q = 1. : S T , . . S T = 1 + KX T S = 1 + KY KX KY . , ker T ker(1 + KX ), . . ker T ker(1 + KX ), 8.5.8. , im T im(1 + KY ), . . - 1 + KY T . 8.5.15. . T N (X, Y ) S B (Y , X ) T , S N (Y , X ).

8.5.16. . ¨ ¨ . ( ) . 8.5.17. 0 X1 X2 . . . X
n-1

Xn 0

.
n

(-1)k dim Xk = 0.
k=1

n = 1 0 X1 = 0, n = 2 0 X1 X X1 X2 (. 2.3.5 (4)). n := 1, 2 . , m n - 1, n . 0 X1 X2 . . . X
n-2

X1 0 , 2 0 , > 2,
Tn-
1

-- X --

Tn-

2

n-1

- - Xn 0 --


184

. 8.

0 X1 X2 . . . X
n-2 n-2

- - ker T -

Tn-

2

n-1

0.

(-1)k dim Xk + (-1)n
k=1

-1

dim ker T

n-1

= 0.

, T dim X
n-1

n-1

,
n-1

= dim ker T

+ dim Xn .


n-2

0=
k=1

(-1)k dim Xk + (-1)n
n

-1

(dim X

n-1

- dim Xn ) =

=

(-1)k dim Xk .
k=1

8.5.18. . ¨ . T N (X, Y ) S N (Y , Z ). 8.5.16, S T N (X, Z ). 2.3.16, 0 ker T ker S T ker S coker T coker S T coker S 0. 8.5.17 (T ) - (S T ) + (S ) - (T ) + (S T ) - (S ) = 0, ind (S T ) = ind S + ind T . 8.5.19. . T . ind T = - ind ind (S T ) = ind (1 + K . 8.5.8, 1 + T ¨ S S. K ) K .


8.5. ¨ 8.5.20. N (X, Y ) K K (X, Y ), T + K ind T . S KY K (Y ) S T = 1 + KX ;

185

. ¨ : T N (X, Y ) ind (T + K ) = T , . . K
X

K (X )

TS = 1 + K

Y

( S 8.5.14). , S (T + K ) = S T + S K = 1 + KX + S K 1 + K (X ); (T + K )S = T S + K S = 1 + KY + K S 1 + K (Y ), . . S T + K . 8.5.14, T + K N (X, Y ). 8.5.19 ind (T + K ) = - ind S ind T = - ind S . 8.5.21. . ¨ : N (X, Y ) , ind : N (X, Y ) Z . T N (X, Y ). 8.5.14 S B (Y , X ), KX K (X ) KY K (Y ) , S T = 1 + KX ; T S = 1 + KY .

S = 0, X Y 8.4.2, . . 8.5.7 (2). S = 0, V B (X, Y ), V < 1/ S , 5.6.1 : S V < 1 V S < 1. , 5.6.10 1 + S V 1 + V S B (X ) B (Y ) . (1 + S V )-1 S (T + V ) = (1 + S V )-1 (1 + KX + S V ) = = 1 + (1 + S V )-1 K
X

1 + K (X ),


186

. 8.

. . (1 + S V )-1 S T + V . , S (1 + V S )-1 T + V . , (T + V )S (1 + V S )-1 = (1 + KY + V S )(1 + V S )-1 = = 1 + KY (1 + V S )-1 1 + K (Y ). 8.5.12, T + V . 8.5.14, T + V N (X, Y ). N (X, Y ). , ¨ (. 8.5.12), 8.5.19 8.5.18 ind (T + V ) = - ind ((1 + S V )-1 S ) = = - ind (1 + S V )-1 - ind S = - ind S = ind T ( (1 + S V )-1 8.5.7 (1)). . 8.5.22. . , . : T N (X, Y ) ind T = 0. X = X1 ker T Y = im T Y1 . , T1 T X1 X1 im T . , 8.5.5, dim Y1 = (T ) = (T ), . . Id : ker T Y1 . , T T T1 0 0 0 = T1 0 0 Id + 0 0 0 - Id .

: T := S + K , K K (X, Y ) S -1 B (Y , X ), , 8.5.20 8.5.7 (1), ind T = ind (S + K ) = ind S = 0. 8.5.23. . Inv(X, Y ) X Y ( 5.6.12). F (X, Y )




187

, X Y . : F (X, Y ) = Inv(X, Y ) + K (X, Y ). 8.5.22, , F (X, Y ) = Inv(X, Y ) + F (X, Y ), , , F (X, Y ) B (X, Y ).
8.1. . .

8.2.

8.3. (fn ) , U T . , (fn ) U (fn (T )) . 8.4. T . , := Sp(T ) \ a r , {z C : |z - a| < r}. , P P = lim (1 - z -n (T - a)n )-1 ;
n

x im(P ) lim sup (a - T )n x
n

1 n

< r.

8.5. , . 8.6. , , , . 8.7. , , ( ). 8.8. 1 p < r < +. , lr lp c0 lp .


188

. 8.

8.9. H . T B (H ) (en )
1/2

T

2

:=
n=1

T en

2

.

( !) . , T , 2 < +, (n ) n=1 n (T T )1/2 . 8.10. T . im(T 0 ) im(T 1 ) im(T 2 ) . . . . n , im(T n ) = im(T n+1 ), , T . n T d(T ). ker(T 0 ) ker(T 1 ) ker(T 2 ) . . . a(T ). , T a(T ) d(T ) . 8.11. T , T ¨ . , T , T = U + V , U , V ( ) U. 8.12. T X r := a(T ) = d(T ). , im(T r ) ker(T r ) , X = ker(T r ) im(T r ) T T im(T r ) . 8.13. T . (T ) := dim ker T , (T ) := dim coker T ,

T ( ¨ ).
+

(X ) := {T B (X ) : im T Cl(X ), (T ) < +}; (X ) := {T B (X ) : im T Cl(X ), (T ) < +}. T T
+ -

-

, (X ) T (X ) T
- +

(X ); ( X ).

8.14. T . , T + (X ) , , U T (U ) X .




189

8.15. T , ( - T ) ¨ . , T , C, = 0 : () ( - T ) ; () ( - T )k k N; () ( - T )k k N, , , T , T (= ). 8.16. : (X/ Y ) Y Y X Y , Y X .


X /Y



8.17. , T f H (Sp(T )) f (T ) . 8.18. , , ( ). 8.19. A, B ¨ B (X, Y ). ind A = ind B , , A B B (X, Y ).


9

9.1. 9.1.1. . X . : X P (P (X )) X , (1) x X (x) X ; (2) x X (x) fil{x}. (x) ( ) x. (X, ) ( X ) . 9.1.2. . T (X ) X . 1 , 2 T (X ), , 1 2 ( 1 2 ) : x X 1 (x) 2 (x). 9.1.3. T (X ) . X = , T (X ) = {} . X = , 1.3.13. 9.1.4. . G X , () (: G Op( ) ( x G)(G (x))). F X , (: F Cl( ) X \ F Op( )). 9.1.5. . -


9.1.

191

. 9.1.6. (X, ) x X , .

U t( )(x) ( V Op( )) x V & U V . t( ) : x t( )(x) X .

9.1.7. . X , = t( ). (X, ) ( X ) . X T(X ). 9.1.8. . (1) . (2) . (3) := inf T (X ). , (x) = {X } x X . , Op( ) = {, X } , , = t( ), . . . . (4) := sup T (X ). , (x) = fil {x} x X . , Op( ) = 2X , , = t( ), . . . . (5) Op X , . , , X , Op( ) = Op. (x) := fil {V Op : x V } x X ( X = ). , (x) = , X (.: inf = +). , t( ) = Op Op( ). G Op( ), G = {V : V Op, V G} , , G Op . . 9.1.9. t : T (X ) T (X ) t : t( ). (1) im t = T(X ), . . T (X ) t( ) T(X );


192

. 9.

(2) 1 2 t(1 ) t(2 ) (1 , 2 T (X )); (3) t t = t; (4) T (X ) t( ) ; (5) Op( ) = Op(t( )) ( T (X )). Op( ) Op(t( )) , . Op( ) Op(t( )) t( ). Op( ) = Op(t( )) . 9.1.10. X , x X ( U (x))( V (x) & V U ) ( y )(y V V (y )). 9.1.9 (5). 9.1.11. 1 , 2 T(X ). : (1) 1 2 ; (2) Op(1 ) Op(2 ); (3) Cl(1 ) Cl(2 ). 9.1.12. . 9.1.8 (5) 9.1.11, . Op( ) X . , (X, ) X (X, t( )) . t( ) , . 9.1.13. . T(X ) X . E T(X ) sup t(supT
(X ) T(X )

E = sup

T (X )

E. E t(sup E ).

E ) sup

T (X )

t(E ) sup

T (X )

T (X )

, := supT (X ) E T(X ). , E . , 0 E 0 T(X ), 0 , , = supT(X ) E . 1.2.14.


9.2.

193

9.1.14. . : inf T(X ) E = t(inf T (X ) E ). , 9.1.12 , : U Op(inf , Op(inf
T(X ) T(X )

E ) ( E ) U Op( ).

E) =
E

Op( ).

( ). 9.2. 9.2.1. . , , , , . . . , 4.1.19 4.2.1. 9.2.2. . : (1) ; (2) , ; (3) , . 9.2.3. f : (1) ; (2) ; (3) x f (x);


194

. 9. (4) x , x, f , f (x); (5) , x, f , f (x).

9.2.4. . , , ( , ) 9.2.3 (1)­9.2.3 (5), . 9.2.5. . f : (X, X ) (Y , Y ) 9.2.3 (5) x X , , f x (. 4.2.2). , . , x (x) := X (x) x (x) := fil {x} x X , x = x, f x ( X X ) f : (X, x ) (Y , Y ) ( X x ). 9.2.6. 1 , 2 T(X ). 1 2 , IX : (X, 1 ) (X, 2 ) . 9.2.7. f : (X, ) (Y , ) 1 T(X ) 1 T(Y ) , 1 1 . f : (X, 1 ) (Y , 1 ) . (X, ) IX (X, 1 ) - -
f f

(Y , ) IY (Y , 1 )

, . 9.2.8. . f : X (Y , ). T0 := { T(X ) : f : (X, ) (Y , ) }. f
-1

( ) := inf T0 T0 .


9.2. 9.2.3 (1) T0 (x X f
-1

195

( (f (x))) (x)).

(x) := f -1 ( (f (x))). , t( ) = . , f ( (x)) = f (f -1 ( (f (x)))) (f (x)), . . T0 9.2.3 (3). , : f -1 ( ) = . 9.2.9. . f f .
-1

( )

9.2.10. . 9.2.8 : , . , , , 9.1.14, . , (x x f -1 ( )) (f (x ) f (x) ); (F x f -1 ( )) (f (F ) f (x) ) F . 9.2.11. 0 := { T(Y f ( ) := sup 0 9.1.13 f ( )(y ) = (sup
T(Y ) 0

. f : (X, ) Y . ) : f : (X, ) (Y , ) }. 0 . y Y
T (Y ) 0

)(y ) = (sup

)(y ) = sup{ (y ) :

0

}.

9.2.3 (3)
0

(x X f ( (x)) (f (x))).
0

, , f ( )

.

9.2.12. . f ( ) f . 9.2.13. . 9.2.11 : , . 9.2.14. . (f : X (Y , )) - . , , := sup f 1 ( ). (= ) X , f ( ).


196 9.2.8,

. 9.

- (f : (X, ) (Y , ) ) f 1 ( ).

9.2.15. . (f : (X , ) Y ) . , , := inf f ( ). (= ) Y , f ( ). 9.2.11, : (f : (X , ) (Y , ) ) f ( ). 9.2.16. . 9.2.14 9.2.15 . 9.2.17. . (1) (X, ) X0 X . : X0 X X0 X . 0 := -1 ( ). 0 ( X0 ), (X0 , 0 ) (X, ). (2) (X , ) . , , X := X (X ) . := sup Pr-1 ( ), Pr : X X , Pr x = x ( ). , ( ) , . (X, ) . , X := [0, 1] , X := [0, 1] ( ) . := N . 9.3. 9.3.1. : (1) ; (2) ; (3) , .


9.3. , y cl{x} ( V (y )) x V x {V : V (y )}, x, y (X, ).

197

9.3.2. . , ( , ) 9.3.1 (1)­9.3.1 (3), T1 -. T1 - ( T1 -, ). 9.3.3. . : . T1 -

9.3.4. : (1) ; (2) ; (3) . (1) (2): y U (x) cl U , V (y ) , U V = , U (x). , F := (x) (y ). , F x F y . x = y . (2) (3): x, y X , x = y ( , X = , X ). U (x) , U = cl U y = U . , V U X . , U V = . (3) (1): F X . F x F y , F (x) F (y ). , U (x) V (y ) U V = . , x = y . 9.3.5. . , ( ) 9.3.4 (1)­9.3.4 (3), T2 -. .


198

. 9.

9.3.6. . : T2 - , . 9.3.7. . U , V . , V U , int V U. 9.3.8. : (1) ; (2) , ; (3) , , . (1) (2): x X U (x), V := X \ int U x V . F Cl( ), / x F int F V . G := X \ F . , G (x). / G X \ int F = cl(X \ int F ) X \ V int U U . , cl G U . (2) (3): x X F Cl( ), x F , X \ F (x). / , U = cl U (x), X \ F . , X \ U F , U. (3) (1): F Cl( ) int G F y cl G, U (y ) G F U G = . , y F . 9.3.9. . , ( , ) 9.3.8 (1)­9.3.8 (3), T3 -. T3 - . 9.3.10. . : (1) , ;


9.3.

199

(2) . (1) (2): F1 , F2 X , F1 F2 = . G := X \ F1 . , G G F2 . F2 = , . , , F2 = . V2 , G V2 int V2 F2 . V1 := X \ V2 . , V1 , V1 V2 = . V1 X \ G = X \ (X \ F1 ) = F1 . (2) (1): F = cl F , G = int G G F . F1 := X \ G. F1 = cl F1 , , U U1 , U U1 = , F U F1 U1 . , cl U X \ U1 X \ F1 = G. 9.3.11. . , ( ) 9.3.10 (1), 9.3.10 (2), T4 -. T4 . 9.3.12. , . T R t Ut (t T ) X . , , f : X R , {f < t} Ut {f t} (t T ) , t, s T , t < s cl Ut int Us . : t < s {f t} {f < s} cl Ut {f t} {f < s} int Us . : Ut cl Ut int Us Us t < s, t Ut (t T ) . f 3.8.2 ( 3.8.4). t Vt := cl Ut t Wt := int Ut . . , 3.8.2, g , h : X R , t T {g < t} Vt {g t}, {h < t} Wt {h t}.


200

. 9.

t, s T , t < s, 3.8.3 Wt = int Ut Ut Us f h; Vt = cl Ut int Us = Ws h g ; Ut Us cl Us = Vs g f . f = g = h. 3.8.4 9.1.5, t R {f < t} = {h < t} = {Ws : s < t, s T } Op(X ); {f t} = {g t} = {Vs : t < s, s T } Cl(X ). f . 9.3.13. . X T4 -. , , F X G . f : X [0, 1] , f (x) = 0 x F f (x) = 1 x G. / Ut := t < 0 Ut := X t > 1. Ut T - [0, 1] , . . T := nN Tn , Tn := {k 2-n+1 : k := 0, 1, . . . , 2n-1 }, , t Ut (t T := T (R \ [0, 1])) 9.3.12. . t T1 , . . t {0, 1}, U0 := F , U1 := G. , t Tn n 1 Ut , cl Ut int Us , t, s Tn t < s. t Tn+1 t Tn , . . tl := sup{s Tn : s t}; tr := inf {s Tn : t s}. t = tl t = tr , Ut . t = tl t = tr , tl < t < tr cl Utl int Utr . 9.3.11 Ut , cl Utl int Ut Ut = cl Ut int Utr . , .


9.4.

201

, t, s Tn+1 , t < s. tr = sl , s > sl cl Ut cl Utr = cl Usl int Us . t < tr = sl cl Ut int Utr = inf Usl int Us . tr < sl , , , cl Ut cl Utr int Usl int Us , . 9.3.14. . X T4 - , F1 , F2 X , f : X [0, 1] , f (x) = 0 x F1 f (x) = 1 x F2 . : 9.3.13 F := F1 G := X \ F2 . : F1 F2 = F1 , F2 , G1 := {f < 1/2} G2 := {f > 1/2} f ; G1 F1 , G2 F2 . 9.3.15. . X 1 T3 2 -, x X F , x, f : X [0, 1] , f (x) = 1 y F f (y ) = 0. 1 T3 2 - . 9.3.16. . 9.3.1 9.3.14. 9.4. 9.4.1. B cl B := {cl B : B B } . (1) cl B = cl fil B ; (2) B x x cl B ; (3) (B , x cl B ) B x.


202

. 9.

(3), (1) (2) . U (x) B B U B = . , F := (x) B . , F x. , F = B , B . 9.4.2. . , (. 4.4.1). 9.4.3. . X C X . : (1) C ; (2) B C , B B , B C = ; (3) , C , C ; (4) , C , C . (1) (2): cl B C = , C X \ cl B . , C X \ {cl B : B B } = {X \ cl B : B B }. , B0 B , C {X \ cl B0 : B0 B0 } = X \ {cl B0 : B0 B0 }. B B , B {B0 : B0 B0 } {cl B0 : B0 B0 }. C B C ({cl B0 : B0 B0 }) = . (2) (3): C = , . C = , B B B C = , C B . , cl B C = . (3) (4): 9.4.1. (4) (1): , C = ( ). , C . E , C {G : G E },


9.4.

203

E0 E , C {G : G E0 }. B :=
GE0

X \ G : E0

E

.

, B

. ,

cl B = {cl B : B B } = {X \ G : G E } = = X \ {G : G E } X \ C. F , B ( 1.3.10). B C , , C F . F x x C , , 9.4.1 (2), cl F C = . cl F cl B . . 9.4.4. . (1) (4) 9.4.3 X = C : , (. 4.4.7). , . : . . , , . 9.4.5. . (. 4.4.5). 9.4.6. X0 X C X0 . C X0 , C X . : 9.4.5 9.2.17 (1). : B X0 . , , V := clX0 B B , X0 . , V C = . B X , W := clX B , X . , V = W X0 , , W C = . - C X 9.4.3 B B , B C = . 9.4.3, , C X0 .


204

. 9.

9.4.7. . 9.4.6 : , . . , . , . . , . 9.4.8. . . X := X . X , X = . X = F X. 1.3.12 Pr : X X , Pr (F ) X . , 9.4.3 x X , Pr (F ) x . x : x . , F x (. 9.2.10). 9.4.3, , X . 9.4.9. . X C Cl(X ). , , F X C F . 9.4.3 X : F x. 9.2.2, x cl C = C . 9.4.3, , C . 9.4.10. . C X . C = , . C = x cl C . 9.2.2 F0 , C F0 F0 x. F , F0 . F x C F . 9.4.3 F C . 9.3.4 . , x C . 9.4.11. f : (X, ) (Y , ) , f (X ) = Y . , , f . , f -1 . , F Cl( ) f (F ) Cl( ). F Cl( ). F 9.4.9. 9.4.5 9.4.10, , f (F ) .


9.4.

205

9.4.12. 1 2 X . (X, 1 ) , (X, 2 ) 1 2 , 1 = 2 . 9.4.13. . 9.4.12 . 9.4.14. . . X B - X . , , U cl B . , X \ int U (. 9.4.9), cl B (X \ int U ) = . 9.4.3 B B , B (X \ int U ) = , . . B U . , , B := {cl B : B B }, , cl B U . x X B := (x). 9.3.4, cl B = {x} , , (x) , . , X . F X . B F . 9.3.8, cl B = F , B , . 9.3.9, X . 9.4.15. . . , , 9.4.8 9.4.9. , . X . Q X [0, 1]. : X [0, 1]Q (x)(f ) := f (x), x X f Q. 9.4.14 9.3.14 , X (X ). , . 9.4.11. 9.4.16. . 9.4.15 . , ( ) .


206

. 9.

9.4.17. . , , (. 4.5 4.6). 9.4.18. . F , G1 , . . . , Gn , F G1 . . . Gn . F1 , . . . , Fn , F = F1 . . . Fn Fk Gk (k := 1, . . . , n). n := 2. k := 1, 2 Uk := F \ Gk U1 U2 = . 9.3.10 V1 V2 , U1 V1 , U2 V2 V1 V2 = . Fk := F \Vk . , Fk Fk F \Uk = F \(F \Gk ) Gk k := 1, 2. F1 F2 = F \ (V1 V2 ) = F . 9.4.19. . 9.3.14 , 9.4.18 X n h1 , . . . , hn : X [0, 1] , hk |Gk = 0 k=1 hk (x) = 1 x F . ( , Gk := X \ Gk .) 9.4.20. . , , . , . 9.4.21. , (= ), . . . : 9.4.5 , ( ) . 9.4.9 9.4.6. : X X · := X {}, X . X · X . X X · X . A X · K X , A K , K A. A K X , A .


9.5.

207

9.4.22. . X , X · , 9.4.20, X . 9.5. 9.5.1. . X UX X 2 . UX X , (1) UX fil {IX }; (2) U UX U -1 UX ; (3) ( U UX )( V UX ) V V U . X UX := {}. (X, UX ) ( X ) . 9.5.2. (X, UX ) x X (x) := {U (x) : U UX }. : x (x) X . , , . W (x), W = U (x) U UX . V UX , V V U . y V (x), V (y ) V (V (x)) = V V (x) U (x) W . , W y y V (x). , V (x) int W . , int W x. 9.1.6. 9.5.3. . , 9.5.2, (X, UX ) (UX ), X . . 9.5.4. . (X, ) , U X , (U ). 9.5.5. . (1) ( ) ( ).


208

. 9.

(2) ( ) ( ). (3) f : X (Y , UY ) f -1 (UY ) := f â-1 (UY ), , , f â (x1 , x2 ) := (f (x1 ), f (x2 )) (x1 , x2 ) X 2 . , f -1 (UY ) X . (f
-1

(UY )) = f

-1

( (UY )).

f -1 (UY ) UY f . , . (4) (X , U ) . , , X := X -1 . UX := sup Pr (U ). UX . , (UX ) (X , (U )) . (5) , . 9.4.15 X . 9.5.5 (3) 9.5.5 (4) X . , , , IX , UX . , . (6) X , Y , UY Y B 2X . B B UY UB , := {(f , g ) Y
X

âY

X

: g IB f

-1

}.

U := fil {UB , : B B , UY } Y X , ( ) : B . , , (. 8.3.8). , B X , U Y X .


9.5.

209

, ( ). B {X }, U , (U ) Y X . 9.5.6. . , ( ) , , , . . , , 4.2.4­4.2.9, 4.5.8, 4.5.9, 4.6.1­4.6.7. , , . . 9.5.7. . X , R· := {x R· : x 0}. d : X 2 R+ X , (1) d(x, x) = 0 (x X ); (2) d(x, y ) = d(y , x) (x, y X ); (3) d(x, y ) d(x, z ) + d(z , y ) (x, y , z X ). (X, d) . 9.5.8. (X, d) Ud := fil {{d } : > 0}. Ud .
+

9.5.9. . M () X . (X, M) , M . UM := sup{Ud : d M}. 9.5.10. . , . .


210

. 9.

9.5.11. X , Y , Z , T R (Ut )tT , (Vt )tT , X â Z Z â Y . , , f : X â Z R, , {f < t} Ut {f t}, {g < t} Vt {g t}, {h < t} Ut Vt {h t} (t T ). h(x, y ) = inf {f (x, z ) g (z , y ) : z Z }. 3.8.2. 3.8.4. h f g . 9.5.12. . f : X â Z R, g : Z â Y R. h, 9.5.11, - f g f


g : Z â Y R,

h:X âY R

g (x, y ) := inf {f (x, z ) g (z , y ) : z Z }.

+- f g f
+

g (x, y ) := inf {f (x, z ) + g (z , y ) : z Z }.

9.5.13. . f : X 2 R· + K - (K R, K 1), (1) f (x, x) = 0 (x X ); (2) f (x, y ) = f (y , x) (x, y X ); 1 (3) K f (x, u) f (x, y ) f (y , z ) f (z , u) (x, y , z , u X ). 9.5.14. . 9.5.13 (3) () . 9.5.12 K -1 f f f f .


9.5.

211

9.5.15. 2-. 2- f : X 2 R· d , 1/2f d + f. f1 := f ; fn+1 := fn + f (n N). fn
+1

(x, y ) fn (x, y ) + f (y , y ) = fn (x, y )

(x, y X ).

, (fn )

.
nN

d(x, y ) := lim fn (x, y ) = inf fn (x, y ). n N d(x, y ) f2n (x, y ) = fn
+ fn

(x, y ) fn (x, z ) + fn (z , y ),

d(x, y ) d(x, z ) + d(z , y ). 9.5.7 (1) 9.5.7 (2) . , 1/2 f d. , fn 1/2 f n N. n := 1, 2 . , f f1 . . . fn 1/2 f fn+1 (x, y ) < 1/2 f (x, y ) (x, y ) X 2 n 2. z1 , . . . , zn X t := f (x, z1 ) + f (z1 , z2 ) + . . . + f (z 1 +f (zn , y ) < f (x, y ). 2
n-1

, zn )+

f (x, z1 ) t/2, t/2 f (z1 , z2 ) + . . . + f (zn , y ) 1/2 f (z1 , y ). , t f (x, z1 ) t f (z1 , y ). 9.5.13 (3), 1/2 f (x, y ) f (x, z1 ) f (z1 , y ) t. : 1/2 f (x, y ) > t 1/2 f (x, y ). , f (x, z1 ) < t/2. m N, m < n, f (x, z1 ) + . . . + f (z
m-1

, zm ) <

t ; 2 t . 2

f (x, z1 ) + . . . + f (zm , zm+1 )


212

. 9.

, m = n f (zn , y ) t/2. ( , t/2 f (x, z1 ) + . . . + f (zn-1 , zn ) 1/2 f (x, zn ) 1/2 f (x, y ) > t f (x, z n ) f (zn , y ) 1/2 f (x, y ).) f (z
m+1

,z

m+2

) + . . . + f (z

n-1

, zn ) + f (zn , y ) <

t . 2

, : f (x, zm ) 2(f (x, z1 ) + . . . + f (z f (zm , zm+1 ) t; f (z
m+1 m-1

, zm )) t;

, y ) 2(f (z

m+1

, zm+2 ) + . . . + f (zn , y )) t.

, 2- 1 f (x, y ) f (x, zm ) f (zm , zm+1 ) f (z 2
m+1

, y) t <

1 f (x, y ). 2

, . 9.5.16. . . (X, UX ) . V UX . V1 := V V -1 . -1 Vn UX , V = V , V UX , V V V Vn . Vn+1 := V . Vn Vn+1 Vn+1 Vn+1 Vn+1 IX IX Vn+1 , (Vn )nN . t R Ut , IX , Ut := Vinf { V1 , 2 X, t t ,0 t t < = < = > 0, 0, t < 1, 1, 1.

nN : t2

-n

}


9.6.

213

t Ut (t R) . f : X 2 R, (. 3.8.2, 3.8.4) {f < t} Ut {f t} (t R). Wt := U2t t R, s < t Us Us Us Wt . , 3.8.3 9.2.1 f 2-. 9.5.15, dV , 1/2 f dV f . , UdV = fil {Vn : n N}. , M := {dV : V UX } UM = UX . 9.5.17. . , T3 1 -. 2 9.5.18. . . 9.6. 9.6.1. . E , F U X , . . E , F 2X U (E ) (F ). , E F E F , E F , . . ( E E ) ( F F ) E F . 9.6.2. . E X ( X ), X ( ), E . . , X , . 9.6.3. e. E X . {GE : E E }, cl GE E E E .


214

. 9.

S s : E Op(X ), s(E ) = X E E s(E ) = E cl s(E ) E . s1 , s2 : s1 s2 := ( E E ) (s1 (E ) = E s2 (E ) = s1 (E )). , (S, ) , IE S . S . S0 S s0 (E ) := {s(E ) : s S0 } (E E ). s0 (E ) = E , s(E ) = E s S0 . s0 (E ) = E , s0 (E ) = {s(E ) : s(E ) = E , s S0 }. S0 : s0 (E ) = s(E ) s S0 , s(E ) = E . s0 (E ) Op(X ) s0 S0 . , s0 X (, , s0 S ). x X E1 , . . . , En E , x E1 . . . En x E E E . s0 (Ek ) = Ek / - k , x s0 (E ). , k s0 (Ek ) = Ek , s1 , . . . , sn S0 sk (Ek ) = Ek (k := 1, 2, . . . , n). S0 , , sn {s1 , . . . , sn-1 }. x sn (E ) E E E . , E {E1 , . . . , En } ( x E E ). / s0 (E ) = sn (E ), x s0 (E ). 1.2.20 S Ż Ż s. E E . F := X \ s(E \ {E }), F s(E ) Ż F . 9.3.10 G Ż Ż Op(X ) F G cl G s(E ). s(E ) := G s(E ) := s(E ) Ż Ż E = E (E E ). , s S . s(E ) = E , s s , , s = s. s(E ) cl G s(E ) = E , . . cl s(E ) E . Ż Ż Ż Ż s(E ) = E , cl s(E ) E . , s Ż Ż Ż . 9.6.4. . f (= ) X , . . f : X F. supp(f ) := cl{x X : f (x) = 0} f . supp(f ) , f . spt (f ) := supp(f ). 9.6.5. (fe )eE Ż X E := {supp(fe ) : e E } . Ż U , (fe )eE E Ż . E , (fe )eE , eE fe .


9.6.

215

, U (fe )eE . 9.6.6. . (f : X [0, 1])f F U X , U , f F f (x) = 1 x U . . . 9.6.7. . E U , F U . {supp(f ) : f F } E , F , E . F E : E . 9.6.8. . 9.6.3 {U : } {V : }, cl V U . 9.3.14 g : X [0, 1] , g (x) = 1 x V g (x) = 0 x X \ U . , supp(g ) U . 9.6.5 (g ) g . g (x) > 0 x X . f := g /g ( ). (f ) . 9.6.9. . , . 9.6.10. . . 9.6.11. . . 9.6.12. . , .


216

. 9.

9.6.13. . RN , (= ) (. 4.8.1). 9.6.14. . RN a () , a(x) > 0 |x| < 1 a(x) = 0 |x| 1. supp(a) = {x RN : |x| 1} B := BRN . 9.6.15. . () (b )>0 , , -, lim (sup | supp(b )|) = 0 , -, RN b (x) dx = 1
0

( > 0). - . . 9.6.16. . a(x) := t exp(-(|x|2 - 1)-1 ), int B, t RN a(x) dx = 1. a (x) := -N a(x/) (x RN ). 9.6.17. . f L1,loc (RN ), . . f (= ) . g ¨ f g f g (x) :=
R
N

f (x - y )g (y ) dy

(x RN ).

9.6.18. . (a )>0 f (f a )>0 f L1,loc (RN ) (. 10.10.7 (5)). 9.6.19. : (1) K RN - U


9.6.

217

(= ) := K,U , . . : RN [0, 1], K int{ = 1} supp( ) U ; (2) U1 , . . . , Un Op(RN ), U1 . . . Un K . 1 , . . . , n : RN [0, 1], n supp(k ) Uk k=1 k (x) = 1 x K . (1) := d(K, RN \U ) := inf {|x-y | : x K, y U }. , / > 0. > 0 K + B. (b ) >0 := b . , + , := sup | supp(b )|, . (2) 9.4.18 Fk Uk , K . Kk := Fk K n k := Kk ,Uk . k / k=1 k (k := 1, . . . , n), n { k=1 k > 0}, n { k=1 k = 0} K . 9.6.20. RN := E . , RN E RN . E .

E A , ( := int )A . (V )A cl V A. 9.6.19 (1) := cl V , . (x) := (x)/ A (x) x (x) := 0 x RN \ , . 9.6.21. . , ( )A , K , , A0 A U K , A0 (x) = 1 x U (. 9.3.17, 9.6.19 (2)).


218

. 9.

9.1. , . 9.2. , ? 9.3. . 9.4. , . ? 9.5. (f : X (Y , )) . X ( ), (Z, ) g : Z X : g : (Z, ) (X, ) , f g ( ). , X, f ( ), ( ) . 9.6. (f : (X , ) Y ) . Y ( ), (Z, ) g : Y Z : g : (Y , ) (Z, ) , g f ( ). , Y , f ( ), ( ) . 9.7. , , , :

cl


A

=


cl A .

9.8. , , . 9.9. . 9.10. X H -, X X . , H - . 9.11. . 9.12. , .




219

9.13. , (?) . 9.14. A , B , A B = . , V V (A) V (B ) = . 9.15. , ( ) . 9.16. , . , , . 9.17. ? 9.18. , . 9.19. , . ?


10

10.1. 10.1.1. . (X, F, +, ·) F. X , , , : + : (X â X, â ) (X, ), · : (F â X, F â ) (X, ). (X, ) . 10.1.2.
X

. x x (x0 X, F \ 0)

x x + x0 ,

(X, X ). 10.1.3. . , X : (x + y ) = (x) + (y ) (, F \ 0; x, y X ),

(. 1.3.5 (1)) Ux+ y (x) + (y ) ( Ux (x) & Uy (y )) Ux + Uy Ux+ y .


10.1.

221

, . , , . , , . 10.1.4. . X N X . X , N = (0), , (1) N + N = N ; (2) N ; (3) N . (x) = x + N x X . : N = (0). 10.1.2 , (x) = x + N x X . , (1) ( X 2 ). (2) F (0)x N x X , . . x ( R) x X . (3) (2), , F (0)N = N , . . ( F â X ). : N , (1)­(3). , N fil {0}. (x) := x + N . . (1) , , , . , X 2 . (2) (3) , (, x) x . x - 0 x0 = 0 (x - x0 ) + ( - 0 )x0 + ( - 0 )(x - x0 ) . , , N N F.


222

. 10.

n N, || n. V N W N , W W1 + . . . + Wn V , Wk := W . W = n (/n W ) nW W1 + . . . + Wn V . 10.1.5. . VT(X ) X . E VT(X ) sup
VT(X )

E = sup

T(X )

E.

:= supT(X ) E . E x x + x0 (X, ) (X, ), (X, ) (X, ). 9.1.13, , (0) 10.1.4 (1)­10.1.4 (3), (0) E . 1.2.14. 10.1.6. . . T L (X, Y ) VT(Y ). := T -1 ( ). x x y y (X, ), , 9.2.8, T x T x, T y T y , , T (x + y ) T (x + y ). 9.2.10 , x + y x + y (X, ). , (x) = x + (0) x X , , (0) + (0) = (0). T -1 3.4.10 3.1.8, , (0) = T -1 ( (0)) , 10.1.4 (0). 10.1.4, : VT(X ). 10.1.7. . 10.1.5 10.1.6. 10.1.8. . A, B . , A B -, A + B A. -


10.2.

223

10.1.9. X , , U , IX , = (U ). U (0) VU := {(x, y ) X 2 : y - x U }. : IX VU ; VU + IX = VU ; (VU )-1 = V-U ; VU1 U2 VU1 VU2 ; VU1 VU2 VU1 +U2 U , U1 , U2 (0). 10.1.4, , U := fil {VU : U (0)} , = (U ). , U IX - . U , (U ) = , W IX - U , W = VW (0) . . 10.1.10. . (X, ) . U , 10.1.9, X . 10.1.11. . . 10.2. 10.2.1. . , , . 10.2.2. . X N X . X , N = (0), , 1 (1) 2 N = N ; (2) N , .


224

. 10.

: 10.1.2 x 2x . , 1/2 N = N . U N . V N , V U . 10.1.4, W , W V . 3.1.13 3.1.14, , co(W ) . W co(W ) V U . : . , N 10.1.4 (2), 10.1.4 (3). V N W , W N W V , 1/2 W N . , 1/2 W + 1/2 W W V - W . , N + N = N . 10.1.4. 10.2.3. . LCT (X ) X . E LCT (X ) sup
LCT (X )

E = sup

T(X )

E.

10.2.4. . . 10.2.5. . .

10.2.6. . 10.2.7. . X . X ( ) M . (X, M ) (X, ). 10.2.8. . . X := (M ) (X, M ). V (0). 10.2.2 B (0) , B V . 3.8.7 {pB < 1} B {pB 1}.


10.2.

225

, pB (. 7.5.1), . . pB M , , {pB < 1} (0). , V (0). , 5.2.10, (x) = x + (0) x + (0) = (x), . . . , . 10.2.9. . , , . 10.2.10. . 10.2.8 : . , (. 5.2.13). 10.2.11. . X . (X, ) (, , X ) X # , . (X, ) ( -) (X, ). 10.2.12. (X, ) = {| |(p) : p M }. 10.2.13. . (X, ) , LCT (X ) Lat(X # ), , . . E LCT (X ) (X, sup E ) = sup{(X, ) : E }. E = , sup E 0 X , , (X, 0 ) = 0 = inf Lat(X # ) = supLat(X # ) . 9.2.7 . 2.1.5, E (X, sup E ) sup{(X, ) : E }. f (X, sup E ) , 10.2.12 9.1.13 1 , . . . , n E , f (X, 1 . . . n ) . 10.2.12 5.3.7 p1 M1 , . . . , pn Mn , f | |(p1 . . . pn ). 3.5.7 3.7.9, , | |(p1 + . . . + pn ) = | |(p1 ) + . . . + | |(pn ). f (X, 1 ) + . . . + (X, n ) = (X, 1 ) . . . (X, n ) .


226

. 10. 10.3.

10.3.1. . X , Y F. , , (, , ) · | · X â Y F, . . , . x X y Y x| : y x | y , |y : x x | y , · | : X FY , | · : Y FX, X | Y #; |Y X # .

· | | · -. X | -, | Y -. 10.3.2. - - . -

10.3.3. . X Y , - - . , X Y , , Y X . ., X Y . - . 10.3.4. . (1) X Y · | · . (y , x) Y â X y | x := x | y . , Y X . . , , (. 10.3.3). , , Y X , X Y . , x | y R := Re x | y XR YR . , XR YR , . . x | y := x | y R , , x y .


10.3.

227

(2) H . H H . -. (3) (X, ) X . (x, x ) x (x) X X . (4) X , , X # := L (X, F) . , (x, x# ) x# (x) . 10.3.5. . X Y . X FY - - X , Y , (X, Y ). - (X, Y ) Y X - X Y Y , X . 10.3.6. - , -. - , -. x x ( (X, Y )) x x | ( FY ) ( y Y ) x | (y ) x | (y ) ( y Y ) x | y x | y ( y Y ) | y (x ) | y (x) ( y Y ) x x ( | y -1 (F )) 10.3.7. . (X, Y ), , 5.1.10 (4). (X, Y ) {| · | y | : y Y }. (Y , X ) {| x | · | : x X }. 10.3.8. (X, (X, Y )) (Y , (Y , X )) . 10.2.4 10.2.5. 10.3.9. . . X Y . 0 X -(Y , (Y , X )) 0, 0 Y -(X, (X, Y )) 0.
|· ·|


228

. 10. 10.3.6 -

- X Y Y X , . - 10.3.3. , 10.2.13 , (Y , (Y , X )) = (Y , sup{ x |-1 (F ) : x X }) = = sup{(Y , = L ({(Y , f
-1 -1

x |-1 (F )) : x X } = (F )) : f X |}) = X |,

5.3.7 2.3.12 (Y , f (F )) = {f : F} (f Y # ).

10.3.10. . 10.3.9 . , . , 10.3.9 10.3.4 (3) , , . 5.1.11 ( ) (x, y ) := x | y , . . , X Y X (Y , (Y , X )) , Y (X, (X, Y )) , X = Y Y = X . 10.4. , 10.4.1. . X Y X . , , (X, ) = | Y . , Y (X Y , Y X , . .) (Y , ) = X |. 10.4.2. . 10.3.9.


10.4. ,

229

10.4.3. (X, Y ) X , . (X, Y ) . E . 10.2.13 (X, (X, Y )) = (X, sup E ) = = sup{(X, ) : E } = sup{| Y : E } = | Y , E 10.4.2. 10.4.4. . (X, Y ), 10.4.3, . . X , X Y , ( X , X Y ). 10.4.5. . X X Y , (X, Y ) (X, Y ). 10.2.13 (X, ) , , . , , , 10.4.2 10.4.3 | Y = (X, (X, Y )) (X, ) (X, (X, Y )) = | Y . . 10.4.6. . , , . . 10.4.5 , U X (= ), U . p , p(U ) R. X0 := X/ ker p p0 := pX/ ker p . 5.2.14, , p0 . : X X0 . , (U ) (X0 , p0 ). 7.2.7 , (U ) p0 . p0 = p, U (X, p).


230

. 10.

10.4.7. . X . (X, X ) , X . 5.4.5, (X, X ), , , 5.3.4. 10.4.8. . (X, ) , K V X , K , V K V = . f (X, ) , sup Re f (K ) < inf Re f (V ). , , . K , W U := K + W V ( , K + W V + W , W ). 3.1.10 , U . , K int U = core U . 3.8.14 l (XR )# , , {l = 1} XR V U U . , l W , , l (XR , ) 7.5.1. f := Re-1 l, , 3.7.5, f (X, ) . , f . 10.4.9. . . . , 10.4.5 , U , U . , , 10.4.8, U {Re f t}, f () , t R. 10.5. 10.5.1. . X , Y F XâY . U X V Y -


10.5. (U ) := F (U ) := {y Y : F -1 (y ) U }; - -1 (V ) := F 1 (V ) := {x X : F (u) V }. (U ) () U , () V . 10.5.2. : (1) (u) := ({u}) = F (u), (U ) = uU (u); (2) ( U ) = (U ); - (3) F 1 (V ) = F -1 (V ); (4) U1 U2 (U1 ) (U2 ); (5) U â V F V (U ), U -1 (V ); (6) U -1 ( (U )).
-1

231

(V )

10.5.3. . U X Y , x X \ U y Y , U
-1

(y ),

x /

-1

(y ).

: U = -1 (V ), U = vV -1 (v ) 10.5.2 (1). : U -1 (y ) , y (U ). , U = y(U ) -1 (y ) = -1 ( (U )). 10.5.4. . -1 ( (U )) ( ) , U .
- 10.5.5. . F 1 (F (U )) U ( F ).

10.5.6. . (1) (X, ) , U X . (U ) U (. 1.2.7). (2) (H, (· , ·)H ) F := {(x, y ) H 2 : (x, y )H = 0}. U H (U ) = -1 (U ) = U . U U .


232

. 10.

(3) X X . F := {(x, x ) : x (x) = 0}. (X0 ) = X0 -1 (X0 ) = X0 X0 X X0 X (. 7.6.8). -1 ( (X0 )) = cl X0 7.5.14. 10.5.7. . X Y . pol := {(x, y ) X â Y : Re x | y 1}; abs pol := {(x, y ) X â Y : | x | y | 1}. pol (U ) (V ); abs pol U V ( U X V Y ). 10.5.8. . 2 (U ) := ( (U )) , U . 10.4.8 . 10.5.9. . U := (U ) , U . , , 10.5.8. 10.6. 10.6.1. X p : X R X . () (p) (X , X ). Q := xX [-p(-x), p(x)] Q . , (p) Q Q (p) , (X , X ). , (p) Q - p. 9.4.8 9.4.9, , (p) (X , X )- .


10.6.

233

10.6.2. . 10.6.3. . X . U X # ( ) sU : X R , U , (X # , X )-. : U = (sU ) sU . sU 3.6.6. 10.2.12 , (X, X # ) X (. 5.1.10 (2)). , sU (X, X # ). 10.6.1 U (X # , X ). U . : sU (x) := sup{l(x) : l U }. , sU dom sU = X . U (sU ). l (sU ) l U , / 10.4.8 10.3.9 x X sU (x) < l(x). . 10.6.4. . sU , 10.6.3, U . 10.6.5. . . U X . , X U = . 9.4.12, U (X, X ). (X, X ) # # X (X , X ) X , U = (sU ). (. 10.6.3) sU : X R sU (x ) := sup x (U ). 3.6.5 ext(U ) . ext(U ) 10.6.3. , sU , , U (. 3.6.6). 10.6.6. X Y S X . , , pS S . (S ) - ()


234 (pS ), . .

. 10. (S ) = | (pS )
-1 R

.

S , S - () | |(pS ), . . S = | | |(pS )
-1

.

y YR , y | (pS ) -1 , | y R R (pS ). , x S Re x | y = x | y R = | y R (x) pS (x) 1, S {pS 1} 3.8.7. , y (S ). , , y (S ), | y R (pS ). , x XR > pS (x) 1 > pS (-1 x), . . -1 x {pS < 1} S . -1 x | y R = Re -1 x | y = -1 Re x | y 1. | y R (x) . - , | y R (x) pS (x). , y | (ps ) -1 . R (S ) = | (pS ) -1 . R 3.7.3 3.7.9. 10.6.7. . . U X (U ) U ( X X ). U {p 1} p, 10.5.2 (4), (U ) ({p 1}) = (Bp ) = Bp . 10.6.6 , p Bp , , (U ) | |(p). 10.6.2 | |(p) (X , X )-. (U ) . 9.4.9, (X , X )- (U ). (U ) . 10.7. 10.7.1. . , .


10.7.

235

: X , . . (X ) = X . , X X . BX BX X X , BX (X , X )- 10.6.7. , BX ( ) BX , (X, X ) ( ) (X , X ). : X X . BX BX ( , (BX ) ). 10.5.9 , (X, X ) X (X , X ), , BX = BX (- , ). , X . 10.7.2. . , . 10.7.3. . . 10.4.9 , . , . 10.7.4. . ( ) . X , (X , X ) (X , X ), , 10.6.7, , BX (X , X )- . , X . X , X . X , , X . , X 10.7.3. 10.7.5. . , () .


236

. 10. 10.8. C (Q, R)

10.8.1. . Q (= ), C (Q, R) Q. C (Q, R) , · := · , ¨ (. 4.6.8). : C (Q, R) , C (Q, R) . C (Q, R) - , . 10.8.2. . L C (Q, R) , f1 , f2 L f1 f2 L, f1 f2 L, , , f1 f2 (q ) := f1 (q ) f2 (q ), f1 f2 (q ) := f1 (q ) f2 (q ) (q Q).

10.8.3. . , C (Q, R) , , C (Q, R). 10.8.4. . (1) ; C (Q, R); . (2) . (3) L Q. Q0

-

LQ0 := {f C (Q, R) : ( g L) g (q ) = f (q ) (q Q0 )}. LQ0 . L LQ0 .

(4) Q0 Q. L C (Q, R) L
Q0

:= f

Q0

: f L .


10.8. C (Q, R) , LQ0 = f C (Q, R) : f
Q0

237

L

Q0

.

C (Q0 , R). L , L Q0 C (Q, R), . . C (Q, R), L Q 0 C (Q0 , R) (, Q0 = ). (5) Q := {1, 2}. C (Q, R) R2 . 2 R {(x1 , x2 ) R2 : 1 x1 = 2 x2 } 1 , 2 R+ . (6) L C (Q, R). q Q, : L{q} = C (Q, R), L{q} = {f C (Q, R) : f (q ) = 0}. q1 , q2 Q L {q ,q } = 0, 10.8.4 (5) 1 , 2 R+ 12 , L{
q1 ,q2 }

= {f C (Q, R) : 1 f (q1 ) = 2 f (q2 )}.

10.8.5. L C (Q, R). f C (Q, R) L , > 0 (x, y ) Q2 f := fx,y, L, f (x) - f (x) < , f (y ) - f (y ) > -.

: . : 3.2.10 3.2.11 , f = 0. > 0. x Q gy := fx,y, L. Vy := {q Q : gy (q ) > -}. Vy y Vy . Q y1 , . . . , yn Q, Q = Vy1 . . . Vyn . fx := gy1 . . . gyn . , fx L. , fx (x) < fx (y ) > - y Q. Ux := {q Q : fx (q ) < }. Ux x Ux . Q, x1 , . . . , xm Q , Q = Ux1 . . . Uxm . , , l := fx1 . . . fxm . , l L l < .


238

. 10.

10.8.6. . 10.8.5 (. 7.2.10). 10.8.7. . L C (Q, R) cl L = cl L{q1 ,q2 } .
(q1 ,q2 )Q2

cl L cl L{q1 . f cl L{q1 ,q2 10.8.5, f cl L.

,q2 } }

(q1 , q2 ) Q2 q1 , q2 , ,

10.8.8. . L C (Q, R) cl L =
(q1 ,q2 )Q2

L{

q1 ,q2 }

.

L{

q1 ,q2 }

.

10.8.9. . , U F Q Q, q1 , q2 Q , q1 = q2 , u U , : u(q1 ) = u(q2 ). 10.8.10. . , C (Q, R) C (Q, R). L , L{
q1 ,q2 }

= C (Q, R){

q1 ,q2 }

(q1 , q2 ) Q2 (. 10.8.4 (6)). 10.8.8. 10.8.11. µ C (Q, R) . N (µ) := {f C (Q, R) : [0, |f |] ker µ}. , , supp(µ) Q , f N (µ) f
supp(µ)

= 0.


10.8. C (Q, R) 3.2.15 [0, |f |] + [0, |g |] = [0, |f | + |g |].

239

, f , g N (µ) |f | + |g | N (µ). N (µ) , . . (f N (µ) & 0 |g | |f | g N (µ)), , N (µ) . , N (µ) . , fn 0, fn f fn N (µ). g [0, f ] g fn g g fn [0, fn ]. , µ(g ) = 0, . . f N (µ). 10.8.8, , N (µ) , N (µ) =
q Q

N (µ){q} .

supp(µ) : q supp(µ) N (µ){
q}

= C (Q, R) (f N (µ) f (q ) = 0). . -

, supp(µ) N (µ) =

N (µ){
q supp(µ)

q}

=

= {f C (Q, R) : f

supp(µ)

= 0}.

Q (. 9.4.14) 9.3.14. 10.8.12. . supp(µ), 10.8.11, µ (. 10.9.4 (5)). 10.8.13. . µ , N (µ) = {f C (Q, R) : µ(|f |) = 0}. , µ(f g ) = 0 g C (Q, R), f supp(µ) = 0. supp(µ) = N (µ) = C (Q, R)


240

. 10.

µ = 0. , . F Q. , F ¨ µ X \ F µ, f , supp(f ) Q \ F , µ(|f |) = 0. supp(µ) ¨ µ, µ Q supp(µ). , µ , µ (. 10.10.5 (6)). , 3.2.14 3.2.15 µ ( ) µ+ , µ- , |µ|, f C (Q, R)+ : µ+ (f ) = sup µ[0, f ]; µ- (f ) = - inf µ[0, f ]; |µ| = µ+ + µ- .

, C (Q, R) K - (. 3.2.16). 10.8.14. µ |µ| . N (µ) = N (|µ|). 10.8.15. 0 a 1 aµ : f µ(af ) f C (Q, R) µ C (Q, R) . |aµ| = a|µ|. f C (Q, R)+ (aµ)+ (f ) = sup{µ(ag ) : 0 g f } sup µ[0, af ] = = µ+ (af ) = aµ+ (f ). , µ+ = (aµ + (1 - a)µ)+ (aµ)+ + ((1 - a)µ)+ aµ+ + (1 - a)µ+ = µ+ . , (aµ)+ = aµ+ , . 10.8.16. . A C (Q, R) µ ext(A BC (Q, R) ). A µ . µ = 0, supp(µ) = . µ = 0, , , µ = 1. a A. A , , 0 a 1 q supp(µ) 0 < a(q ) < 1.


10.8. C (Q, R)

241

µ1 := aµ µ2 := (1 - a)µ. , µ1 + µ2 = µ, µ1 µ2 . , µ µ1 + µ2 = = sup µ(af ) + sup µ((1 - a)g ) =
f 1 g 1

sup
f 1, g 1

µ(af + (1 - a)g ) µ ,

aB
C (Q, R)

+ (1 - a)B

C (Q, R)

B

C (Q, R)

.

, µ = µ1 + µ2 . , µ = µ1 µ1 + µ2 µ1 µ2 , µ2

, µ1 , µ2 A , : µ1 = µ1 µ. 10.8.15, a|µ| = |aµ| = |µ1 | = µ1 |µ|. , |µ|((a - µ1 1)g ) = 0 g C (Q, R). 10.8.13 10.8.14, , a µ. 10.8.17. . C (Q, R) C (Q, R). 10.5.9 , A C (Q, R), A ( A ) C (Q, R) . 10.6.7, , A BC (Q,R) , 10.6.5 µ. , µ . µ , A Q. µ , µ . , supp(µ) . (. 10.8.13), µ . , , A C (Q, R).


242

. 10.

10.8.18. . C (Q, R) C (Q, R). pn , t [-1, 1] |pn (t) - |t| | 1 . 2n

|pn (0)| 1/2n. pn (t) := pn (t) - pn (0) |pn (t) - |t| | 1/n -1 t 1. pn . a A C (Q, R) a 1, |pn (a(q )) - |a(q )| | 1 n (q Q).

q pn (a(q )), , A. 10.8.19. . 10.8.18 ( 10.8.8) C (Q, R). , , 10.8.18 , - , t |t| [-1, 1]. 10.8.17, 10.8.18, . 10.8.20. . Q0 Q f0 C (Q0 , R). f C (Q, R) , f Q0 = f0 . Q0 = ( ). : Q0 Q : C (Q, R) C (Q0 , R), f := f . , . , im , C (Q0 , R), 10.8.17 (, , ) , im .


10.9.


243

coim := C (Q, R)/ ker . f C (Q, R) g := (f sup |f (Q0 )|1) (- sup |f (Q0 )|1). f
Q0

=g

Q0

, . . f := (f ) = (g ). , g

f . , f = inf = inf inf h h h
C (Q,R)

: (h - f ) = 0 =
Q0



C (Q,R)

:h

=f

Q0 Q0

=

Q0 C (Q,R)

:h

Q0

=f

= sup |f (Q0 )| = g f . , f = g = g = g
C (Q0 ,R) C (Q0 ,R)

=

= sup |g (Q0 )| = g = f ,

. . . 5.5.4 4.5.15, , coim , im C (Q0 , R). , im = im . 10.9. 10.9.1. . . K ( ) := K ( , F) := {f C ( , F) : supp(f ) }. Q , K (Q) := K (Q) := {f K ( ) : supp(f ) Q}. K (Q) · . E Op ( ) K (E ) := {K (Q) : Q E }. ( Q E E , Q Q E , .) 10.9.2. : (1) Q f C (Q, F) f
Q

=0

g K (Q) g

Q

=f

.


244

. 10. K (Q) ; Q, Q1 , Q2 Q Q1 â Q2 . C (Q, F) Q u1 · u2 (q1 , q2 ) := u1 u2 (q1 , q2 ) := u1 (q1 )u2 (q2 ) us K (Qs ) C (Q, F); , K ( ) = C ( , F). . C ( · , F), · := {} , K ( ) {f C ( · , F) : f () = 0}; E Op ( ) K (E ) Lat (K ( )) ; E , E Op ( ) :

(2)

(3)

(4) (5)

0 K (E E ) - - - K (E ) â K (E ) - - - K (E E ) 0, - - --
(E ,E )

(E

,E

)



(E ,E

)

f := (f , -f ),

(E ,E )

(f , g ) := f + g .

(1) Q int( \ Q). (2) . 9.3.13 10.8.17 (. 11.8.2). (3) , F = R. , K ( ) , 10.8.8 ( K ( ) · ) (. 10.8.11). (4) , K (sup ) = K () = 0. E Op ( ) E , f K (E ) : supp(f ) E E E ( supp(f )). K (E ) = {K (E ) : E E }. , , E1 , . . . , En Op ( ) f K (E1 . . . En ). 9.4.18 k K (Ek ) n n , k=1 k = 1. f = k=1 k f supp(f k ) Ek (k := 1, . . . , n). (5) (4). 10.9.3. . µ K ( , F)# ( , F-) µ M ( ) := M ( , F), µ K (Q) K (Q) , Q .


10.9. f dµ := f dµ := f (x) dµ(x) := µ(f ) (f K ( )).

245

µ(f ) f µ. µ . 10.9.4. . (1) q q : f f (q ) (f K ( )) . q - q . , q q -1 (s, t) â st , . . . e , e . () , . K ( ) a ( ) (a f )(q ) := a f (q ) := f (a-1 q ), (a f )(q ) := fa (q ) := f (q a-1 ) (f K ( ), q ) ( f â F). , a , a L (K ( )). (, ) M ( , R). () . () () () ( ). () . . RN . , . , f (a-1 x) dx = f (x) dx (f K ( ), a ).

(2) M ( ) := (K ( ), · ) . M ( ) . , C ( · , F) (. 10.9.2 (2)).


246

. 10.

(3) µ M ( ) µ (f ) = µ(f ) , f (q ) := f (q ) q f K ( ). µ µ. µ µ F = C. µ = µ , C-. , µ = µ1 + iµ2 , µ1 , µ2 C. , C- R- ( M ( , R)), K ( , C) K ( , R) iK ( , R). R-, , K -. () ( ) (. 5.5.9 (4), 5.5.9 (5)). µ |µ|, f K ( , R), f 0, |µ|(f ) := sup{|µ(g )| : g K ( , F), |g | f }. , . µ , |µ| | | = 0. µ, , µ. = f µ, f L1,loc (µ) f µ ( f µ) (f µ)(g ) := µ(f g ) (g K ( )) (= ). (4) Op ( ) µ M ( ), µ := µ K ( ) . µ µ M ( ) M ( ) : µ M( ) µ = (µ ) . : M : E Op ( ) M (E ) (= M ) ( ). , . (5) E Op ( ) µ M ( ). , E µ \ E ¨ µ, µE = 0. 10.9.2 (4) supp(µ), µ,


10.9.

247

µ. , supp(µ) = supp(|µ|). 10.8.12. q {q }. (6) k µk M ( k ) (k := 1, 2). 1 â 2 , , µ , uk K ( k ) u1 (x)u2 (y ) dµ(x, y ) =
1

u1 (x) dµ1 (x)
1 2

u2 (y ) dµ2 (y ).

â

2

µ1 â µ2 := µ1 µ2 := µ. 10.9.2 (4), , f K ( 1 â 2 ) µ1 â µ2 (f ) (= ). (7) G _ µ, M (G). f K (G) f (s, t) := f (st) _ | µ f . µ |(µ â )(f ) _ (f ) := (µâ )(f ) (f K (G)), ¨ µ . , : µ =
GâG

s t dµ(s)d (t) = µ t d (t).
G

=
G

s dµ(s) =

¨ ¨ M (G). , G . L1 (G), m, ¨ ( M (G)). G. , f , g L1 (G) ¨ (. 9.6.17): (f g )dm = f dm g dm. ¨ µ M (G) f L1 (G) (µ f )dm := µ (f dm), . . ¨ . , , f g =
G

x g f (x) dm(x) =
G

x (g )f (x) dm(x).


248

. 10.

. T B (L1 (G)). : (i) µ M (G) , T f = µ f f L1 (G); (ii) T : T a = a T a G, a K (G) L1 (G); (iii) T (f g ) = (T f ) g f , g L1 (G); (iv) T (f ) = (T f ) M (G), f L1 (G). 10.9.5. . K ( ) M ( ) ( K ( ) K ( )# ). M ( ) (M ( ), K ( )), . K ( ) K ( ) := (K ( ), M ( )) (, , (K ( ), K ( ) ) = M ( )). M ( ) , , : µ := sup{|µ(f )| : f 1, f K ( )} (µ M ( )). 10.9.6. K ( ) , K (Q) K ( ) Q, Q (. . K ( ) (. 9.2.15)). µ (K ( ), ) , µ M ( ), µ K (Q) Q . , µ M ( ) VQ := {f K (Q) : |µ(f )| 1} K (Q). , , {VQ : Q } = {f K ( ) : |µ(f )| 1} . , µ (K ( ), ) . K ( ) . , p , p M ( ). , q := p K (Q) K (Q) . 7.2.2 (- K (Q)) q . , K (Q) : K (Q) (K ( ), K ( ) ) K ( ) .


10.9.

249

10.9.7. A K (RN ) ( ), sup A < + , , A . Q RN , A K (Q). , n N qn RN an A, an (qn ) = 0 |qn | > n. B := {n|an (qn )|-1 qn : n N}, , , , p(f ) := sup{|µ|(|f |) : µ B } . p(an ) n|an (qn )|-1 qn (|an |) = n, A. 10.9.8. . (fn ) K (RN ). fn K 0, ( Q RN )( n) supp(fn ) Q & fn 0. 10.9.7 , µ K (RN )# , µ(fn ) 0, fn K 0. , , , . . . 10.9.9. . R (pn ) , pn dx n +. , Pn RN , Pn dx (, , dx := dx1 â . . . â dxN RN ). f K (RN ) f C (m) Q (. . ). ¨ (f Pn ), , , Q f , m . RN ( 10.10.2 (4)). 10.9.10. . E (µE )E E : µE M (E ), (E , E ) E µE µE E E . , , µ , E µE E E.


250

. 10. 10.9.2 (5), K (E E ) -
{E ,E } E ,E E =E ,E E E

K (E ) - K ( ) 0,



(E ,E ) , . (. 10.9.6). . K ( ) = Q K (Q), 10.9.2 (4), . , n {E1 , . . . , En } (n 2) ,
n
n Kn -



n K (Ek ) - K (E1 . . . En ) 0,



k=1

n

Kn , Kn :=
k
n



K (Ek El ).

im n = ker n . n+1 (f , fn+1 ) = 0, f := (f1 , . . . , fn ), n f = -fn+1 fn+1 K ((E1 . . . En ) En+1 ). n , 10.9.2 (5), k K (Ek En+1 ) , := (1 , . . . , n ) n = -fn+1 . (f - ) ker n Kn , n = f - . ,
n

K

n+1

= Kn â
k=1

K (Ek E

n+1

)

( ), := ( , 1 , . . . , n ) Kn+1 n+1 = (f , fn+1 ). (. 7.6.13), 0 M ( ) -
E E

M (E ) -
{E ,E } E ,E E ,E =E



M (E E ).

.


10.10. D ( ) D ( )

251

10.9.11. . , , . 10.9.10 : M( ) , , M (. 10.9.4 (4)). 10.10. D () D () 10.10.1. . f D (RN ) := D (RN , F). Q f D (RN ) : supp(f ) Q : RN F. f RN Op (RN ) D (Q) := D ( ) := {D (Q) : Q }.

10.10.2. : (1) D (Q) = 0 int Q = ; (2) Q RN f :=
(Z+) 1 +...+N n
N

n,Q

:=
||n

f sup |(
1

C (Q)

:= f )(Q)|

...

n

( Q) f ( , Z+ := N {0}). MQ := { · n,Q : n N} D (Q) ; (3) C ( ) := E ( ) Op (RN ) M := { · n,Q : n N, Q } . D ( ) C ( ); (4) Q1 RN , Q2 RM Q Q1 â Q2 . D (Q) Q f1 f2 (q1 , q2 ) := f1 f2 (q1 , q2 ) := f1 (q1 )f2 (q2 ), qk Qk , fk D (Qk ), D (Q); (5) E Op ( ) D (E ) Lat (D ( )) : D (E E ) = D (E ) D (E ), D (E E ) = D (E ) + D (E ); D (E ) = L ( {D (E ) : E E }) (E Op ( )).


252

. 10. (. 10.9.2 (5)):
(E

- - - - 0 D (E E ) - - - D (E ) â D (E ) - - - D (E E ) 0.
,E ) (E ,E )

(1) (2) . (3) (Qm )mN , Qm , Qm Qm+1 , mN Qm = . { · n,Qm : n N, m N} M . 5.4.2 . . D ( ) C ( ) Tr ( ) := { D ( ) : 0 1}. Tr ( ) , 1 2 supp(1 ) int{2 = 1}. , f C ( ) ( f )Tr ( ) f . (4) a(q , q ) := a (q )a (q ), a , a RN RM , q RN q RM . f D (Q), m N > 0 f - f a m,Q /2. F := { f (q )q (a ) : || m, q Q1 â Q2 }, Q1 , Q2 , F 1/2 (N + 1)-m , â . f D (Q) , . . f - f m,Q . (5) 10.9.2 (4) 9.4.18 9.6.19 (2). 10.10.3. . 10.10.2 (4) , , . 10.10.4. . u D ( , F)# ( F) u D ( ) := D ( , F), u |D (Q) D (Q) := D , Q . u, f := f | u := u(f ), f (x)u(x) dx := u(f ) (f D ( )).


10.10. D ( ) D ( )

253

10.10.5. . (1) g L1,loc (RN ) . ug (f ) := f (x)g (x) dx (f D ( ))

ug . . ug g . , , : D ( ) D ( ) ug = | g . (2) . u (. . , f 0 u(f ) 0) . (3) , u m, Q RN tQ , |u(f )| t
Q

f

m,Q

(f D (Q)).

. , . (4) : (Z+ )N u : u D ( ). f D ( ) ( u)(f ) := (-1)|| u( f ). u u ( ). , . ., . ( ) . D (R) (-1) := H , H : R R R+ . () u ug , g u . . (5) u D ( ) u (f ) := u(f ) . u () u. , (. 10.9.3 (3)), .


254

. 10.

(6) E Op ( ) u D ( ). f D (E ), , u(f ). uE D (E ), u E . , D . u D ( ) E Op ( ) , E u, uE = 0. 10.10.4 (5), u , u . ( RN ) , u, u supp(u). , supp( u) supp(u). , . (7) u D ( ) f C ( ). g D ( ) f g D ( ). (f u)(g ) := u(f g ). f u f u. Tr ( ) . limTr ( ) u(f ), , u f . , u C ( ). u E ( ) := C ( ) . , u E ( ) (. 10.10.2 (3)), , u D ( ) . f C ( ) f supp(u) = 0 , || m, u m, , , u(f ) = 0. , , . (8) 1 , 2 Op (RN ) uk D ( k ). 1 â 2 , , u , fk D ( k ) u(f1 f2 ) = u1 (f1 )u2 (f2 ). u1 â u2 u1 u2 . 10.10.2 (4), , f D ( 1 â 2 ) u(f ) u1 u2 . , u(f ) = u2 (y = u1 (x
1 2

u1 (f (·, y ))) =

u2 (f (x, ·))).

: f (x, y )(u1 â u2 )(x, y ) dxdy =
1

â

2


10.10. D ( ) D ( ) =
2

255


1

f (x, y )u1 (x) dx u2 (y ) dy = f (x, y )u2 (y ) dy u1 (x) dx.
2

=
1



, supp(u1 â u2 ) = supp(u1 ) â supp(u2 ). (9) u, v D (RN ). f D (RN ) f := f +. , f C (RN â RN ). , u v ¨ , , u â v f C (RN â RN ) f D (RN ). (. 10.10.10), f (u â v )( f ) (f D (RN )) . ¨ u v u v . , ¨ (. 9.6.17) RN (. 10.9.4 (7)) ¨ . . , E (RN ) ¨ (, ) . u = u, (u v ) = u v = u v . , (= ): co (supp(u v )) = co (supp(u)) + co (supp(v )). , , , ¨ ((1 ) (-1) = 0 1 ( (-1) ) = 1, 1 := 1R ). u f (uf )(x) = u(x (f )), f := f f , . . f (x) := f (-x) (x RN ). u : f uf D (RN ) C (RN ), : (u)x = x u x RN . ,
+ + + +


256

. 10.

, . . T L (D (RN ), C (RN )) , , , u , T = u N u(f ) := (T )(f ) f D (R ) (. ). 10.10.6. . D ( ) D ( ) ( D ( ) D ( )# ). D ( ) (D ( ), D ( )), D ( ) D := D ( ) := (D ( ), D ( )). 10.10.7. Op (RN ). (1) D , D (Q) D ( ) Q (. . D ); (2) A D ( ) , Q A D (Q) D (Q); (3) (fn ) f (D ( ), D ) , Q , supp(fn ) Q, supp(f ) Q ( fn ) Q f (: fn f ); (4) T L (D ( ), Y ), Y , , T fn 0, fn 0; (5) (bn ) (¨ ) D (RN ), D (RN ), . . f D (RN ) u D (RN ) : bn f f ( D (RN )) bn u u N ( D (R )). (1) 10.9.6, (2) 10.9.7 = nN Qn , Qn Qn+1 n N. (3) , , 10.10.7 (2) (. 10.9.8).


10.10. D ( ) D ( )

257

(4) 10.10.7 (1) T T D (Q) Q . 10.10.2 (2) D (Q) . 10.10.7 (3). (5) , supp(bn f ) supp(f ). , g C (RN ) , bn g g RN . f (3), : bn f f. 10.10.5 (9) f D (RN ) u(f ) = (u f )(0) = lim(u (bn f ))(0) =
n

= lim((u bn ) f )(0) = lim(bn u)(f ).
n n

10.10.8. . 10.10.7 (3) Op (RN ) (m) m Z+ D (m) ( ) := C0 ( ), f , f || m . D (m) (Q) := {f D (m) ( ) : supp(f ) Q} Q · m,Q , . D (m) ( ) . , D (0) ( ) = K ( ) D ( ) = mN D (m) ( ). D (m) ( ) (fn ) m Q , supp(fn ) Q n. , D (m) ( ) m. D F ( ) := D (m) ( )
mN

, . 10.10.9. Op (RN ). (1) D ( ) , . . (= ) ; (2) D ( ) , . . D ( ) ;


258

. 10.

(3) D ( ), , , . . D ( ) ; (4) . (1) V D ( ) , VQ := V D (Q) D (Q) Q . , VQ D (Q) (. 7.1.8). (2) D (Q) Q 10.10.7 (2). 10.10.2 (2), D (Q) . 4.6.10 4.6.11, . (3) D (Q) Q . (4) g | D ( ) , D ( ) D ( ). , f D ( ) uf (g ) = 0, . . g (x)f (x) dx = 0. , g = 0. 10.5.9. 10.10.10. . (uk )kN f D ( )


u(f ) :=
k=1

uk (f ).

u

,


u =
k=1

u

k

. u 10.10.9 (1). , f D ( ) (. 10.10.5 (4)) u(f ) =


= u (-1)|| f =
k=1

u

k

(-1)|| f =

=
k=1

uk (f ). .

10.10.11. . D (. 10.9.10 10.9.11).


10.10. D ( ) D ( )

259

10.10.12. . , . . , 10.10.11, RN . , E u D( ) (uE )E E , E ( ) (k )kN . , u = k=1 k uk , uk := uEk supp(k uk ) Ek (k N). 10.10.13. . u m : u= µ ,
||m

µ M ( ). u supp(u) Q supp(u). (. 10.10.5 (7) 10.10.8) |u(f )| t
||m

f



(f D (Q))

t 0. 3.5.7 3.5.3, 10.9.4 (2) u=t
||m

= t

(-1)||
||m



( )||m , | |( · ). , (k )kN , k D ( ), Qk supp(k ) (. 10.10.12). (k u)kN k u = µk, ,
||m

µk

,



, supp(µk, ) Qk .


260

. 10.

10.10.10, ,


µ (f ) :=
k=1

µk, (f ) .

f K ( ) µ 10.10.10, :


u=
k=1

k u =
k=1 ||m

µk

,

=
||m



k=1

µk

,

=
||m

µ .

. 10.10.14. . 10.10.13 . . , , ( ) , . 10.11. 10.11.1. , L1 (RN ) := L1 (RN , C). : (1) (L1 (RN ), ), . . = 0, L1 (RN ) (f g ) = (f )(g ) (f , g L1 (RN )) (: X(L1 (RN )), . 11.6.4); (2) , , t R , f L1 (RN ) (f ) = f (t) := (f et )(0) :=
R
N

N

f (x)ei

(x,t)

dx.

(1) (2): (f )(g ) = 0. x RN , (x f g ) = (x f )(g ) = (x g )(f ).


10.11.

261

(x) := (f )-1 (x f ). : RN C. x, y RN (x + y ) = = (f g )-1 (x+y (f g )) = = (f )-1 (g )-1 · (x f y g ) = = (f )-1 (x f )(g )-1 (y g ) = = (x) (y ), . . () : X(RN ). , = et (, ) t RN . (f )(g ) = (f g ) =
R
N

(x g )f (x) dx = f (x)(g ) (x) dx =

=
R
N

(x g )f (x) dx =
R
N

= (g )
R
N

f (x) (x) dx.

, (f ) =
R
N

f (x) (x) dx (f L1 (RN )).

(2) (1): f , g f g , t RN : f g (t) = uf g (et ) =

=
R
N

f (x)g (y )et (x + y ) dxdy =
R
N

f (x)et (x) dx
R
N

g (y )et (y ) dy =
N

R

= uf (et )ug (et ) = f (t)g (t).


262

. 10.

10.11.2. . G. X(L1 (G)) () G, . . : G C, | (x)| = 1, (x + y ) = (x) (y ) (x, y G).

G := X(G) . X(L1 (G)) ((L1 (G)) , L1 (G)), G . G G . q G q : q G q (q ) C G. G G G G (= ).

10.11.3. . f L1 (RN ) f : RN C, f (t) := f (t) := (f et )(0), f . 10.11.4. . , . -, N F : L1 (RN ) C R , F f := f , (. 10.11.13). -, F F f := f , (= ) RN . : (x) := (x) := -x, (x) := 2 (x) := 2 x (x) := -2 (x) := -2 x (x RN ). , : F f (t) =
R
N

f (x)e-i

(x,t)

dx,


10.11. F2 f (t) =
R
N

263

f (x)e2

i(x,t)

dx,

F

-2

f (t) =
R
N

f (x)e-2

i(x,t)

dx.

, , , f , , F f , F f , F±2 f . F2 ( F-2 ) F-2 (, F2 ) (. 10.11.12). 10.11.5. . (1) f (x) = 1 -1 x 1 f (x) = 0 x R. f (t) = 2t-1 sin t. , k t0 > 0


|f (t)| dt
[t0 ,+) [k ,+)

|f (t)| dt =
n=k [n ,(n+1) ]

|f (t)| dt 1 = +. (n + 1)


n=k [n ,(n+1) ]

2| sin t| dt = 4 (n + 1)

n=k

, f L1 (R). / (2) f L1 (RN ) f , f f 1 . , |f (t)|
R
N

|f (x)| dx = f

1

(t RN ).

(3) f L1 (RN ) |t| + |f (t)| 0 (= ). . 5.5.9 (6) , F B (L1 (RN ), l (RN )).


264

. 10.

(4) f L1 (RN ), > 0 f (x) := f (x) (x RN ). f (t) = -N f (t / ) (t RN ).

f (t) =
R
N

f (x)et (x) dx =
-N

-N R
N

f (x)et/ (x) dx =

=

f

t

(5) F (f ) = (F f ) , (x f ) = ex f , (ex f ) = x f . (f L1 (R ), x RN .) . a b = (ab ) a, b C, , , t RN
N

F (f )(t) =
R
N

f (x)ei

(x,t)

dx =
R
N

f (x) ei

(x,t)



dx

=

=
R
N

f (x)e-i

(x,t)

dx

= (F f ) (t).

(6) f , g L1 (RN ) (f g ) = f g ;
R
N

fg =
R
N

f g.

10.11.1. : fg =
R
N

f (x)et (x) dxg (t) dt =
R
N

R

N

=
R
N

g (t)et (x) dt f (x) dx =
R
N

f g.
R
N

(7) f , f , g L1 (RN ), (f g ) = f g .


10.11. x R (f g ) (x) =
R
N

265

N

g (t)f (y )et (y )et (x) dy dt =
R
N

g (t)f (t)et (x) dt =
R
N

=
R
N

f (y )g (t)et (x + y ) dtdy =
R
N

=
R
N

f (y )g (x + y ) dy =
R
N

f (y - x)g (y ) dy = f g (x).

(8) f D (RN ) (Z+ )N F ( f ) = i|| t F f , F2 ( f ) = (2 i)|| t F2 f , (F f ) = i|| F (x f ); (F2 f ) = (2 i)|| F2 (x f )

( x := t := (·) : y RN y1 1 · . . . · yNN ). (. 10.11.4) . et = i|| t et , F ( f )(t) = et f (0) = = et f (0) = i|| t (et f )(0) = i|| t f (t). , , (F f )(t) = t1 t f (x)ei
1 R
N

(x,t)

dx =

=
R
N

f (x)ix1 ei

(x,t)

dx = F (ix1 f )(t).

fN

(9) fN (x) := exp -1/2 |x|2 x RN , = (2 )N/2 fN .


266 ,
N

. 10.

fN (t) =
k=1 R

eitk xk e-

1 2

|x|

2 k

dxk

(t RN ).

, N = 1. y R f1 (y ) =
R

e-

1 2

x2 ixy

e

dx =
R

e-
1 2

1 2

(x-iy )2 - 1 (y 2 ) 2

dx =

= f1 (y )
R

e-

(x-iy )

2

dx.

A CR R2 ( ) 1 2 . f (z ) := exp -z 2 /2 (z C) 1 2 , : 1 f (z ) dz = 2 f (z ) dz . : A=
R

e-

1 2

(x-iy )

2

dx =
R

e-

1 2

(x2 )

dx =



2 .

10.11.6. . ( , . 10.11.17 (2)) S (RN ) := := f C (RN ) : (, (Z+ )N ) |x| + x f (x) 0 ( R {p, : , (Z+ )N }, p, (f ) := x f
N

C) .

10.11.7. : (1) S (RN ) ; (2) S (RN );


10.11.

267

(3) S (RN ) ( ) {pn : n N}, pn (f ) :=
||n

(1 + | · |2 )n f



(f S (RN ))

( , |x| x RN ); (4) D (RN ) S (RN ); , D (RN ) S (RN ) S (RN ) D (RN ); (5) S (RN ) L1 (RN ). (4), . f S (RN ) D (RN ) , B N { = 1}. x R > 0 (x) := ( x),
N

f = f .

, f D (R ). > 0 , (Z+ )N . , 0 < 1 sup{ ( - 1) : , (Z+ )N } < +. , x f (x) 0 |x| +, r > 1 , |x (( (x) - 1)f (x))| < , |x| > r. , f (x) - f (x) = ( ( x) - 1)f (x) = 0 |x| -1 . , r-1 p
,

(f - f ) = sup |x (( (x) - 1)f (x))|
|x|>
-1

sup |x (( (x) - 1)f (x))| < .
|x|>r

, p, (f - f ) 0 0, . . f f S (RN ). . 10.11.8. S (RN ). f D (RN ) 10.11.5 (8), 10.11.5 (2) ¨ 5.5.9 (4) t f , t f


= ( f )



f

1

K f



.

= t (x f )



K (x f )



. R
N

, f S (RN ) F D (Q) Q . 10.10.7 (4) 10.11.7 (4).


268

. 10.

10.11.9. . , S (RN ), . f S (RN ) g (x) := fN (x) = exp -1/2 |x|2 . 10.11.8 10.11.7 , f , f , g L1 (RN ) , , 10.11.5 (7), (f g ) = f g . g (x) := g (x) x RN > 0. x - 10.11.5 (4) g (t)f (t)et (x) dt =
R
N

=

1 N
R
N

f (y - x)g

y

dy =
R
N

f (y - x)g (y ) dy .

10.11.5 (9) 0, : g (0)
R
N N 2

f (t)et (x) dt = f (-x)
R
N

g (y ) dy =

= (2 ) f (x)
R
N

e-

1 2

|x|

2

dx = (2 )N f (-x).

F 2 f = (2 )N f .
2 (F2 )-1 = F 10.11.10. . F2 N N f S (R ) t R -2

.

f (-t) = (2 )N
R
N

ei

(x,t)

f (x) dx =
R
N

e2

i(x,t)

f (2 x) dx =

= (F2 (F2 f ))(t). , F2 f = F
-2

f , . , g) g ))

10.11.11. . S (RN ) ¨ (= ¨). f , g S (RN ) f g S (RN ) , f g S (RN ). 10.11.5 (6) , F2 (f S (RN ) , , 10.11.10, f g = F-2 (F2 (f S (RN ).


10.11.

269

10.11.12. . F := F2 S (RN ). ¨ . F-1 F-2 ¨. , : f g =
R
N

fg
R
N



(f , g S (RN )).

10.11.10 10.11.5 (5) . , 10.11.5 (7) 10.11.7 (4), (f g )(0) = (f g )(0) f g . 10.11.5 (5), : f g = (F(F
R
N

-1

f )g ) (0) = ((F

-1

f ) Fg )(0) = Ff (Fg ) .
R
N

=
R
N

Ff (Fg ) dx =
R
N

Ff F (g ) dx =

10.11.13. . 10.11.9 , F : Ff (t) =
-1

1 (2 )
N 2

f (x)ei
R
N

(x,t)

dx;

F

f (x) =

1 (2 )
N 2

f (t)e-i
R
N

(x,t)

dt.

10.11.12 -1 ¨ f g := (2 )-N/2 f g (f , g L1 (RN )). F F 10.11.5 (8). F (Z+ )N : D := (2 i)-|| . 10.11.14. . S (RN ) L2 (RN ) , . 10.11.12, 4.5.10 S (RN ) L2 (RN ).


270

. 10.

10.11.15. . , 10.11.14, . ( ) L2 - Ff F-1 f f L2 (RN ) L2 (RN ). 10.11.16. . u S (RN ) := S (RN ) . u (: , . .). S (RN ), , (S (RN ), S (RN )) ( S (RN )). 10.11.17. . (1) Lp (RN ) S (RN ) 1 p +. f Lp (RN ), S (RN ), p < + 1/q + 1/p = 1. ¨ 5.5.9 (4) K , K , K > 0 :
1/p q


p 1/p


B

| |p

+
RN \ B

(1 + |x|2 )N (1 + |x|2 )-N (x)

dx
1/p



K



+ (1 + | · |2 )N

RN \ B

dx (1 + |x|2 )N

p



K p1 ( ). ¨ , |uf ( )| = | | f | =
R
N

f q f

p



q

K p1 ( ).

p = + .


10.11. (2) (3) . . ,

271

S (RN ) S (RN ). 10.11.7 (4), 10.11.17 (1), 10.11.7 (5) 10.10.9 (4). µ M (RN ) , n N d|µ|(x) < +. (1 + |x|2 )n
R
N

, , . (4) u S (RN ), f S (RN ) (Z+ )N , f u N S (R ) u S (RN ) 10.11.7 (2). , D u(f ) := (-1)|| uD f f S (RN ), , D u S (RN ) D u = (2 i)-|| u. (5) . u D (RN ) 10.10.5 (7) E (RN ). S (RN ) C (RN ), : u S (RN ). (6) u S (RN ). f S (RN ), u f , u f S (RN ). , u v E (RN ), u v S (RN ). (7) u D (RN ), x RN x u := (-x ) u = u -x u. u ( x), x u = u. . ¨ . (8) un S (RN ) (u N) f S (RN ) u(f ) := n=1 un (f ), u S (RN ) u = n=1 un (. 10.10.10). 10.11.18. . . u S (RN ). 10.11.7 (3) 5.3.7 n N K > 0 |u(f )| K
||n

µ

(1 + | · |2 )n f



(f S (RN )).


272

. 10.

3.5.3 3.5.7, µ M (RN ) u(f ) =
||n

µ (1 + | · |2 )n f

(f S (RN )). ,

:= (-1)|| (1 + | · |2 )n µ . u=
||n

.

10.11.19. . (, , ) u S (RN ) Fu, f | Fu = Ff | u (f S (RN )).

10.11.20. . F S (RN ) S (RN ). F-1 S (RN ). . 10.11.7 (5), 10.11.12, 10.11.17 (2) 4.5.10.
10.1. , . 10.2. , , . 10.3. . 10.4. , . 10.5. . 10.6. , , (= ).




273

10.7. T , . , T . 10.8. X, Y T L (X, Y ) . , T , T (. . (X, (X, X )) (Y , (Y , Y ))). 10.9. · 1 · 2 , X , (X, · 1 ) (X, · 2 ) X . , . 10.10. S Y X . S X Y ? 10.11. (X, X # )? 10.12. (X ) . , , X := X . , (X , X ) =


(X , X );

(X , X ) =


(X , X ).

10.13. X Y , T B (X, Y ) im T = Y . , X Y. 10.14. , (X ) ( X ) . 10.15. , c0 . 10.16. p Y , T L (X , Y ) . , ext(T ( p)) T (ext( p)). 10.17. p X X X . , f ext(X p) , X = cl X + {p - f 1} - {p - f 1}. 10.18. , . 10.19. , . ?


11

11.1. 11.1.1. . e A , e = 0 ea = ae = a a A. 11.1.2. . , , F. , , , F := C. , . , A1 A2 (= ) A1 A2 , A1 A2 . A . , Ae := A â C , (a, )(b, µ) := (ab + µa + b, µ), a, b A , µ C. (a, ) Ae := a A + ||. 11.1.3. . ar A a, aar = e. al A a, al a = e. 11.1.4. , . ar = (al a)ar = al (aar ) = al e = al


11.1.

275

11.1.5. . a A a Inv(A), a . a-1 := ar = al . a-1 a. ( ) B A ( , ) A, Inv(B ) = Inv(A) B . 11.1.6. . A . a A La : x ax (x A). LA := L : a La (a A)

. L(A) B (A) L : A L(A) . x, a, b A L(ab) : x Lab (x) = abx = a(bx) = La (Lb x) = (La)(Lb)x, . . L ( L ). La = 0, 0 = La(e) = ae = a, L . L(A) Ar , A ab := ba (a, b A). R := LAr , . . Ra := Ra : x xa a A. , L(A) R(A) Z (im R) := {T B (A) : T Ra = Ra T (a A)}. , T L(A), . . T = La a A, b A La Rb (x) = axb = Rb (La (x)) = Rb La (x) T Z (R(A)). , , T Z (R(A)), a := T e La x = ax = (T e)x = Rx (T e) = (Rx T )e = (T Rx )e = = T (Rx e) = T x x A. , T = La L(A). , L(A) B (A).


276

. 11.

T = La T -1 B (A). b := T -1 e ab = La b = T b = T T -1 e = e. , ab = e aba = a T (ba) = La ba = aba = a = La e = T e. ba = e, T . , L(A) A. 5.6.3 L = sup{ La : a 1} = sup{ ab : a 1, b 1} 1.

7.4.5, , L (. . L-1 L(A) A). 11.1.7. . LA , 11.1.6, () A. 11.1.8. . , . A LA A B (A) , , A B (A). LA A L(A). . , LA , , e C, e A (. 5.6.5). , C Ce A e. 11.2. 11.2.1. . A a A. C a (: 1 res(a)), R(a, ) := -a := ( - a)-1 . Sp(a) := C \ res(a) a, Sp(a) a. , SpA (a).


11.2. 11.2.2. a A : SpA (a) = Sp LR(a, ) = R(La , )
L(A)

277

(La ) = Sp(La );

( res(a) = res(La )).

11.2.3. . ( ) (. . , , C). : e, e A C. , C A. a A. 11.2.2 8.1.11, Sp(a) = . , C , ( - a) , . . a = e. , . () = e = || e = ||, . 11.2.4. . A B A ( ). b B : SpB (b) SpA (b), SpA (b) SpB (b). b := - b Inv(B ), b Inv(A). resB (b) resA (b), . . SpB (b) = C \ res(b) C \ res(b) = SpA (b).
B A

SpB (b), b Inv(B ). (bn ), bn Inv(B ), b. t := supnN b-1 , n b =
-1 -1 = n - bm -1 bn (bm - bn

b )b

-1 n -1 m

(1 - bn b t
2

-1 m

)=
m

bn - b

.

, t < +, B a := lim b-1 . n , , ab = ba = 1, . . b Inv(B ).


278

. 11.

Inv(B ) 11.1.6, b Inv(B ). , (, , -1 -1 bn . ), b-1 +. an := b-1 n n ban = (b - bn )an + bn an b-b
n

an + b

-1 -1 n

bn b

-1 n

0.

, b . , -1 a := b 1 = an = aban a ban 0.

, - b Inv(A), . . SpA (b). ´ SpB (b), SpA (b). 11.2.5. . SpB (b) , SpB (b) = SpA (b). SpB (b) = SpB (b) SpB (b) SpA (b) SpA (b) SpB (b) 11.2.6. . : . 11.3. 11.3.1. . a A h H (Sp(a)) a. 1 h(z ) Ra h := dz . 2 i z-a Ra h A h. , , f H (Sp(a)) , a, f (a) := Ra f .


11.4.

279

11.3.2. . Ra a A n A. f (z ) := n=0 cn z ( Sp(a)), n f (a) := n=0 cn a . 11.2.3 8.2.1, 11.2.2, (LRa h)(b) = LRa h b = (Ra h)b = = 1 2 i h(z )R(a, z ) bdz = = 1 2 i 1 2 i 1 2 i h(z )R(a, z ) dz b =

h(z )R(La , z ) bdz =

h(z )R(La , z ) dz b = RLa h(b)

b A. , , RLa (H (Sp(a))) im L. , H (Sp(a)) @ @R RLa @a @ ? R L@ B (A) A H (Sp(a)) @ @R RLa @a @ ? R @ L-1 L(A) A 11.1.6 8.2.3.

11.3.3. .


280

. 11.

, 8.2 B (X ), X . 11.4. 11.4.1. . A . J A A J A, AJ J . 11.4.2. J (A) A, , . E J (A) sup
J ( A)

E = sup

Lat(A)

E,

inf

J ( A)

E = inf

Lat(A)

E,

. . J (A) Lat(A) . , 0 , A . , . 2.1.5 2.1.6. 11.4.3. J0 A. , , : A A/J0 A - A := A/J0 . J A (J ) A; J A -1 (J ) A. ab := (-1 (a)-1 (b)) a, b A, : (ab) = (a)(b) a, b A. , (J ) A(J ) = (A)(J ) (AJ ) (J ); (J ) A-1 (J ) -1 ((A)J ) = -1 (AJ ) -1 (J ).



-1

11.4.4. J A J = 0. : (1) A = J ; (2) 1 J ; / (3) J .


11.5. C (Q, C)

281

11.4.5. . J A , J A. , , . 11.4.6. , . 11.4.7. J A. (J ) (A/J ). : J A/J . , 11.4.3, -1 (J ) A. , , J -1 (J ), J = -1 (J ) 0 = (J ) = (-1 (J )) = J , A = -1 (J ) J = (-1 (J )) = (A) = A/J 1.1.6. , A/J . 11.4.6. : J0 A J0 J . , 11.4.3, (J0 ) A/J . 11.4.6 (J0 ) = 0, (J0 ) = A/J . J0 -1 (J0 ) -1 (0) = J J = J0 . (J0 ) = (A), . . A = J0 + J J0 + J0 = J0 A. , J . 11.4.8. . . J0 A. , , E J A , J0 J . E0 E 11.4.2 : sup E = {J : J E0 }. 11.4.4 sup E0 . , E 1.2.20. 11.5. C (Q, C) 11.5.1. . J C (Q, C) Q. , , Q0 := {f -1 (0) : f J }; J0 := {f C (Q, C) : int f -1 (0) Q0 }. J
0

C (Q, C), J0 J .


282

. 11.

Q1 := cl(Q \ f -1 (0)) f J0 . , , Q1 Q0 = . f J (, , ) u J , u(q ) = 1 q Q1 . , uf = f . u , q Q1 fq J , fq (q ) = 0. gq := fq fq , , , fq : x fq (x) fq , gq 0 , , gq (q ) > 0. , gq J q Q1 . (Uq )qQ1 , Uq := {x Q1 : gq (x) > 0}, Q1 . Q1 , {q1 , . . . , qn } Q1 , Q1 Uq1 . . . Uqn . g := gq1 + . . . + gqn . , g J , g (q ) > 0 q Q1 . h0 (q ) := g (q )-1 q Q1 . 10.8.20 h C (Q, R), h Q = h0 . , , u := hg . u 1 . , , J0 J . , J0 C (Q, C) . 11.5.2. J C (Q, C) , , Q0 , J = J (Q0 ) := {f C (Q, C) : q Q0 f (q ) = 0}. 9.3.14. Q0 , 11.5.1. J J (Q0 ). f J (Q0 ) n N Un := |f | 1 2n , Vn := |f | 1 n .

9.3.14, hn C (Q, R) , 0 hn 1 hn Un = 0, hn Vn = 1. fn := f hn . - int fn 1 (0) int Un Q0 , 11.5.1 fn J . , fn f .


11.6.

283

11.5.3. . C (Q, C) J (q ) := J ({q }) = {f C (Q, C) : f (q ) = 0}, q Q. 11.5.2, .

11.6. 11.6.1. A , J A , A. - A/J , -, . : A A/J , (1) A/J , = 1. a, b A , 5.1.10 (5), (a)(b) A/J = inf { a b A : (a ) = (a), (b ) = (b)} inf { a A b A : (a ) = (a), (b ) = (b)} = = (a) A/J (b) A/J . , A/J . , (1) 1. , (1)
A/J

= inf { a

A

: (a) = (1)} 1

A

= 1,

. . (1) = 1. , , = 1. . 11.6.2. . 11.6.1 A , J A, . . J A, AJ A J . 11.6.3. : A C A. = (1) = 1 ( , A C). = 0, a A 0 = (a) = (a1) = (a)(1). , (1) = 1. a A C , || > a , - a Inv(A) (. 5.6.15). 1 = (1)( - a)(( - a)-1 ). ( - a) = 0, . . (a) = . , |(a)| a 1. , = 1 |(1)| = 1, : = 1.


284

. 11.

11.6.4. . A A. A X(A), ( X(A) (A , A)) A. 11.6.5. . X(A) . 11.6.3, X(A) (A , A)- BA . (A , A)- 10.6.7. 9.4.9. 11.6.6. . A . ker , X(A) M (A) A, . X(A) A. , ker A. 2.3.11 , : A/ ker C . 11.6.1, (1) = (1) = 1, . . A/ ker C. , A/ ker . 11.4.7, , ker , . . ker M (A). m M (A) - A. , m cl m, cl m A 1 cl m ( 1 Inv(A), / 5.6.12 11.1.6). , m . - A/m : A A/m. 11.4.7 11.6.1 - A/m . 11.2.3 : A/m C. := . , X(A) ker = -1 (0) = -1 ( -1 (0)) = -1 (0) = m. ker . , ker 1 = ker 2 1 , 2 X(A). 2.3.12 C 1 = 2 . , 11.6.3, 1 = 1 (1) = 2 (1) = . 1 = 2 . 11.6.7. . 11.6.6 M (A) , M (A) X(A) ker ,


11.6.

285

A. , , 11.6.6. 11.6.8. . A X(A) . a A X(A) a() := (a). a : a(), X(A), a. a a, a A, A GA ( ). 11.6.9. . GA : a a A C (X(A), C). Sp(a) = Sp(a) = a(X(A)), a = r(a), r(a) a A.

, a A a C (X(A), C), 1 = 1 a, b A ab = ab, 11.6.3. GA . , GA . Sp(a). - a , J-a := A( - a) 11.4.4. 11.4.8 m A, m J-a . 11.6.6 m = ker . , ( - a) = 0, . . = (1) = () = (a) = a(). , Sp(a). , , Sp(a), ( - a) C (X(A), C), . . X(A), = a(). , ( - a) = 0. , - a Inv(A) : 1 = (1) = (( - a)-1 ( - a)) = (( - a)-1 )( - a) = 0. , Sp(a). Sp(a) = Sp(a).


286 ¨ :

. 11. (. 11.3.3 8.1.12),

r(a) = sup{|| : Sp(a)} = sup{|| : Sp(a)} = = sup{|| : a(X(A))} = sup{|a()| : X(A)} = a , . 11.6.10. A , a2 = a 2 a A. : , t t2 , R+ , , R+ , 10.6.9 a2 = a2 = sup |a2 ()| = sup |(a2 )| =
X(A) X(A)

C (X(A),C)

= sup |(a)(a)| = sup |(a)|2 =
X(A) X(A) 2

=

sup |(a)|
X(A)

=a

2

= a 2.

: 5.6.8, r(a) = lim an 1/n . , n n , a2 = a 2 , . . r(a) = a . 10.6.9, , r(a) = a . 11.6.11. . , . GA , . . A. , GA A C (X(A), C) : A (. . A ) . 11.6.12. . a A :


11.6.

287

H (Sp(a)) = H (Sp(a)) @ @R a Ra @^ @ ? R @ GA C (X(A), C) A f (a) = f a = f (a) f H (Sp(a)). X(A). z res(a) 1 (z - a) z-a =1 1 z-a = 1 1 = . (z - a) z - (a)

, R(a, z )() = 1 1 1 () = = () = R(a, z )(). z-a z - a() z-a

, (. 5.5.9 (6)), f H (Sp(a)) f (a) = GA Ra f = GA = 1 2 i 1 2 i f (z )R(a, z ) dz 1 2 i =

f (z )GA (R(a, z )) dz = = 1 2 i

f (z )R(a, z )) dz =

f (z )R(a, z ) dz = R^(f ) = f (a). a

, , , X(A) f a() = f (a()) = f ((a)) = f (z ) 1 f (z ) dz = dz = z - (a) 2 i z-a f (z ) dz = f (a)() = f (a)(). z-a

1 = 2 i 1 = 2 i


288

. 11.

11.6.13. . A . 11.6.4 11.6.8 . X(A) e X(Ae ) : e (a, ) := (a) + (a A, C). X(Ae ) \ {e : X(A)} (a, ) := (a A, C). , X(A) (. 9.4.19), X(A) e X(Ae ) \ { } . ker = A â 0. , , . (L1 (RN ), ) 10.11.1 10.11.3 10.11.5 (3), 10.11.6 (3). 11.7. C - 11.7.1. . a A , a = a. a A , a a = aa . , a , aa = a a = 1 (. . a, a Inv(A) a-1 = a , a-1 = a). 11.7.2. A A. a A , , x, y A , a = x + iy . , x= 1 (a + a ), 2 y= 1 (a - a ). 2i

a = x - iy . . a = x1 +iy1 , (. 6.4.13) a = x + (iy1 ) = x - iy1 = x1 - iy1 . , x1 = x y1 = y . 1 1 11.7.3. . 1 = 1 1 = 1 1 = (1 1) = 1 = 1


11.7. C -

289

11.7.4. a Inv(A) a Inv(A). . aa-1 = a-1 a = 1 a Inv(A). , a-1 a = -1 aa = 1 . 11.7.3, , a Inv(A) a-1 = -1 a . a := a , . 11.7.5. Sp(a ) = Sp(a) . 11.7.6. C - . 6.4.13 a a2 = a a a a . , a a . , a = a , : a = a . a = a-1 , . . a , a 2 = a a = a-1 a = 1. , a = a = a-1 = 1. , Sp(a) Sp(a-1 ) . , Sp(a-1 ) = Sp(a)-1 . 11.7.7. C - . a A. 11.3.2


exp(a) =
n=0

an n!





=
n=0

(an ) = n!



n=0

(a )n = exp(a ). n!

h = h A, a := exp(ih), , a = exp(ih) = exp((ih) ) = exp(-ih ) = exp(-ih) = a-1 . , a C - A, 11.7.6 Sp(a) T. Sp(h), 8.2.5 (. 11.3.3) exp(i) Sp(a) T. , 1 = | exp(i)| = | exp(i Re - Im )| = exp(- Im ). Im = 0, . . R. 11.7.8. . A C -. B A C - A, b B b B . B , A.


290

. 11.

11.7.9. . C - C - . B C - ( ) C A b B . b Inv(B ), , b Inv(A). b Inv(A). 11.7.4 : b Inv(A). , b b Inv(A) (b b)-1 b b. 11.1.4 , b-1 = (b b)-1 b . , , (b b)-1 B . b b B , SpB (b b) R (. 11.7.7). 11.2.5, , SpA (b b) = SpB (b b). 0 SpA (b b), / b b Inv(B ). b Inv(B ). 11.7.10. . b C - A B - C - A, b B . SpB (b) = SpA (b). 11.7.11. . 11.7.10 11.7.9 C - . , C - , . . C -, C -. 11.8. 11.8.1. C (Q, C) f f , f (q ) := f (q ) q Q, C -. f f = sup{|f (q ) f (q )| : q Q} = sup{|f (q )|2 : q Q} = (sup |f (Q)|)2 = f 2 11.8.2. C (Q, C). C - ( ) C - C (Q, C), Q, C (Q, C). A . f A f A, f A Re f A , , Re A := {Re f : f A} C (Q, R). , Re A Q. 10.8.17 Re A C (Q, R). 11.7.2.


11.8.



291

11.8.3. . -, , -. , (A, ) (B , ) R : A B , R - A-B R A-B R , R - A B . - - , . 11.8.4. . C - A - A C (X(A), C). a A a2 = (a2 ) a2
1

R

/

2

= a aa a

1

/

2

= a a = a 2 .

11.6.10 GA A A C (X(A), C). , A X(A) . 11.6.9 11.7.7 h = h A h(X(A)) = Sp(h) R. a A. 11.7.2, : a = x + iy , x, y . , X(A) (x) R, (y ) R, GA (a) () = a () = a() = (a) = (x + iy ) = = ((x) + i(y )) = (x) - i(y ) = (x - iy ) = (a ) = = a () = GA (a )() ( X(A)). , GA - , , A C - C (X(A), C). 11.8.2, : A = C (X(A), C).


292

. 11.

11.8.5. R : A B - C - A C - B . Ra a a A. R(1) = 1, R(Inv(A)) Inv(B ). , a A SpB (R(a)) SpA (a). ¨ , rA (a) rB (R(a)). a A, R(a) B , R(a) = R(a ) = R(a). A0 C -, a, B0 , R(a), A0 B0 C -. , 11.8.4 11.6.9 R(a) = R(a)
B
0

= GB0 (R(a)) = r
A
0

B

0

(R(a)) =

= rB (R(a)) rA (a) = r

(a) = GA0 (a) = a .

a A , a a . , R(a)
2

= R(a) R(a) = R(a a) a a = a 2 .

11.8.6. . a C - A Sp(a) . , , - Ra C (Sp(a), C) A , a = Ra (ISp(a) ). B C - A, a. , B a ( a a ). 11.7.10 Sp(a) = SpA (a) = SpB (a). a := GB (a) a X(B ) Sp(a) 11.6.9 , , . X(B ) Sp(a) , 9.4.11, , a . ,


R : f f a C (Sp(a), C) C (X(B ), C). 11.3.2 , 11.6.12, a = R^IC = IC a = IC a = IC
Sp(a) ^(X(B )) a

a=

a = ISp(a) a = R(ISp(a) ).


11.8.
- Ra := GB 1 R.



293

, Ra ,

-.

- - Ra (ISp(a) ) = GB 1 R(ISp(a) ) = GB 1 (a) = a.



Ra 11.8.5 , , 11.8.2, C - C (Sp(a), C) C - ( ), ISp(a) . 11.8.7. . Ra : C (Sp(a), C) A, 11.8.6, ( a A). f C (Sp(a), C), Ra (f ) f (a). 11.8.8. . f a C - A, . . f H (Sp(a)). f (a) A. f f Sp(a), Ra (f ) := Ra f Sp(a) A. , 11.8.7, f (a). 11.6.12 11.8.6. , . . , · Sp(a) , h H (Sp(a)) Sp(a), . . h Sp(a) z h z (. 8.1.21). , · Sp(a) : H (Sp(a)) C (Sp(a), C). a C - a :


294

. 11. · |Sp(a)H (Sp(a)) C (Sp(a), C) @ @ Ra @ Ra @ R @? A

. 11.9. - C - 11.9.1. . A ( ). s A A ( s S (A)), s = s(1) = 1. a A N (a) := {s(a) : s S (A)} a. 11.9.2. C (Q, C) R+ . a 0 s = s(1) = 1. , s(a) 0. z C > 0 , B (z ) := z + D a(Q). a - z , , |s(a - z )| . , |s(a) - z | = |s(a) - s(z )| , . . s(a) B (z ). , {B (z ) : B (z ) a(Q)} = cl co(a(Q)) R+ . , s(a) R+ . 11.9.3. . a C - : (1) Sp(a) N (a); (2) Sp(a) R+ N (a) R+ . B C - A, a. , B . 11.6.9 a := GB (a) a(X(B )) = SpB (a). 11.7.10, SpB (a) = Sp(a). , Sp(a) B , (a) = . 11.6.3, = (1) = 1. 7.5.11, s A . s A s(a) = . Sp(a) N (a) ( ,


11.9. - C -

295

N (a) R+ , Sp(a) R+ ). s A. , s B B . , a X(B ) Sp(a). , B C (Sp(a), C). 11.9.2 : s(a) = s B (a) 0 a 0. , Sp(a) R+ N (a) R+ , . 11.9.4. . a C - A , a Sp(a) R+ . A A+ . 11.9.5. A+ C A. , N (a + b) N (a) + N (b) N (a) = N (a) a, b A R+ . 11.9.3 1 A+ + 2 A+ A+ 1 , 2 R+ . , A+ . a A+ (-A+ ), Sp(a) = 0. , a , 11.8.6 : a = 0. 11.9.6. a C - A a+ , a- A+ , a = a+ - a- ; a+ a- = a- a+ = 0.

11.8.6. 11.9.7. . a C - A , a = b b b A. : a + , . . a = a Sp(a) R+ . (. 11.8.6) A b := a. b = b b b = a. : a = b b, a 11.9.6 : b b = u - v , uv = v u = 0 u 0, v 0 ( (AR , A+ )). : (bv ) bv = v b bv = v b bv = v (u - v )v = (v u - v 2 )v = -v 3 . v 0, v 3 0, . . (bv ) bv 0. 5.6.22 Sp((bv ) bv ) Sp(bv (bv ) ) . bv (bv ) 0.


296

. 11.

11.7.2, bv = a1 + ia2 a1 a2 . , a2 , a2 A+ (bv ) = a1 - ia2 . 1 2 11.9.5, : 0 (bv ) bv + bv (bv ) = 2 a2 + a2 0. 1 2 11.9.5, a1 = a2 = 0, . . bv = 0. , -v 3 = (bv ) bv = 0. 11.9.5 v = 0. , a = b b = u - v = u 0, . . a A+ . 11.9.8. C - A s , . . s(a ) = s(a) (a A).

11.9.7 11.9.3 a A s(a a) 0. a := a + 1 a := a + i, 0 s((a + 1) (a + 1)) = s(a a + a + a + 1) s(a) + s(a ) R; 0 s((a + i) (a + i)) = s(a a - ia + ia + 1) i(-s(a) + s(a )) R. , Im s(a) + Im s(a ) = 0; Re(-s(a)) + Re s(a ) = 0. s(a ) = Re s(a ) + i Im s(a ) = Re s(a) - i Im s(a) = s(a) . 11.9.9. s C - A. a, b A (a, b)s := s(b a). (· , ·)s A. 11.9.8 (a, b)s = s(b a) = s((a b) ) = s(a b) = (b, a) . s , ( · , ·)s . a A, 11.9.7, a a 0, , 11.9.3, (a, a)s = s(a a) 0. , ( · , ·)s .


11.9. - C -

297

11.9.10. C -. s C - A (Hs , ( · , ·)s ), xs Hs - Rs : A B (Hs ) , s(a) = (Rs (a)xs , xs )s a A {Rs (a)xs : a A} Hs . 11.9.9, (a, b)s := s(b a) a, b A, (A, ( · , ·)s ). ps (a) := (a, a)s , s : A A/ ker ps A A/ ker ps , A. , , s : A/ ker ps Hs (, ) A/ ker ps Hs , (A, ( · , ·)s ) (. 6.1.10 (4)). Hs ( · , ·)s . , , (s s a, s s b)s = (a, b)s = s(b a) (a, b A). a A ( ) La : b ab (b A). , , , La Rs (a), :
s A-A/ ker ps -Hs Rs (a) La La s s A-A/ ker ps -Hs



s



La Xs = s La . 2.3.8, , ker ps La . , La (ker ps ) ker ps . b ker ps , . . ps (b) = 0. 6.1.5, 0 (La b, La b)s = (ab, ab)s = s((ab) ab) = = s(b a ab) = (a ab, b)s ps (b)ps (a ab) = 0, . . La b ker ps . La 2.3.9, s . , s


298

. 11.

(. 5.1.3). La . , 5.3.8 s La (s )-1 s (A/ ker ps ) Hs . 4.5.10 , , Rs (a) B (Hs ). , Rs : a Rs (a) . 11.1.6 : Lab = La Lb a, b A. , s Lab = s La Lb = La s Lb = La Lb s . Lab Xs = s Lab , Lab = La Lb , Rs . , Rs , . , L1 s = s L1 = s IA = s = IA/
ker ps

s = 1s ,

. . Rs (1) = 1. s := s s . Hs (. 6.1.10 (4)) B (Hs ) (. 6.4.14 6.4.5) a, b, y A (Rs (a )s x, s y )s = (s La x, s y )s = = (La x, y )s = (a x, y )s = s(y a x) = s((ay ) x) = (x, ay )s = = (x, La y )s = (s x, s La y )s = (s x, Rs (a)s y )s = = (Rs (a) s x, s y )s . - im s Hs , Rs (a ) = Rs (a) a A, . . Rs -. xs := s 1. Rs (a)xs = Rs (a)s 1 = s La 1 = s a (a A). , {Rs (a)xs : a A} Hs . , (Rs (a)xs , xs )s = (s a, s 1)s = (a, 1)s = s(1 a) = s(a). 11.9.11. . 11.9.10 - ( : ).


11.9. - C -

299

11.9.12. . C - - C - . A C -. H - R A C - B (H ). H (Hs )sS (A) , C -, . . H := = h := (hs )s
sS (A)

Hs =
2 s Hs

S (A)


sS (A)

Hs :
sS (A)

h

< +



.

, h := (hs )sS (A) g := (gs )sS (A) H (. 6.1.10 (5) 6.1.9): (h, g ) =
sS (A)

(hs , gs )s .

, , Rs - A Hs , s S (A). 11.8.5 a A Rs (a) B (Hs ) a , h H Rs (a)h
sS (A) 2 s Hs


sS (A)

Rs (a)

2 B (Hs )

h

2 s Hs

a

2 sS (A)

h

2 s Hs

.

, R(a)h : s Rs (a)hs R(a)h H . R(a) : h R(a)h B (H ). , R : a R(a) (a A) - A. , R Rs s S (A) , R - A B (H ). , , R . a A h, g H . (R(a )h, g ) =
sS (A)

(Rs (a )hs , gs )s =


300 =
sS (A)

. 11. (Rs (a) hs , gs )s =
sS (A)

(hs , Rs (a)gs )s =

= (h, R(a)g ) = (R(a) h, g ). - h, g H R(a ) = R(a) , . - R, . . R(a) = a a A. a . 9.4.5 : a Sp(a). 11.9.3 (1) s S (A), s(a) = a . xs , - Rs (. 11.9.10), 6.1.5, a = s(a) = (Rs (a)xs , xs )s Rs (a)xs Rs (a) = Rs (a)
B (Hs ) B (Hs ) Hs

xs

Hs



xs

2 Hs

= Rs (a)

B (Hs )

(xs , xs )s =
B (Hs )

(Rs (1)xs , xs )s = Rs (a)

B (Hs )

s(1) = Rs (a)

.

R(a) Rs (a) B (Hs ) a R(a) , , 11.8.5, : a R(a) Rs (a)
B (Hs )

a.

, , a A. 11.9.7 a a . , : R(a)
2

= R(a) R(a) = R(a )R(a) = R(a a) = a a = a 2 .

.
11.1. . 11.2. A A# , (1) = 1 (Inv(A)) Inv(C). , . 11.3. Sp(a) a A U . , > 0 , Sp(a + b) U b A, b .




301

11.4. C (Q, C), C (1) ([0, 1], C) , l1 (Z) ¨


(a b)(n) :=
k=-

a

n-k bk

.

11.5. , B (X ) T , T T X . 11.6. , B (X ) T , T T X . 11.7. A . , A . 11.8. A E . E A, a A ^ a


= sup |^(E )|. a

, A A. A. 11.9. A, B , B A 1B = 1A . , B A. 11.10. A B C - ( ) T A B . , , a A f SpA (a). , SpB (T a) SpA (a) T f (a) = f (T a). 11.11. f A , A C -. , f , . . f (a a) 0 a A, , f = f (1). 11.12. C -. 11.13. , C (Q1 , C) C (Q2 , C) , Q1 Q2 . 11.14. C - . , . 11.15. . .


302

. 11.
1.

11.16. T C -, T T (a ) = (T a) a.

11.17. T H . , S H f : Sp(S ) C , T = f (S ). C -? 11.18. A, B C - - A B . , A B . 11.19. a, b C - A, ab = ba , , a b. , f (a) f (b) f R.




1. . ., . . . : , 1980. 336 . 2. . ., . . . : , 1978. 368 . 3. . . . .: , 1977. 367 . 4. . ., . ., . . . .: , 1979. 429 . 5. . ., . . . : - , 1984. 352 . 6. . ., . ., . . . : , 1978. 205 . 7. ., ., . . . .: , 1976. 311 . 8. . . . .: - , 1989. 222 . 9. . ., ¨ . . . .: , 1974. 423 . 10. . . . .: , 1965. 407 . 11. . . . : , 1984. 120 . 12. . ., . . . : , 1977­ 1978. . 1­2.


304



13. ., . . .: , 1988. 448 . 14. . . . .: , 1980. 384 . 15. . . .-: R&C Dynamics, 2001. 272 . 16. ., ¨¨ . . . .: , 1980. 264 . 17. . ., . . . : . 1988. 680 . 18. . ., . ., . . . . : , 1990. 600 . 19. . ., . ., . . . .: , 1996. 480 . 20. . ¨. .: , 1984. 565 . 21. . . . . .: , 1972. 544 . ( .) 22. . ., . . ¨ . .: - , 1980. 264 . 23. . ., . ., . ., . . . .: , 1987. 615 . 24. . ., . . . .: - , 1985. 496 . 25. ., . . .: , 1982. 511 . 26. . , . .: , 1968. 276 . 27. . . .: - . ., 1959. 410 . 28. . . .: , 1965. 455 . 29. . . . .: , 1968. 272 . 30. . . .: , 1971. 707 . 31. . . .: , 1972. 183 .




305

32. . . . . . .: , 1975. 408 . 33. . . . . . . .: , 1977. 600 . 34. . . . ¨ . : , 1991. 212 . 35. . . . .: , 1979. 128 . 36. . . . .: , 1988. 512 . 37. . . ¨ . .: , 1976. 280 . 38. . . . . .: , 1982. 256 . 39. . . . .: , 1980. 400 . 40. . , . .: , 1982. 304 . 41. . . . .: , 1967. 415 . 42. . . . .: , 1961. 407 . 43. . . .: , 1973. 334 . 44. ., . . .: , 1967. 251 . 45. . . . .: , 1966. 280 . 46. . ., . ., . . . .: , 1960. 316 . 47. . ., . . ¨ . .: , 1958. 438 . (¨ . . 1.) 48. . ., . . ¨ . .: , 1958. 307 . (¨ . . 2.) 49. . ., . . . ¨ .


306

.: , 1961. 472 . (¨ . . 4.) . ., . . . .: , 1969. 475 . . . .: - . ., 1961. 319 . . ., . . ¨ . .: , 1983. 284 . . . .: - . ., 1963. 311 . . ., . . ¨ . .: , 1965. 448 . . . . .: , 1988. 311 . ( . . . 25.) ., . . . 1: . .: - . ., 1962. 898 . . 2: . ¨ . .: , 1966. 1063 . . 3: . .: , 1974. 661 . . C - . .: , 1974. 399 . . . : , 1980. 215 . . . .: - . ., 1961. 232 . . . .: - . ., 1961. 232 . . ., ¨ . ., . . ( ). . 2. . .: , 1980. 295 . . . . II. .: , 1998. 640 . . . .: , 1967. 624 . . . . : - , 1989. 168 .

50. 51. 52.

53. 54. 55.

56.

57. 58. 59. 60. 61.

62. 63. 64.




307

65. . ., . . . .: , 1974. 479 . 66. . ., . . . .: , 1984. 752 . 67. . ., . . . .: , 1959. 684 . 68. . ., . ., . . . .-.: , 1950. 548 . 69. . . .: - . ., 1963. 296 . 70. . . .: , 1972. 740 . 71. .-. . .: , 1976. 204 . 72. . ., . . . .: , 1984. 495 . 73. . . .: , 1981. 431 . 74. . . . .: , 1978. 343 . 75. . ., . . . .: , 1988. 396 . 76. . . // . . 1989. . 304, 4. . 795­798. 77. . . . : , 1985. 208 . 78. . . . . .: , 1985. 470 . 79. . ., . . . .: , 1989. 623 . 80. . . . : , 1983. 224 . 81. . ., . . . .: - , 1986. 303 . 82. . . . . .: , 1962. 394 .


308



83. . . . . .: , 1966. 499 . 84. . ., . . . .: , 1975. 511 . 85. . ., . . . .: , 1958. 271 . 86. . ., . ., . . . . .: , 1985. 255 . 87. . . . .: , 1967. 464 . 88. . . . .: , 1971. 104 . 89. . ., . ., ¨ . . . .: , 1978. 400 . 90. . . . . 2. .: , 1981. 584 . 91. . . ¨ . : , 1985. 256 . 92. . ., . . . . : , 1992. 270 . 93. . ., . . . : - - , 1994. 118 p. 94. . ., . . ¨ . : , 1976. 254 . 95. . . . .: , 1973. 407 . 96. . . .: , 1967. 510 . 97. . . . .: , 1985. 351 . 98. . . .: , 1967. 203 . 99. . . .: , 1968. 564 . 100. . SL(2, R). .: , 1977. 430 .




309

101. . . . : , 1985. 143 . 102. . . . .: , 1988. 316 . ( . . . 19.) 103. . . .: - . ., 1956. 251 . 104. . ., . . . .: , 1982. 271 . 105. . . . . . .: - , 1985. 415 . 106. . . .: , 1968. 131 . 107. . . . .: , 1973. 544 . 108. . . .: , 1977. 504 . 109. . . . .: , 1977. 431 . 110. . . .: , 1965. 570 . 111. . . .: , 1980. 102 . 112. . . ¨ . .: , 1982. 240 . 113. . . . .: , 1968. 664 . 114. ¨ . . .: , 1969. 309 . 115. . . . .: , 1964. 367 . 116. . . . .: , 1987. . 1, 2. 117. . . . .: , 1980. 383 . 118. . . . .: , 1977. 455 . 119. . . .: , 1977. 232 .


310



120. .-. . .: , 1988. 264 . 121. .-., . . .: , 1988. 510 . 122. . . . .: , 1967. 487 . 123. . . .: , 1970. 359 . 124. . ., . . ¨ . : , 1980. 216 . 125. . . .: , 1982. 536 . 126. . . .: , 1967. 256 . 127. . . . .: , 1965. 624 . 128. ¨ . . .: , 1979. 493 . 129. . . . .: - , 1982. 199 . 130. . . . .: , 1962. 211 . 131. . . . : , 1982. 91 . 132. ., . . .: , 1977­1982. . 1: . 1977. 357 . . 2: . . 1978. 395 . . 3: . 1982. 443 . . 4: . 1982. 428 . 133. ., ¨- . . .: , 1979. 587 . 134. . . .: , 1982. 486 . 135. ., . . .: , 1967. 257 . 136. . . .: , 1973. 470 . 137. . . .: , 1975. 443 .




311

138. . . . .: , 1999. 368 . 139. . . . . 5. .: , 1959. 635 . 140. . . . .: , 1974. 808 . 141. . . . .: , 1988. 334 . 142. . . ¨ . .: , 1989. 254 . 143. . . .: , 1973. 342 . 144. ., . . .: , 1974. 333 . 145. . . . .: , 1982. 383 . 146. . . . .: . . . 14. .: , 1987. . 5­101. 147. . . . .: , 1980. 496 . 148. . ., . ., . . . .: , 1984. 256 . 149. . . .: , 1986. 447 . 150. . ., . ., ¨ . . . : , 1984. 223 . 151. . . . .: . . . 15. .: , 1987. . 6­133. 152. . . .: - . . 1953. 291 . 153. . . .: , 1963. 264 .


312



154. . . .: , 1970. 352 . 155. ., . L2 . .: , 1985. 158 . 156. ., . . .: , 1983. 431 . 157. . . .: , 1981. 701 . 158. . . . , , . .: , 1989. 464 . 159. ., . . .: - . ., 1962. 829 . 160. ., . . .: , 1989. 655 . 161. ., . . . 1: . . . .: , 1975. 656 . . 2: . . .: , 1975. 902 . 162. ¨ . . .: , 1968. 279 . 163. ¨ . . . 1: . .: , 1986. 462 . 164. . . .: , 1972. 142 . 165. . . . .: , 1986. 288 . ( . . . 11.) 166. . . . 1. .: , 1972. 824 . 167. . . .: , 1965. 412 . 168. . . .: , 1971. 359 . 169. . . . . .: , 1965. 327 . 170. . ., . . , . .: , 1967. 219 .




313

171. . . .: , 1985. . 1, 2. 172. . . . .: , 1969. 1072 . 173. ., . . .: , 1979. 400 . 174. . . .: , 1976. 423 . 175. . . .: , 1986. 751 . 176. . . .: , 1974. 488 . 177. Adams R. Sobolev Spaces. New York etc.: Academic Press, 1975. 275 p. 178. Adasch N., Ernst B., and Keim D. Topological Vector Spaces. The Theory Without Convexity Conditions. Berlin etc.: Springer, 1978. 125 p. 179. Aliprantis Ch. and Burkinshaw O. Positive Operators. Orlando etc.: Academic Press, 1985. 367 p. 180. Aliprantis Ch. and Border Kim C. Infinite-Dimensional Analysis. A Hitchhiker's Guide. Berlin etc.: Springer, 1999. xx+672 p. 181. Amir D. Characterizations of Inner Product Spaces. Basel etc.: Birkh¨ ser, 1986. 200 p. au 182. Antosik P. and Swartz Ch. Matrix Methods in Analysis. Berlin etc.: Springer, 1985. 114 p. 183. Approximation of Hilbert Space Operators. Boston etc.: Pitman. Vol. 1: Herrero D. A. 1982. 255 p. Vol. 2: Apostol C. et al. 1984. 524 p. 184. Arveson W. An Invitation to C -Algebras. Berlin etc.: Springer, 1976. 106 p. 185. Baggett L. W. Functional Analysis. A Primer. New York etc.: Dekker, 1991. 288 p. 186. Baggett L. W. Functional Analysis. New York: Marsel Dekker, Inc., 1992. 267 p. 187. Bauer H. Probability Theory. Berlin: Walter de Gruyter, 1996. xv+523 p. 188. Beauzamy B. Introduction to Banach Spaces and Their Geometry. Amsterdam etc.: North-Holland, 1985. 338 p.


314



189. Beauzamy B. Introduction to Operator Theory and Invariant Subspaces. Amsterdam etc.: North-Holland, 1988. xiv+358 p. 190. Berberian St. Lectures in Functional Analysis and Operator Theory. Berlin etc.: Springer, 1974. 345 p. 191. Bessaga Cz. and Pelczynski A. Selected Topics in Infinite-Dimensional Topology. Warszawa: Polish Scientific Publishers, 1975. 313 p. 192. Birkhoff G. and Kreyszig E. The establishment of functional analysis // Historia Math. 1984. Vol. 11, No. 3. P. 258­321. 193. Boccara N. Functional Analysis. An Introduction for Physicists­ New York etc.: Academic Press, 1990. 344 p. 194. Bollob´ B. Linear Analysis. An Introductory Course. Cambridge: as Cambridge University Press, 1990. 240 p. 195. Bonsall F. F. and Duncan J. Complete Normed Algebras. Berlin etc.: Springer, 1973. 299 p. 196. Boos B. and Bleecker D. Topology and Analysis. The Atiyah­ Singer Index Formula and Gauge-Theoretic Physics. Berlin etc.: Springer, 1985. 451 p. 197. Bourgain J. New Classes of L p -Spaces. Berlin etc.: Springer, 1981. 143 p. 198. Bourgin R . D. Geometric Aspects of Convex Sets with the Radon­ Nikodym Property. Berlin etc.: Springer, 1983. 474 p. ´ 199. Brezis H. Analyse Fonctionelle. Th´ e et Applications. Paris eori etc.: Masson, 1983. 233 p. 200. Brown A. and Pearcy C. Introduction to Operator Theory. I. Elements of Functional Analysis. Berlin etc.: Springer, 1977. 474 p. 201. Burckel R. Characterization of C (X ) Among Its Subalgebras. New York: Dekker, 1972. 159 p. 202. Caradus S., Plaffenberger W., and Yood B. Calkin Algebras of Operators on Banach Spaces. New York: Dekker, 1974. 146 p. 203. Carreras P. P. and Bonet J. Barrelled Locally Convex Spaces. Amsterdam etc.: North-Holland, 1987. 512 p. 204. Casazza P. G. and Shura Th. Tsirelson's Spaces. Berlin etc.: Springer, 1989. 204 p. 205. Chandrasekharan P. S. Classical Fourier Transform. Berlin etc.: Springer, 1980. 172 p.




315

206. Choquet G. Lectures on Analysis. Vol. 1: Integration and Topological Vector Spaces. 361 p. Vol. 2: Representation Theory. 317 p. Vol. 3: Infinite Dimensional Measures and Problem Solutions. 321 p. New York and Amsterdam: Benjamin, 1976. 207. Colombeau J.-F. Elementary Introduction to New Generalized Functions. Amsterdam etc.: North-Holland, 1985. 281 p. 208. Constantinescu C., Weber K., and Sontag A. Integration Theory. Vol. 1: Measure and Integration. New York etc.: Wiley, 1985. 520 p. 209. Conway J. B. A Course in Functional Analysis. New York etc.: Springer, 1990. 399 p. 210. Conway J. B. A Course in Operator Theory. Providence: Amer. Math. Soc., 2000. xvi+372 p. 211. Conway J. B., Herrero D., and Morrel B. Completing the Riesz­ Dunford Functional Calculus. Providence: Amer. Math. Soc., 1989. 104 p. 212. Cryer C. Numerical Functional Analysis. New York: Clarendon Press, 1982. 568 p. 213. Dautray R. and Lions J.-L. Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 2: Functional and Variational Methods. Berlin etc.: Springer, 1988. 561 p. Vol. 3: Spectral Theory and Applications. Berlin e tc.: Springer, 1990. 515 p. 214. DeVito C. L. Functional Analysis. New York and London: Academic Press, 1978. ix+166 p. 215. DeVito C. L. Functional Analysis and Linear Operator Theory. Redwood City, CA: Addison-Wesley, 1990. x+358 p. 216. Diestel J. Sequences and Series in Banach Spaces. Berlin etc.: Springer, 1984. 261 p. 217. Diestel J. and Uhl J. J. Vector Measures. Providence: Amer. Math. Soc., 1977. 322 p. 218. Dieudonn´ J. Treatise on Analysis. Vol. 7. Boston: Academic e Press, 1988. 366 p. 219. Dieudonn´ J. History of Functional Analysis. Amsterdam etc.: e North-Holland, 1983. 312 p. 220. Dieudonn´ J. A Panorama of Pure Mathematics. As Seen by e N. Bourbaki. New York etc.: Academic Press, 1982. 289 p.


316



221. Dinculeanu N. Vector Measures. Berlin: Verlag der Wissenschaften, 1966. 432 p. 222. Dixmier J. Les Algebres d'Operators dans l'Espace Hilbertien (Algebres de von Neumann). Paris: Gauthier-Villars, 1969. 367 p. 223. Donoghue W. F. Jr. Distributions and Fourier Transforms. New York etc.: Academic Press, 1969. 316 p. 224. Doran R. and Belfi V. Characterizations of C -Algebras. The Gelfand­Naimark Theorem. New York and Basel: Dekker, 1986. 426 p. 225. Dowson H. R. Spectral Theory of Linear Operators. London etc.: Academic Press, 1978. 422 p. 226. Edmunds D. E. and Evans W. D. Spectral Theory and Differential Operators. Oxford: Clarendon Press, 1987. 574 p. 227. Enflo P. A counterexample to the approximation property in Banach spaces // Acta Math. 1979. Vol. 130, No. 3­4. P. 309­317. 228. Erdelyi I. and Shengwang W. A Local Spectral Theory for Closed Operators. Cambridge etc.: Cambridge University Press, 1985. 178 p. 229. Fenchel W. Convexity Through Ages. In: Convexity and Its Applications. Basel etc.: Birkh¨ ser, 1983. P. 120­130. au 230. Friedlander F. G., Introduction to the Theory of Distributions. Cambridge: Cambridge University Press, 1998. x+175 p. 231. Folland G. B. Fourier Analysis and Its Applications. Wadsworth and Brooks: Pacific Grove, 1992. 433 p. 232. Functional Analysis, Optimization and Mathematical Economics. New York and Oxford: Oxford University Press, 1990. 341 p. 233. Gillman L. and Jerison M. Rings of Continuous Functions. Berlin etc.: Springer, 1976. 283 p. 234. Gohberg I. and Goldberg S. Basic Operator Theory. Boston: Birkh¨ ser, 1981. 285 p. au 235. Goldberg S. Unbounded Linear Operators. New York: Dover, 1985. 199 p. 236. Griffel P. H. Applied Functional Analysis. New York: Wiley, 1981. 386 p. 237. Grothendieck A. Topological Vector Spaces. New York etc.: Gordon and Breach, 1973. 245 p. 238. Guerre-Delabriere S. Classical Sequences in Banach Spaces. New York: Dekker, 1992. 232 p.




317

239. Halmos P. Selecta: Expository Writing. Berlin etc.: Springer, 1983. 304 p. 240. Halmos P. Has Progress in Mathematics Slowed Down. Amer. Math. Monthly. 1990. Vol. 97, No. 7. P. 561­588. 241. Harte R. Invertibility and Singularity for Bounded Linear Operators. New York and Basel: Dekker, 1988. 590 p. 242. Helmberg G. Introduction to Spectral Theory in Hilbert Space. Amsterdam etc.: North-Holland, 1969. 346 p. 243. Herv´ M. Transformation de Fourier et Distributions. e Paris: Presses Universitaires de France, 1986. 182 p. 244. Heuser H. Functional Analysis. New York: Wiley, 1982. 408 p. 245. Heuser H. Funktionalanalysis. Stuttgart: Teubner, 1986. 696 p. 246. Hewitt E. and Stromberg K. Real and Abstract Analysis Berlin etc.: Springer, 1975. 476 p. 247. Hochstadt H. Edward Helly, father of the Hahn­Banach theorem// The Mathematical Intelligencer. 1980. l. 2, No. 3. P. 123­125. 248. Hoffman K. Fundamentals of Banach Algebras. Curitaba: University do Parana, 1962. 116 p. 249. Hog-Nlend H. Bornologies and Functional Analysis. Amsterdam etc.: North-Holland, 1977. 250. Holmes R. B. Geometric Functional Analysis and Its Applications. Berlin etc.: Springer, 1975. 246 p. 251. H¨ mander L. Notions of Convexity. Boston etc.: Birkh¨ er, or aus 1994. 414 p. 252. Husain T. and Khaleelulla S. M. Barrelledness in Topological and Ordered Vector Spaces. Berlin etc.: Springer, 1978. 257 p. 253. Istratescu V. I. Inner Product Structures. Dordrecht and Boston: Reidel, 1987. 895 p. 254. James R. C. Some Interesting Banach Spaces//Rocky Mountain J. Math. 1993. Vol. 23, No. 2. P. 911­937. 255. Jarchow H. Locally Convex Spaces. Stuttgart: Teubner, 1981. 548 p. 256. J¨ gens K. Linear Integral Operators. or Boston etc.: Pitman, 1982. 379 p. 257. Kadison R. V. and Ringrose J. R. Fundamentals of the Theory of Operator Algebras. Vol. 1, 2. New York etc.: Academic Press, 1983­1986.


318



258. Kamthan P. K. and Gupta M. Sequence Spaces and Series. New York and Basel: Dekker, 1981. 368 p. 259. Kelly J. L. and Namioka I. Linear Topological Spaces. Berlin etc.: Springer, 1976. 256 p. 260. Kelly J. L. and Srinivasan T. P. Measure and Integral. Vol. 1. New York etc.: Springer, 1988. 150 p. 261. Kesavan S. Topics in Functional Analysis and Applications. New York etc.: Wiley, 1989. 267 p. 262. Khaleelulla S M. Counterexamples in Topological Vector Spaces. Berlin etc.: Springer, 1982. 179 p. 263. K¨rner T. W. Fourier Analysis. Cambridge: Cambridge Univero sity Press, 1988. 591 p. 264. K¨the G. Topological Vector Spaces. Berlin etc.: Springer, 1969­ o 1979. Vol. 1, 2. 265. Kreyszig E. Introductory Functional Analysis with Applications. New York: Wiley, 1989. 688 p. 266. Kusraev A. G. Dominated Operators. Dordrecht: Kluwer, 2000. 267. Lacey H. The Isometric Theory of Classical Banach Spaces. Berlin etc.: Springer, 1973. 243 p. 268. Lang S. Real Analysis. Reading: Addison-Wesley, 1983. 533 p. 269. Larsen R. Banach Algebras, an Introduction. New York: Dekker, 1973. 345 p. 270. Larsen R. Functional Analysis, an Introduction. New York: Dekker, 1973. 497 p. 271. Levy A. Basic Set Theory. Berlin etc.: Springer, 1979. 351 p. 272. Lindenstrauss J. and Tzafriri L. Classical Banach Spaces. Berlin etc.: Springer, 1977. Vol. 1: Sequence Spaces. 1977. 190 p. Vol. 2: Function Spaces. 1979. 243 p. 273. Linear and Complex Analysis Problem Book. 199 Research Problems. Berlin etc.: 1984. 720 p. 274. Llavona J. G. Approximation of Continuously Differentiable Functions. Amsterdam etc.: North-Holland, 1986. 241 p. 275. Luecking D. H. and Rubel L. A. Complex Analysis. A Functional Analysis Approach. Berlin etc.: Springer, 1984. 176 p. 276. Luxemburg W. A. J. and Zaanen A. C. Riesz Spaces. I. Amsterdam etc.: North-Holland, 1971. 514 p. 277. Maddox I. J. Elements of Functional Analysis. Cambridge: Cambridge University Press, 1988. 242 p.




319

278. Malliavin P. Integration of Probabilit´ . Analyse de Fourier et es Analyse Spectrale. Paris etc.: Masson, 1982. 200 p. 279. Marek I. and Zitny K. Matrix Analysis for Applied Sciences. Vol. 1. ´ Leipzig: Teubner, 1983. 196 p. 280. Mascioni V. Topics in the Theory of Complemented Subspaces in Banach Spaces // Expositiones Math. 1989. Vol. 7, No. 1. P. 3­ 47. 281. Maurin K. Analysis. II. Integration, Distributions, Holomorphic Functions, Tensor and Harmonic Analysis. Warszawa: Polish Scientific Publishers, 1980. 829 p. 282. Meyer-Nieberg P. Banach Lattices. Berlin etc.: Springer, 1991. 395 p. 283. Michor P. W. Functors and Categories of Banach Spaces. Berlin etc.: Springer, 1978. 99 p. 284. Milman V. D. and Schechtman G. Asymptotic Theory of Finite Dimensional Normed Spaces. Berlin etc.: Springer, 1986. 156 p. 285. Miranda C. Istituzioni di Analisi Funzionale Lineare. Bologna: Pitagora Editrice. Vol. 1: 1978. 596 p. Vol. 2: 1979. 748 p. 286. Misra O. P. and Lavoine J. L. Transform Analysis of Generalized Functions. Amsterdam etc.: North-Holland, 1986. 332 p. 287. Moore R. Computational Functional Analysis. New York: Wiley, 1985. 156 p. 288. Narici L. and Beckenstein E. Topological Vector Spaces New York: Dekker, 1985. 408 p. 289. Naylor A. and Sell G. Linear Operator Theory in Engineering and Science. Berlin etc.: Springer, 1982. 624 p. 290. Oden J. T. Applied Functional Analysis. A First Course for Students of Mechanics and Engineering Science. Englewood Cliffs: Prentice-Hall, 1979. 426 p. 291. Pedersen G. K. Analysis Now. New York etc.: Springer, 1989. 277 p. 292. Phelps R. Convex Functions, Monotone Operators and Differentiability. Berlin etc.: 1989. 115 p. 293. Pietsch A. Eigenvalues and S -Numbers. Leipzig, Akademish Verlag, 1987. 360 p. 294. Pisier G. Factorization of Linear Operators and Geometry of Banach Spaces. Providence: Amer. Math. Soc., 1986. 154 p.


320



295. Radjavi H. and Rosenthal P. Invariant Subspaces. Berlin etc.: Springer, 1973. 219 p. 296. Richards J. Ian and Joun H. K. Theory of Distributions: a NonTechnical Introduction. Cambridge: Cambridge University Press, 1990. 147 p. 297. Rickart Ch. General Theory of Banach Algebras. Princeton: Van Nostrand, 1960. 394 p. 298. Rolewicz S. Metric Linear Spaces. Dordrecht etc.: Reidel, 1984. 459 p. 299. Rolewicz S. Analiza Funkcjonalua i Teoria Sterowania. Warszawa, P´ stwowe Wydawnictwo Naukowe, 1977. 393 p. an 300. Roman St. Advanced Linear Algebra. Berlin etc.: Springer, 1992. 301. Rudin W. Fourier Analysis on Groups. New York: Interscience, 1962. 285 p. 302. Sakai S. C -Algebras and W -Algebras. Berlin etc.: Springer, 1971. 256 p. 303. Samu´ ´ M. and Touzillier L. Analyse Fonctionelle. Cepadues elides ´ Editions. Toulouse, 1983. 289 p. 304. Sard A. Linear Approximation. Providence: Amer. Math. Soc., 1963. 305. Schaefer H. H. Banach Lattices and Positive Operators. Berlin etc.: Springer, 1974. 376 p. 306. Schechter M. Principles of Functional Analysis. New York etc.: Academic Press, 1971. 307. Schwartz L. Theorie des Distributions [in French]. Paris: Hermann, 1998. xii+420 p. 308. Schwartz L. Analyse. Topologie G´ ´ e et Analyse Fonctioneneral nelle. Paris: Hermann, 1986. 436 p. 309. Schwartz L. Hilbertian Analysis [in French]. Paris: Hermann, 1979. 310. Schwartz L. Geometry and Probability in Banach Spaces. Berlin etc.: Springer, 1981. x+101 p. (Lecture Notes in Math., 852.) 311. Schwarz H.-U. Banach Lattices and Operators. Leipzig: Teubner, 1984. 208 p. 312. Seeger Al. Direct and inverse addition in convex analysis and applications // J. Math. Anal. Appl. 1990. Vol. 148, No. 2. P. 317­349.




321

313. Segal I. and Kunze R. Integrals and Operators. Berlin etc.: Springer. 1978. 371 p. 314. Semadeni Zb. Banach Spaces of Continuous Functions. Warszawa: Polish Scientific Publishers, 1971. 584 p. 315. Sinclair A. Automatic Continuity of Linear Operators. Cambridge: Cambridge University Press, 1976. 92 p. 316. Singer I. Bases in Banach Spaces. Vol. 1 Berlin etc.: Springer, 1970. 668 p. 317. Singer I. Bases in Banach Spaces. Vol. 2. Berlin etc.: Springer, 1981. 880 p. 318. Singer I. Abstract Convex Analysis. New York: John Wiley & Sons, 1997. xix+491 p. 319. Steen L. A. Highlights in the history of spectral theory // Amer. Math. Monthly. 1973. Vol. 80, No. 4. P. 359 381. 320. Steen L. A. and Seebach J. A. Counterexamples in Topology. Berlin etc.: Springer, 1978. 244 p. 321. Stein E. M. Harmonic Analysis, Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Princeton University Press, 1993. 322. Stone M. Linear Transformations in Hilbert Space and Their Application to Analysis. New York: Amer. Math. Soc., 1932. 622 p. 323. Sundaresan K. and Swaminathan Sz. Geometry and Nonlinear Analysis in Banach Spaces. Berlin etc.: 1985. 113 p. 324. Sunder V. S. An Invitation to von Neumann Algebras. New York etc.: Springer, 1987. 171 p. 325. Swartz Ch. An Introduction to Functional Analysis. New York: Dekker, 1992. 600 p. 326. Szankowski A. B (H ) does not have the approximation property // Acta Math. 1981. Vol. 147, No. 1­2. P. 89­108. 327. Takeuti G. and Zaring W. Introduction to Axiomatic Set Theory. New York etc.: Springer, 1982. 246 p. 328. Taylor A. E. and Lay D. C. Introduction to Functional Analysis. New York: Wiley, 1980. 467 p. 329. Taylor J. L. Measure Algebras. Providence: Amer. Math. Soc., 1973. 108 p. 330. Tiel J. van. Convex Analysis. An Introductory Theory. Chichester: Wiley, 1984. 125 p.


322



331. Treves F. Locally Convex Spaces and Linear Partial Differential Equations. Berlin etc.: Springer, 1967. 120 p. 332. Waelbroeck L. Topological Vector Spaces and Algebras. Berlin etc.: Springer, 1971. 333. Wagon S. The Banach­Tarski Paradox. Cambridge: Cambridge University Press, 1985. 251 p. 334. Weidmann J. Linear Operators in Hilbert Spaces. New York etc.: Springer, 1980. 402 p. 335. Wells J. H. and Williams L. R. Embeddings and Extensions in Analysis. Berlin etc.: Springer, 1975. 107 p. 336. Wermer J. Banach Algebras and Several Convex Variables. Berlin etc.: Springer, 1976. 161 p. 337. Wilanski A. Functional Analysis. New York: Blaisdell, 1964. 338. Wilanski A. Topology for Analysis. New York: John Wiley, 1970. 339. Wilanski A. Modern Methods in Topological Vector Spaces. New York: McGraw-Hill, 1980. 298 p. 340. Wo jtaszczyk P. Banach Spaces for Analysis. Cambridge: Cambridge University Press, 1991. 382 p. 341. Wong Yau-Chuen. Introductory Theory of Topological Vector Spaces. New York: Dekker, 1992. 440 p. 342. Yood B. Banach Algebras An Introduction. Ottawa: Carleton University, 1988. 174 p. 343. Zaanen A. C. Riesz Spaces. II. Amsterdam etc.: North-Holland, 1983. 702 p. 344. Zemanian A. H. Distribution Theory and Transform Analysis. New York: Dover, 1987. 371 p. 345. Ziemer W. P. Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation. Berlin etc.: Springer, 1989. 346. Zimmer R. J. Essential Results of Functional Analysis. Chicago and London: The University of Chicago Press, 1990. 152 p. 347. Zuily C. Problems in Distributions and Partial Differential Equations. Amsterdam etc.: North-Holland, 1988. 245 p.




Ar , 11.1.6 A â B , 1.1.1 Bp , 5.1.1, 5.2.11


B p , 5.1.1 BT , 5.1.3 BX , 5.1.10, 5.2.11 B (X ), 5.6.4, B (E, F ), 5.5.9 (2) B (X, Y ), 5.1.10 (7) C (Q, F ), 4.6.8 C (m) , 10.9.9 C ( ), 10.10.2 (3) D , 10.11.13 F -1 , 1.1.3 (1) F (B), 1.3.5 (1) Fp , 5.5.9 (6) F |U , 1.1.3 (5) F (U ), 1.1.3 (5) F (a1 , · ), 1.1.3 (6) F ( · , a2 ), 1.1.3 (6) F (· , ·), 1.1.3 (6) F (X, Y ), 8.3.6 G, 10.11.2 G, 10.11.2 G F , 1.1.4 H , 6.1.10 (3) H (K ), 8.1.13 H (U ), 3.1.11 IC , 8.2.10 IU , 1.1.3 (3) J (q ), 11.5.3 J (Q0 ), 11.5.2 J A, 11.4.1 K (E ), 10.9.1

K (Q), 10.9.1 K ( ), 10.9.1 LA , 11.1.6 Lp , 5.5.9 (4), 5.5.9 (6) Lp (X ), 5.5.9 LQ0 , 10.8.4 (3) L
Q0

, 10.8.4 (4)

L , 5.5.9 (5) M ( ), 10.9.4 (2) N (a), 11.9.1 Np , 5.5.9 (6) PH0 , 6.2.7 P , 8.2.10 PX1 ||X2 , 2.2.9 (4) P1 P2 , 6.2.12 R (a, ), 11.2.1 R (T , ), 5.6.13 S (A), 11.9.1 T , 7.6.2 T , 6.4.4 T , 5.1.10 (7) U , 10.5.7 U , 6.2.5 U ( ), 3.1.1 X |, 10.3.1 X , 5.1.10 (8), 10.2.11 X , 5.1.10 (8) X , 2.1.4 (2) X+ , 3.2.5 X0 , 7.6.8 X , 8.2.10 X N , 2.1.4 (4) X # , 2.2.4 XR , 3.7.1 X , 2.1.4 (4)


324
X = X1 X2 , 2.1.7 X iX , 8.4.8 X1 â X2 â . . . â XN , 2.1.4 (4) (X, ) , 10.2.11 X/X0 , 2.1.4 (6) (X/X0 , pX/X0 ), 5.1.10 (5) X Y , 10.3.3 X Y , 2.2.6 | Y , 10.3.1 B, 9.6.14 C, 2.1.2 D, 8.1.3 F, 2.1.2 N, 1.2.16 Q, 7.4.11 R, 2.1.2 R· , 3.4.1 R+ , 3.1.2 (4) R, 3.8.1 Re, 3.7.3 Re-1 , 3.7.4 T, 8.1.3 Z, 8.5.1 Z+ , 10.10.2 (2) Ae , 11.1.2 D(Q), 10.10.1 D( ), 10.10.1 D ( ), 10.10.4 D F ( ), 10.10.8 D(m) (Q), 10.10.8 D(m) ( ), 10.10.8 D(m) ( ) , 10.10.8 E( ), 10.10.2 (3) E (RN ), 10.10.5 (9) E T , 2.2.8 F, 10.11.4 Fp , 5.5.9 (6) Fr (X, Y ), 8.5.1 F(X ), 1.3.6 GA , 11.6.8 H (K ), 8.1.14 K (X ), 8.3.3 K (X, Y ), 6.6.1 L(X ), 2.2.8 L(X, Y ), 2.2.3 Lr (X, Y ), 3.2.6 (3) L , 5.5.9 (5) M( ), 10.9.3 N(µ), 10.8.11 Np (f ), 5.5.9 (4)


N , 5.5.9 (5) P(X ), 1.2.3 (4) RT , 8.2.1 Ra h, 11.3.1 S(RN ), 10.11.6 S (RN ), 10.11.16 T(X ), 9.1.2 Up , 5.2.2 UM , 5.2.4 UX , 4.1.5, 5.2.4 X , 7.6.8 0

Fu, 10.11.19 M, 5.3.9 M N, 5.3.1 M N, 5.3.1 MX , 5.1.6 M , 10.2.7 N T , 5.1.10 (3) NT , 5.1.10 (3) Ra , 11.8.7 Cl( ), 4.1.15, 9.1.4 Im f , 5.5.9 (4) Inv(A), 11.1.5 Inv(X, Y ), 5.6.12 B , 8.1.2 (4) Lat(X ), 2.1.5 LCT (X ), 10.2.3 M(A), 11.6.6 Op( ), 4.1.11, 9.1.4 Re, 2.1.2 Re f , 5.5.9 (4) Sp(a), 11.2.1 SpA (a), 11.2.1 Sp(T ), 5.6.13 T1 , 9.3.2 T2 , 9.3.5 T3 , 9.3.9 T3 1 , 9.3.15 2 T4 , 9.3.11 T(X ), 9.1.7 Tr ( ), 10.10.2 VT(X ), 10.1.5 X(A), 11.6.4 , 10.9.4 (1) (-1) , 10.10.5 (4) q , 10.9.4 (1) µ , 10.9.4 (3) µ+ , 10.8.13 µ- , 10.8.13 |µ|, 10.8.13, 10.9.4 (3)



µ , 10.9.5 µ , 10.9.4 (4) µ1 µ2 , 10.9.4 (6) µ1 â µ2 , 10.9.4 (6) µ f , 10.9.4 (7) µ , 10.9.4 (7) (U ), 10.5.1, 10.5.7 -1 (V ), 10.5.1 - F 1 (F (U )), 10.5.5 2 , 10.11.4 , 8.2.9 (T ), 5.6.13 (X, Y ), 10.3.5 (X, Y ), 10.4.4 a f , 10.9.4 (1) M , 5.2.8 , 8.2.10 abs p ol , 10.5.7 cl U , 4.1.13 co(U ), 3.1.14 co dim X , 2.2.9 (5) coim T , 2.3.1 coker T , 2.3.1 core U , 3.4.11 diam U , 4.5.3 dim X , 2.2.9 (5) dom f , 3.4.2 dom F , 1.1.2 epi f , 3.4.2 ext V , 3.6.1 fil B, 1.3.3 fr U , 4.1.13 im F , 1.1.2 inf U , 1.2.9 int U , 4.1.13 ker T , 2.3.1 lin(U ), 3.1.14 p ol , 10.5.7 rank T , 8.5.7 (2) res(a), 11.2.1 res(T ), 5.6.13 seg, 3.6.1 sup U , 1.2.9 supp(f ), 9.6.4 supp(µ), 10.8.11, 10.9.4 (5) supp(u), 10.10.5 (6) a, 11.6.8 aµ, 10.8.15 a f , 10.9.4 (1) (a, b)s , 11.9.9 c, 3.3.1 (2), 5.5.9 (3) c (E, F), 5.5.9 (3) c0 , 5.5.9 (3) c0 (E), 5.5.9 c0 (E, F), 5.5.9 (3) u, 10.10.5 (4) (p), 3.5.2 (1) | |(p), 3.7.8 U , 4.1.13 x (f ), 3.5.1 dp , 5.2.1 dx, 10.9.9 e, 10.9.4 (1), 11.1.1 f , 10.11.3 f (a), 11.3.1 {f < t}, 3.8.1 {f = t}, 3.8.1 {f t}, 3.8.1 f (T ), 8.2.1 f , 10.10.5 (9) f µ, 10.9.4 (3) f , 10.9.4 (3) f u, 10.10.5 (7) fn f , 10.10.7 (3) fn 0, 10.9.8
K

325

g , 10.11.2 g (f ), 8.2.6 h , 6.3.5 lp , lp (E), 5.5.9 (4) l , l (E), 5.5.9 (2) m, 5.5.9 (2) p q , 5.3.3 pe , 5.5.9 (5) pS , 3.8.6 p T , 5.1.3 pX/X0 , 5.1.10 (5) r (T ), 5.6.6 s, . 1.19 t , 10.11.5 (8) ug , 10.10.5 (1) u , 10.10.5 (5) u f , 10.10.5 (9) u1 u2 , 10.10.5 (8) u1 â u2 , 10.10.5 (8) x |, 10.3.1 x , 6.4.1 x , 5.1.10 (8) x , 10.11.5 (8) x+ , 3.2.12


326
x- , 3.2.12 |x|, 3.2.12 x p , 5.5.9 (4) x , 5.5.9 (2) (x), 10.11.4 X0 , 2.1.4 (6) x := x , 5.5.9 (7) eE e x x , 6.4.1 x1 x2 , x1 x2 , 1.2.12 (x1 , x2 ), 1.2.12 x | f , 5.1.11 x y , 1.2.2 x y , 5.5.6 x y , 6.2.5 | y , 10.3.1 |||y |||p , 5.5.9 (6) · , 5.1.9 · n,Q , 10.10.2 (2)


· , 5.5.9 (5) · X , 5.1.9 · |X , 5.1.9 1, 5.3.10, 10.8.4 (6) 2X , 1.2.3 (4) , 6.4.13 , 10.9.1 , 5.5.9 (6) E | · , 10.3.1 · | · , 10.3.1 · |, 10.3.1 , 1.2.2 X , 2.1.4 (5)


X , 2.1.4 (4)

h(z )R(z )dz , 8.1.20 , 11.6.8




Absolute Bipolar Theorem, 10.5.9 absolute concept, 9.4.7 absolute polar, 10.5.7 absolutely continuous measure, 10.9.4 (3) absolutely convex set, 3.1.2 (6) absolutely fundamental family of vectors, 5.5.9 (7) absorbing set, 3.4.9 addition in a vector space, 2.1.3 adherence of a filterbase, 9.4.1 adherent point, 4.1.13 adherent point of a filterbase, 9.4.1 adjoint diagram, 6.4.8 adjoint of an operator, 6.4.5 adjunction of unity, 11.1.2, affine hull, 3.1.14 affine mapping, 3.1.7, affine operator, 3.4.8 (4) affine variety, 3.1.2 (5) agreement condition, 10.9.4 (4) Akilov Criterion, 10.5.3 Alaoglu­Bourbaki Theorem, 10.6.7 Alexandroff compactification, 9.4.22 algebra, 5.6.2 algebra of bounded operators, 5.6.5

algebra of germs of holomorphic functions, 8.1.18 algebraic basis, 2.2.9 (5) algebraic complement, 2.1.7 algebraic dual, 2.2.4 algebraic isomorphism, 2.2.5 algebraic subdifferential, 7.5.8 algebraically complementary subspace, 2.1.7 algebraically interior point, 3.4.11 algebraically isomorphic spaces, 2.2.6 algebraically reflexive space, Ex. 2.8 ambient space, 2.1.4 (3) annihilator, 7.6.8 antidiscrete topology, 9.1.8 (3) antisymmetric relation, 1.2.1 antitone mapping, 1.2.3 approximate inverse, 8.5.9 approximately invertible operator, 8.5.9 approximation property, 8.3.10 approximation property in Hilbert space, 6.6.10 arc, 4.8.2 Arens multinorm, 8.3.8 ascent, Ex. 8.10 Ascoli­Arzel` Theorem, 4.6.10 a assignment operator


328
associate seminorm, 6.1.7 associated Hausdorff pre-Hilbert space, 6.1.10 (4) associated Hilbert space, 6.1.10 (4) associated multinormed space, 10.2.7 associated topology, 9.1.12 associativity of least upper bounds, 3.2.10 asymmetric balanced Hahn­Banach formula, 3.7.10 asymmetric Hahn­Banach formula, 3.5.5 Atkinson Theorem, 8.5.18 Automatic Continuity Principle, 7.5.5 automorphism, 10.11.4 Baire Category Theorem, 4.7.6 Baire space, 4.7.2 Balanced Hahn­Banach Theorem, 3.7.13 Balanced Hahn­Banach Theorem in a topological setting, 7.5.10 balanced set, 3.1.2 (7) balanced subdifferential, 3.7.8 Balanced Subdifferential Lemma, 3.7.9 ball, 9.6.14 Banach algebra, 5.6.3 Banach Closed Graph Theorem, 7.4.7 Banach Homomorphism Theorem, 7.4.4 Banach Inversion Stability Theorem, 5.6.12 Banach Isomorphism Theorem, 7.4.5 Banach range, 7.4.18 Banach space, 5.5.1


Banach's Fundamental Principle, 7.1.5 Banach's Fundamental Principle for a Correspondence, 7.3.7 Banach­Steinhaus Theorem, 7.2.9 barrel, 10.10.9 (1) barreled normed space, 7.1.8 barreled space, 10.10.9 (1) base for a filter, 1.3.3 basic field, 2.1.2 Bessel inequality, 6.3.7 best approximation, 6.2.3 Beurling­Gelfand formula, 8.1.12 (2) bilateral ideal, 8.3.3, 132; 11.6.2 bilinear form, 6.1.2 bipolar, 10.5.5 Bipolar Theorem, 10.5.8 Birkhoff Theorem, 9.2.2 Bochner integral, 5.5.9 (6) bornological space, 10.10.9 (3) boundary of an algebra, Ex. 11.8 boundary of a set, 4.1.13 boundary point, 4.1.13 bounded above, 1.2.19 bounded below, 3.2.9 bounded endomorphism algebra, 5.6.5 Bounded Index Stability Theorem, 8.5.21 bounded operator, 5.1.10 (7) bounded Radon measure, 10.9.4 (2) bounded set, 5.4.3 boundedly order complete lattice, 3.2.8 Bourbaki Criterion, 4.4.7, 46; 9.4.4 bracketing of vector spaces, 10.3.1 bra-functional, 10.3.1 bra-mapping, 10.3.1 bra-topology, 10.3.5 B -stable, 10.1.8



bump function, 9.6.19 Calkin algebra, 8.3.5 Calkin Theorem, 8.3.4 canonical embedding, 5.1.10 (8) canonical exact sequence, 2.3.5 (6) canonical operator representation, 11.1.7 canonical pro jection, 1.2.3 (4) Cantor Criterion, 4.5.6 Cantor Theorem, 4.4.9 cap, 3.6.3 (4) Cauchy­Bunyakovski­Schwarz i inequality, 6.1.5 Cauchy filter, 4.5.2 Cauchy net, 4.5.2 Cauchy­Wiener Integral Theorem, 8.1.7 centralizer, 11.1.6 chain, 1.2.19 character group, 10.11.2 character of a group algebra, 10.11.1 (1) character of an algebra, 11.6.4 character space of an algebra, 11.6.4 characteristic function, 5.5.9 (6) charge, 10.9.4 (3) Chebyshev metric, 4.6.8 classical Banach space, 5.5.9 (5) clopen part of a spectrum, 8.2.9 closed ball, 4.1.3 closed convex hull, 10.6.5 closed correspondence, 7.3.8 closed cylinder, 4.1.3 closed-graph correspondence, 7.3.9 closed half-space, Ex. 3.3 closed linear span, 10.5.6 closed set, 9.1.4 closed set in a metric space, 4.1.11 closure of a set, 4.1.13

329
closure operator, Ex. 1.11 coarser cover, 9.6.1 coarser filter, 1.3.6 coarser pretopology, 9.1.2 codimension, 2.2.9 (5) codomain, 1.1.2 cofinite set, Ex. 1.19 coimage of an operator, 2.3.1 coincidence of the algebraic and topological subdifferentials, 7.5.8 coinitial set, 3.3.2 cokernel of an operator, 2.3.1 comeager set, 4.7.4 commutative diagram, 2.3.3 Commutative Gelfand­Na ark im Theorem, 11.8.4 compact convergence, 7.2.10 Compact Index Stability Theorem, 8.5.20 compact-open topology, 8.3.8 compact operator, 6.6.1 compact set, 9.4.2 compact set in a metric space, 4.4.1 compact space, 9.4.7 compact topology, 9.4.7 compactly-supported distribution, 10.10.5 (6) compactly-supported function, 9.6.4 compactum, 9.4.17 compatible topology, 10.4.1 complementary pro jection, 2.2.9 (4) complementary subspace, 7.4.9 Complementation Principle, 7.4.10 complemented subspace, 7.4.9 complement of an orthopro jection, 6.2.10 complement of a pro jection, 2.2.9 (4) complete lattice, 1.2.13


330
complete metric space, 4.5.5 complete set, 4.5.14 completely regular space, 9.3.15 completion, 4.5.13 complex conjugate, 2.1.4 (2) complex distribution, 10.10.5 (5) complex plane, 8.1.3 complex vector space, 2.1.3 complexification, 8.4.8 complexifier, 3.7.4 composite correspondence, 1.1.4 Composite Function Theorem, 8.2.8 composition, 1.1.4 Composition Spectrum Theorem, 5.6.22 cone, 3.1.2 (4) conical hull, 3.1.14 conical segment, 3.1.2 (9) conical slice, 3.1.2 (9) conjugate distribution, 10.10.5 (5) conjugate exponent, 5.5.9 (4) conjugate-linear functional, 2.2.4 conjugate measure, 10.9.4 (3) connected elementary compactum, 4.8.5 connected set, 4.8.4 constant function, 5.3.10, 64; 10.8.4 (6) Continuous Extension Principle, 7.5.11 continuous function at a point, 4.2.2, 43; 9.2.5 Continuous Function Recovery Lemma, 9.3.12 continuous functional calculus, 11.8.7 continuous mapping of a metric space, 4.2.2 continuous mapping of a topological space, 9.2.4 continuous partition of unity, 9.6.6


contour integral, 8.1.20 conventional summation, 5.5.9 (4) convergent filterbase, 4.1.16 convergent net, 4.1.17 convergent sequence space, 3.3.1 (2) convex combination, 3.1.14 convex correspondence, 3.1.7 convex function, 3.4.4 convex hull, 3.1.14 convex set, 3.1.2 (8) convolution algebra, 10.9.4 (7) convolution of a measure and a function, 10.9.4 (7) convolution of distributions, 10.10.5 (9) convolution of functions, 9.6.17 convolution of measures, 10.9.4 (7) convolutive distributions, 10.10.5 (9) coordinate pro jection, 2.2.9 (3) coordinatewise operation, 2.1.4 (4) core, 3.4.11 correspondence, 1.1.1 correspondence in two arguments, 1.1.3 (6) correspondence onto, 1.1.3 (3) coset, 1.2.3 (4) coset mapping, 1.2.3 (4) countable convex combination, 7.1.3 Countable Partition Theorem, 9.6.20 countable sequence, 1.2.16 countably normable space, 5.4.1 cover of a set, 9.6.1 C -algebra, 6.4.13 C -subalgebra, 11.7.8 Davis­Figiel­Szankowski Counterexample, 8.3.14



de Branges Lemma, 10.8.16 decomplexification, 6.1.10 (2) decomposition reduces an operator, 2.2.9 (4) decreasing mapping, 1.2.3 Dedekind complete vector lattice, 3.2.8 deficiency, 8.5.1 delta-function, 10.9.4 (1) delta-like sequence, 9.6.15 -like sequence, 9.6.15 -sequence, 9.6.15 dense set, 4.5.10 denseness, 4.5.10 density of a measure, 10.9.4 (3) derivative in the distribution sense, 10.10.5 (4) derivative of a distribution, 10.10.5 (4) descent, Ex. 8.10 diagonal, 1.1.3 (3) diagram prime, 7.6.5 Diagram Prime Principle, 7.6.7 diagram star, 6.4.8 Diagram Star Principle, 6.4.9 diameter, 4.5.3 Diedonn` Lemma, 9.4.18 e dimension, 2.2.9 (5) Dini Theorem, 7.2.10 Dirac measure, 10.9.4 (1) direct polar, 7.6.8, 116; 10.5.1 direct sum decomposition, 2.1.7 direct sum of vector spaces, 2.1.4 (5) directed set, 1.2.15 direction, 1.2.15 directional derivative, 3.4.12 discrete element, 3.3.6 Discrete Kren­Rutman Theorem, i 3.3.8 discrete topology, 9.1.8 (4) disjoint measures, 10.9.4 (3) disjoint sets, 4.1.10

331
distance, 4.1.1 distribution, 10.10.4 distribution applies to a function, 10.10.5 (7) Distribution Localization Principle, 10.10.12 distribution of finite order, 10.10.5 (3) distribution size at most m, 10.10.5 (3) distribution of slow growth, 10.11.16 distributions admitting convolution, 10.10.5 (9) distributions convolute, 10.10.5 (9) division algebra, 11.2.3 domain, 1.1.2 Dominated Extension Theorem, 3.5.4 Double Prime Lemma, 7.6.6 double prime mapping, 5.1.10 (8) double sharp, Ex. 2.7 downward-filtered set, 1.2.15 dual diagram, 7.6.5 dual group, 10.11.2 dual norm of a functional, 5.1.10 (8) dual of a locally convex space, 10.2.11 dual of an operator, 7.6.2 duality bracket, 10.3.3 duality pair, 10.3.3 dualization, 10.3.3 Dualization Theorem, 10.3.9 Dunford­Hille Theorem, 8.1.3 Dunford Theorem, 8.2.7 (2) Dvoretzky­Rogers Theorem, 5.5.9 (7) dyadic-rational point, 9.3.13 effective domain of definition, 3.4.2


332
Eidelheit Separation Theorem, 3.8.14 eigenvalue, 6.6.3 (4) eigenvector, 6.6.3 element of a set, 1.1.3 (4) elementary compactum, 4.8.5 endomorphism, 2.2.1, 12; 8.2.1 endomorphism algebra, 2.2.8, 13; 5.6.5 endomorphism space, 2.2.8 Enflo counterexample, 8.3.12 entourage, 4.1.5 envelope, Ex. 1.11 epigraph, 3.4.2 epimorphism, 2.3.1 -net, 8.3.2 -perpendicular, 8.4.1 -Perpendicular Lemma, 8.4.1 Equicontinuity Principle, 7.2.4 equicontinuous set, 4.2.8 equivalence, 1.2.2 equivalence class, 1.2.3 (4) equivalent multinorms, 5.3.1 equivalent seminorms, 5.3.3 estimate for the diameter of a spherical layer, 6.2.1 Euler identity, 8.5.17 evaluation mapping, 10.3.4 (3) everywhere-defined operator, 2.2.1 everywhere dense set, 4.7.3 (3) exact sequence, 2.3.4 exact sequence at a term, 2.3.4 exclave, 8.2.9 expanding mapping, Ex. 4.14 extended function, 3.4.2 extended real axis, 3.8.1 extended reals, 3.8.1 extension of an operator, 2.3.6 exterior of a set, 4.1.13 exterior point, 4.1.13 Extreme and Discrete Lemma, 3.6.4 extreme point, 3.6.1 extreme set, 3.6.



face, 3.6.1 factor set, 1.2.3 (4) faithful representation, 8.2.2 family, 1.1.3 (4) filter, 1.3.3 filterbase, 1.3.1 finer cover, 9.6.1 finer filter, 1.3.6 finer multinorm, 5.3.1 finer pretopology, 9.1.2 finer seminorm, 5.3.3 finest multinorm, 5.1.10 (2) finite complement filter, 5.5.9 (3) finite descent, Ex. 8.10 finite-rank operator, 6.6.8, 97; 8.3.6 finite-valued function, 5.5.9 (6) first category set, 4.7.1 first element, 1.2.6 fixed point, Ex. 1.11 flat, 3.1.2 (5) formal duality, 2.3.15 Fourier coefficient family, 6.3.15 Fourier­Plancherel transform, 10.11.15 Fourier­Schwartz transform, 10.11.19 Fourier series, 6.3.16 Fourier transform of a distribution, 10.11.19 Fourier transform of a function, 10.11.3 Fourier transform relative to a basis, 6.3.15 Fr´ het space, 5.5.2 ec Fredholm Alternative, 8.5.6 Fredholm index, 8.5.1 Fredholm operator, 8.5.1 Fredholm Theorem, 8.5.8 frontier of a set, 4.1.13 from A into/to B , 1.1.1



Fubini Theorem for distributions, 10.10.5 (8) Fubini Theorem for measures, 10.9.4 (6) full subalgebra, 11.1.5 fully norming set, 8.1.1 Function Comparison Lemma, 3.8.3 function of class C (m) , 10.9.9 function of compact support, 9.6.4 Function Recovery Lemma, 3.8.2 functor, 10.9.4 (4) fundamental net, 4.5.2 fundamental sequence, 4.5.2 fundamentally summable family of vectors, 5.5.9 (7 gauge, 3.8.6 gauge function, 3.8.6 Gauge Theorem, 3.8.7 -correspondence, 3.1.6 -hull, 3.1.11 -set, 3.1.1 Gelfand­Dunford Theorem in an operator setting, 8.2.3 Gelfand­Dunford Theorem in an algebraic setting, 11.3.2 Gelfand formula, 5.6.8 Gelfand­Mazur Theorem, 11.2.3 Gelfand­Namark­Segal i construction, 11.9.11 Gelfand Theorem, 7.2.2 Gelfand transform of an algebra, 11.6.8 Gelfand transform of an element, 11.6.8 Gelfand Transform Theorem, 11.6.9 general form of a compact operator in Hilbert space, 6.6.9 general form of a linear functional in Hilbert space, 6.4.2

333
general form of a weakly continuous functional, 10.3.10 general position, Ex. 3.10 generalized derivative in the Sobolev sense, 10.10.5 (4) Generalized Dini Theorem, 10.8.6 generalized function, 10.10.4 Generalized Riesz­Schauder Theorem, 8.4.10 generalized sequence, 1.2.16 Generalized Weierstrass Theorem, 10.9.9 germ, 8.1.14 GNS-construction, 11.9.11 GNS-Construction Theorem, 11.9.10 gradient mapping, 6.4.2 Gram­Schmidt orthogonalization process, 6.3.14 graph norm, 7.4.17 Graph Norm Principle, 7.4.17 greatest element, 1.2.6 greatest lower bound, 1.2.9 Grothendieck Criterion, 8.3.11 Grothendieck Theorem, 8.3.9 ground field, 2.1.3 ground ring, 2.1.1 group algebra, 10.9.4 (7) group character, 10.11.1 Haar integral, 10.9.4 (1) Hahn­Banach Theorem, 3.5.3 Hahn­Banach Theorem in analytical form, 3.5.4 Hahn­Banach Theorem in geometric form, 3.8.12 Hahn­Banach Theorem in subdifferential form, 3.5.4 Hamel basis, 2.2.9 (5) Hausdorff Completion Theorem, 4.5.12 Hausdorff Criterion, 4.6.7


334
Hausdorff metric, Ex. 4.8 Hausdorff multinorm, 5.1.8 Hausdorff multinormed space, 5.1.8 Hausdorff space, 9.3.5 Hausdorff Theorem, 7.6.12 Hausdorff topology, 9.3.5 H -closed space, Ex. 9.10 Heaviside function, 10.10.5 (4) Hellinger­Toeplitz Theorem, 6.5.3 hermitian element, 11.7.1 hermitian form, 6.1.1 hermitian operator, 6.5.1 hermitian state, 11.9.8 Hilbert basis, 6.3.8 Hilbert cube, 9.2.17 (2) Hilbert dimension, 6.3.13 Hilbert identity, 5.6.19 Hilbert isomorphy, 6.3.17 Hilbert­Schmidt norm, Ex. 8.9 Hilbert­Schmidt operator, Ex. 8.9 Hilbert­Schmidt Theorem, 6.6.7 Hilbert space, 6.1.7 Hilbert-space isomorphism, 6.3.17 Hilbert sum, 6.1.10 (5) H¨lder inequality, 5.5.9 (4) o holey disk, 4.8.5 holomorphic function, 8.1.4 Holomorphy Theorem, 8.1.5 homeomorphism, 9.2.4 homomorphism, 7.4.1 H¨rmander transform, Ex. 3.19 o hyperplane, 3.8.9 hypersubspace, 3.8. ideal, 11.4.1 Ideal and Character Theorem, 11.6.6 ideal correspondence, 7.3.3 Ideal Correspondence Lemma, 7.3.4


Ideal Correspondence Principle, 7.3.5 Ideal Hahn­Banach Theorem, 7.5.9 ideally convex function, 7.5.4 ideally convex set, 7.1.3 idempotent operator, 2.2.9 (4) identical embedding, 1.1.3 (3) identity, 10.9.4 identity element, 11.1.1 identity mapping, 1.1.3 (3) identity relation, 1.1.3 (3) image, 1.1.2 image of a filterbase, 1.3.5 (1) image of a set, 1.1.3 (5) image of a topology, 9.2.12 image topology, 9.2.12 Image Topology Theorem, 9.2.11 imaginary part of a function, 5.5.9 (4) increasing mapping, 1.2.3 (5) independent measure, 10.9.4 (3) index, 8.5.1 indicator function, 3.4.8 (2) indiscrete topology, 9.1.8 (3) induced relation, 1.2.3 (1) induced topology, 9.2.17 (1) inductive limit topology, 10.9.6 inductive set, 1.2.19 infimum, 1.2.9 infinite-rank operator, 6.6.8 infinite set, 5.5.9 (3) inner product, 6.1.4 integrable function, 5.5.9 (4) integral, 5.5.9 (4) integral with respect to a measure, 10.9.3 interior of a set, 4.1.13 interior point, 4.1.13 intersection of topologies, 9.1.14 interval, 3.2.15 Interval Addition Lemma, 3.2.15



invariant subspace, 2.2.9 (4) inverse-closed subalgebra, 11.1.5 inverse image of a multinorm, 5.1.10 (3) inverse image of a preorder, 1.2.3 (3) inverse image of a seminorm, 5.1.4 inverse image of a set, 1.1.3 (5) inverse image of a topology, 9.2.9 inverse image of a uniformity, 9.5.5 (3) inverse image topology, 9.2.9 Inverse Image Topology Theorem, 9.2.8 inverse of a correspondence, 1.1.3 (1) inverse of an element in an algebra, 11.1.5 Inversion Theorem, 10.11.12 invertible element, 11.1.5 invertible operator, 5.6.10 involution, 6.4.13 involutive algebra, 6.4.13 irreducible representation, 8.2.2 irreflexive space, 5.1.10 (8) isolated part of a spectrum, 8.2.9 isolated point, 8.4.7 isometric embedding, 4.5.11 isometric isomorphism of algebras, 11.1.8 isometric mapping, 4.5.11 isometric representation, 11.1.8 isometric -isomorphism, 11.8.3 isometric -representation, 11.8.3 isometry into, 4.5.11 isometry onto, 4.5.11 isomorphism, 2.2.5 isotone mapping, 1.2 James Theorem, 10.7.5 Jensen inequality, 3.4.5 join, 1.2.12 Jordan arc, 4.8.2 Jordan Curve Theorem, 4.8.3 juxtaposition, 2.2.

335

Kakutani Criterion, 10.7.1 Kakutani Lemma, 10.8.7 Kakutani Theorem, 7.4.11 (3) Kantorovich space, 3.2.8 Kantorovich Theorem, 3.3.4 Kaplansky­Fukamija Lemma, 11.9.7 Kato Criterion, 7.4.19 kernel of an operator, 2.3.1 ket-mapping, 10.3.1 ket-topology, 10.3.5 Kolmogorov Normability Criterion, 5.4.5 Kren­Milman Theorem, 10.6.5 i Kren­Milman Theorem i in subdifferential form, 3.6.5 Kren­Rutman Theorem, 3.3.5 i Krull Theorem, 11.4.8 Kuratowski­Zorn Lemma, 1.2.20 K -space, 3.2.8 K -ultrametric, 9.5.13 last element, 1.2.6 lattice, 1.2.12 lear trap map, 3.7.4 least element, 1.2.6 Lebesgue measure, 10.9.4 (1) Lebesgue set, 3.8.1 Lefschetz Lemma, 9.6.3 left approximate inverse, 8.5.9 left Haar measure, 10.9.4 (1) left inverse of an element in an algebra, 11.1.3 lemma on continuity of a convex function, 7.5.1 lemma on the numeric range of a hermitian element, 11.9.3 level set, 3.8.1 Levy Pro jection Theorem, 6.2.2 limit of a filterbase, 4.1.16


336
Lindenstrauss space, 5.5.9 (5) Lindenstrauss­Tzafriri Theorem, 7.4.11 (3) linear change of a variable under the subdifferential sign, 3.5.4 linear combination, 2.3.12 linear correspondence, 2.2.1, 12; 3.1.7 linear functional, 2.2.4 linear operator, 2.2.1 linear representation, 8.2.2 linear set, 2.1.4 (3) linear space, 2.1.4 (3) linear span, 3.1.14 linear topological space, 10.1.3 linear topology, 10.1.3 linearly independent set, 2.2.9 (5) linearly-ordered set, 1.2.19 Lions Theorem of Supports, 10.10.5 (9) Liouville Theorem, 8.1.10 local data, 10.9.11 locally compact group, 10.9.4 (1) locally compact space, 9.4.20 locally compact topology, 9.4.20 locally convex space, 10.2.9 locally convex topology, 10.2.1 locally finite cover, 9.6.2 locally integrable function, 9.6.17 locally Lipschitz function, 7.5.6 loop, 4.8.2 lower bound, 1.2.4 lower limit, 4.3.5 lower right Dini derivative, 4.7.7 lower semicontinuous, 4.3.3 L2 -Fourier transform, 10.11.15 Mackey­Arens Theorem, 10.4.5 Mackey Theorem, 10.4.6 Mackey topology, 10.4.4 mapping, 1.1.3 (3) massive subspace, 3.3.2 matrix form, 2.2.9 (4)


maximal element, 1.2.10 maximal ideal, 11.4.5 maximal ideal space, 11.6.7 Maximal Ideal Theorem, 11.5.3 Mazur Theorem, 10.4.9 meager set, 4.7.1 measure, 10.9.3 Measure Localization Principle, 10.9.10 measure space, 5.5.9 (4) meet, 1.2.12 member of a set, 1.1.3 (4) metric, 4.1.1 metric space, 4.1.1 metric topology, 4.1.9 metric uniformity, 4.1.5 Metrizability Criterion, 5.4.2 metrizable multinormed space, 5.4.1 minimal element, 1.2.10 Minimal Ideal Theorem, 11.5.1 Minkowski­Ascoli­Mazur Theorem, 3.8.12 Minkowski functional, 3.8.6 Minkowski inequality, 5.5.9 (4) minorizing set, 3.3.2 mirror, 10.2.7 module, 2.1.1 modulus of a scalar, 5.1.10 (4) modulus of a vector, 3.2.12 mollifier, 9.6.14 mollifying kernel, 9.6.14 monomorphism, 2.3.1 monoquotient, 2.3.11 Montel space, 10.10.9 (2) Moore subnet, 1.3.5 (2) morphism, 8.2.2, 126; 11.1.2 morphism representing an algebra, 8.2.2 Motzkin formula, 3.1.13 (5) multimetric, 9.5.9 multimetric space, 9.5.9 multimetric uniformity, 9.5.9



multimetrizable topological space, 9.5.10 multimetrizable uniform space, 9.5.10 multinorm, 5.1.6 Multinorm Comparison Theorem, 5.3.2 multinorm summable family of vectors, 5.5.9 (7) multinormed space, 5.1.6 multiplication formula, 10.11.5 multiplication of a germ by a complex number, 8.1.16 multiplicative linear operator, 8.2.2 natural order, 3.2.6 (1) negative part, 3.2.12 neighborhood about a point, 9.1.1 (2) neighborhood about a point in a metric space, 4.1.9 neighborhood filter, 4.1.10 neighborhood filter of a set, 9.3.7 neighborhood of a set, 8.1.13 (2), 124; 9.3.7 Nested Ball Theorem, 4.5.7 nested sequence, 4.5.7 net, 1.2.16 net having a subnet, 1.3.5 (2) net lacking a subnet, 1.3.5 (2) Neumann series, 5.6.9 Neumann Series Expansion Theorem, 5.6.9 neutral element, 2.1.4 (3), 11; 10.9.4 Nikol ski Criterion, 8.5.22 i Noether Criterion, 8.5.14 nonarchimedean element, 5.5.9 (5) nonconvex cone, 3.1.2 (4) Nonempty Subdifferential Theorem, 3.5.8

337
non-everywhere-defined operator, 2.2.1 nonmeager set, 4.7.1 nonpointed cone, 3.1.2 (4) nonreflexive space, 5.1.10 (8) norm, 5.1.9 norm convergence, 5.5.9 (7) normable multinormed space, 5.4.1 normal element, 11.7.1 normal operator, Ex. 8.17 normal space, 9.3.11 normalized element, 6.3.5 normally solvable operator, 7.6.9 normative inequality, 5.1.10 (7) normed algebra, 5.6.3 normed dual, 5.1.10 (8) normed space, 5.1.9 normed space of bounded elements, 5.5.9 (5) norming set, 8.1.1 norm-one element, 5.5.6 nowhere dense set, 4.7.1 nullity, 8.5.1 numeric family, 1.1.3 (4) numeric function, 9.6.4 numeric range, 11.9.1 numeric set, 1.1.3 ( one-point compactification, 9.4.22 one-to-one correspondence, 1.1.3 (3) open ball, 4.1.3 open ball of RN , 9.6.16 open correspondence, 7.3.12 Open Correspondence Principle, 7.3.13 open cylinder, 4.1.3 open half-space, Ex. 3.3 Open Mapping Theorem, 7.4.6 open segment, 3.6.1 open set, 9.1.4 open set in a metric space, 4.1.11


338
openness at a point, 7.3.6 operator, 2.2.1 operator ideal, 8.3.3 operator norm, 5.1.10 (7) operator representation, 8.2.2 order, 1.2.2 order by inclusion, 1.3.1 order compatible with vector structure, 3.2.1 order ideal, 10.8.11 order of a distribution, 10.10.5 (3) ordered set, 1.2.2 ordered vector space, 3.2.1 ordering, 1.2.2 ordering cone, 3.2.4 oriented envelope, 4.8.8 orthocomplement, 6.2.5 orthogonal complement, 6.2.5 orthogonal family, 6.3.1 orthogonal orthopro jections, 6.2.12 orthogonal set, 6.3.1 orthogonal vectors, 6.2.5 orthonormal family, 6.3.6 orthonormal set, 6.3.6 orthonormalized family, 6.3.6 orthopro jection, 6.2.7 Orthopro jection Summation Theorem, 6.3.3 Orthopro jection Theorem, 6.2.10 Osgood Theorem, 4.7. pair-dual space, 10.3.3 pairing, 10.3.3 pairwise orthogonality of finitely many orthopro jections, 6.2.14 paracompact space, 9.6.9 Parallelogram Law, 6.1.8 Parseval identity, 6.3.16, 89; 10.11.12 part of an operator, 2.2.9 (4) partial correspondence, 1.1.3 (6) parti parti parti parti parti


al operator, 2.2.1 al order, 1.2.2 al sum, 5.5.9 (7) tion of unity, 9.6.6 tion of unity subordinate to a cover, 9.6.7 patch, 10.9.11 perforated disk, 4.8.5 periodic distribution, 10.11.17 (7) Pettis Theorem, 10.7.4 Phillips Theorem, 7.4.13 Plancherel Theorem, 10.11.14 point finite cover, 9.6.2 point in a metric space, 4.1.1 point in a space, 2.1.4 (3) point in a vector space, 2.1.3 pointwise convergence, 9.5.5 (6) pointwise operation, 2.1.4 (4) polar, 7.6.8, 116; 10.5.1 Polar Lemma, 7.6.11 polarization identity, 6.1.3 Pontryagin­van Kampen Duality Theorem, 10.11.2 poset, 1.2.2 positive cone, 3.2.5 positive definite inner product, 6.1.4 positive distribution, 10.10.5 (2) positive element of a C -algebra, 11.9.4 positive form on a C -algebra, Ex. 11.11 positive hermitian form, 6.1.4 positive matrix, Ex. 3.13 positive operator, 3.2.6 (3) positive part, 3.2.12 positive semidefinite hermitian form, 6.1.4 positively homogeneous functional, 3.4.7 (2) powerset, 1.2.3 (4) precompact set, Ex. 9.16 pre-Hilbert space, 6.1.7



preimage of a multinorm, 5.1.10 (3) preimage of a seminorm, 5.1.4 preimage of a set, 1.1.3 (5) preintegral, 5.5.9 (4) preneighborhood, 9.1.1 (2) preorder, 1.2.2 preordered set, 1.2.2 preordered vector space, 3.2.1 presheaf, 10.9.4 (4) pretopological space, 9.1.1 (2) pretopology, 9.1.1 primary Banach space, Ex. 7.17 prime mapping, 6.4.1 Prime Theorem, 10.2.13 Principal Theorem of the Holomorphic Functional Calculus, 8.2.4 product, 4.3.2 product of a distribution and a function, 10.10.5 (7) product of germs, 8.1.16 product of sets, 1.1.1, 1; 2.1.4 (4) product of topologies, 9.2.17 (2) product of vector spaces, 2.1.4 (4) product topology, 4.3.2, 44; 9.2.17 (2) pro jection onto X1 along X2 , 2.2.9 (4) pro jection to a set, 6.2.3 proper ideal, 11.4.5 pseudometric, 9.5.7 p-sum, 5.5.9 (6) p-summable family, 5.5.9 (4) punctured compactum, 9.4.21 pure subalgebra, 11.1.5 Pythagoras Lemma, 6.2.8 Pythagoras Theorem, 6.3. quasinilp quotient quotient quotient otent, Ex. 8.18 mapping, 1.2.3 (4) multinorm, 5.3.11 of a mapping, 1.2.3 (4)

339
quotient of a seminormed space, 5.1.10 (5) quotient seminorm, 5.1.10 (5) quotient set, 1.2.3 (4) quotient space of a multinormed space, 5.3.11 quotient vector space, 2.1.4 (6 radical, 11.6.11 Radon F-measure, 10.9.3 Radon­Nikodym Theorem, ´ 10.9.4 (3) range of a correspondence, 1.1.2 rank, 8.5.7 (2) rare set, 4.7.1 Rayleigh Theorem, 6.5.2 real axis, 2.1.2 real carrier, 3.7.1 real C-measure, 10.9.4 (3) real distribution, 10.10.5 (5) real hyperplane, 3.8.9 real measure, 10.9.4 real part map, 3.7.2 real part of a function, 5.5.9 (4) real part of a number, 2.1.2 real subspace, 3.1.2 (3) real vector space, 2.1.3 realification, 3.7.1 realification of a pre-Hilbert space, 6.1.10 (2) realifier, 3.7.2 reducible representation, 8.2.2 refinement, 9.6.1 reflection of a function, 10.10.5 reflexive relation, 1.2.1 reflexive space, 5.1.10 (8) regular distribution, 10.10.5 (1) regular operator, 3.2.6 (3) regular space, 9.3.9 regular value of an operator, 5.6.13 relation, 1.1.3 (2) relative topology, 9.2.17 (1)


340
relatively compact set, 4.4.4 removable singularity, 8.2.5 (2) representation, 8.2.2 representation space, 8.2.2 reproducing cone, Ex. 7.12 residual set, 4.7.4 resolvent of an element of an algebra, 11.2.1 resolvent of an operator, 5.6.13 resolvent set of an operator, 5.6.13 resolvent value of an element of an algebra, 11.2.1 resolvent value of an operator, 5.6.13 restriction, 1.1.3 (5) restriction of a distribution, 10.10.5 (6) restriction of a measure, 10.9.4 (4) restriction operator, 10.9.4 (4) reversal, 1.2.5 reverse order, 1.2.3 (2) reverse polar, 7.6.8, 116; 10.5.1 reversed multiplication, 11.1.6 Riemann function, 4.7.7 Riemann­Lebesgue Lemma, 10.11.5 (3) Riemann Theorem on Series, 5.5.9 (7) Riesz Criterion, 8.4.2 Riesz Decomposition Property, 3.2.16 Riesz­Dunford integral, 8.2.1 Riesz­Dunford Integral Decomposition Theorem, 8.2.13 Riesz­Dunford integral in an algebraic setting, 11.3.1 Riesz­Fisher Completeness Theorem, 5.5.9 (4) Riesz­Fisher Isomorphism Theorem, 6.3.16


Riesz idempotent, 8.2.11 Riesz­Kantorovich Theorem, 3.2.17 Riesz operator, Ex. 8.15 Riesz Prime Theorem, 6.4.1 Riesz pro jection, 8.2.11 Riesz­Schauder operator, Ex. 8.11 Riesz­Schauder Theorem, 8.4.8 Riesz space, 3.2.7 Riesz Theorem, 5.3.5 right approximate inverse, 8.5.9 right Haar measure, 10.9.4 (1) right inverse of an element in an algebra, 11.1.3 R-measure, 10.9.4 (3) rough draft, 4.8.8 row-by-column rule, 2.2.9 (4 salient cone, 3.2.4 Sard Theorem, 7.4.12 scalar, 2.1.3 scalar field, 2.1.3 scalar multiplication, 2.1.3 scalar product, 6.1.4 scalar-valued function, 9.6.4 Schauder Theorem, 8.4.6 Schwartz space of distributions, 10.11.16 Schwartz space of functions, 10.11.6 Schwartz Theorem, 10.10.10 second dual, 5.1.10 (8) selfadjoint operator, 6.5.1 semi-extended real axis, 3.4.1 semi-Fredholm operator, Ex. 8.13 semi-inner product, 6.1.4 semimetric, 9.5.7 semimetric space, 9.5.7 seminorm, 3.7.6 seminorm associated with a positive element, 5.5.9 (5)



seminormable space, 5.4.6 seminormed space, 5.1.5 semisimple algebra, 11.6.11 separable space, 6.3.14 separated multinorm, 5.1.8 separated multinormed space, 5.1.8 separated topological space, 9.3.2 separated topology, 9.3.2 separating hyperplane, 3.8.13 Separation Theorem, 3.8.11 Sequence Prime Principle, 7.6.13 sequence space, 3.3.1 (2) Sequence Star Principle, 6.4.12 series sum, 5.5.9 (7) sesquilinear form, 6.1.2 set absorbing another set, 3.4.9 set in a space, 2.1.4 (3) set lacking a distribution, 10.10.5 (6) set lacking a functional, 10.8.13 set lacking a measure, 10.9.4 (5) set of arrival, 1.1.1 set of departure, 1.1.1 set of second category, 4.7.1 set supporting a measure, 10.9.4 (5) set that separates the points of another set, 10.8.9 set void of a distribution, 10.10.5 (6) set void of a functional, 10.8.13 set void of a measure, 10.9.4 (5) setting in duality, 10.3.3 setting primes, 7.6.5 sheaf, 10.9.11 shift, 10.9.4 (1) Shilov boundary, Ex. 11.8 Shilov Theorem, 11.2.4 short sequence, 2.3.5 -compact, 10.9.8 signed measure, 10.9.4 (3) simple convergence, 9.5.5 (6)

341
simple function, 5.5.9 (6) simple Jordan loop, 4.8.2 single-valued correspondence, 1.1.3 (3) Singularity Condensation Principle, 7.2.12 Singularity Fixation Principle, 7.2.11 skew field, 11.2.3 slowly increasing distribution, 10.11.16 smooth function, 9.6.13 smoothing process, 9.6.18 Snowflake Lemma, 2.3.16 space countable at infinity, 10.9.8 space of bounded elements, 5.5.9 (5) space of bounded functions, 5.5.9 (2) space of bounded operators, 5.1.10 (7) space of compactly-supported distributions, 10.10.5 (9) space of convergent sequences, 5.5.9 (3) space of distributions of order at most m, 10.10.8 space of essentially bounded functions, 5.5.9 (5) space of finite-order distributions, 10.10.8 space of functions vanishing at infinity, 5.5.9 (3) space of X-valued p-summable functions, 5.5.9 (6) space of p-summable functions, 5.5.9 (4) space of p-summable sequences, 5.5.9 (4) space of tempered distributions, 10.11.16 space of vanishing sequences, 5.5.9 (3)


342
Spectral Decomposition Lemma, 6.6.6 Spectral Decomposition Theorem, 8.2.12 Spectral Endpoint Theorem, 6.5.5 Spectral Mapping Theorem, 8.2.5 Spectral Purity Theorem, 11.7.11 spectral radius of an operator, 5.6.6 Spectral Theorem, 11.8.6 spectral value of an element of an algebra, 11.2.1 spectral value of an operator, 5.6.13 spectrum, 10.2.7 spectrum of an element of an algebra, 11.2.1 spectrum of an operator, 5.6.13 spherical layer, 6.2.1 -algebra, 6.4.13 -isomorphism, 11.8.3 -linear functional, 2.2.4 -representation, 11.8.3 star-shaped set, 3.1.2 (7) state, 11.9.1 Steklov condition, 6.3.10 Steklov Theorem, 6.3.11 step function, 5.5.9 (6) Stone Theorem, 10.8.10 Stone­Weierstrass Theorem for C (Q, C), 11.8.2 Stone­Weierstrass Theorem for C (Q, R), 10.8.17 Strict Separation Theorem, 10.4.8 strict subnet, 1.3.5 (2) strictly positive real, 4.1.3 strong order-unit, 5.5.9 (5) strong uniformity, 9.5.5 (6) stronger multinorm, 5.3.1 stronger pretopology, 9.1.2 stronger seminorm, 5.3.3


strongly holomorphic function, 8.1.5 structure of a subdifferential, 10.6.3 subadditive functional, 3.4.7 (4) subcover, 9.6.1 subdifferential, 3.5.1 sublattice, 10.8.2 sublinear functional, 3.4.6 submultiplicative norm, 5.6.1 subnet, 1.3.5 (2) subnet in a broad sense, 1.3.5 (2) subrepresentation, 8.2.2 subspace of a metric space, 4.5.14 subspace of a topological space, 9.2.17 (1) subspace of an ordered vector space, 3.2.6 (2) subspace topology, 9.2.17 (1) Sukhomlinov­Bohnenblust­Sobczyk Theorem, 3.7.12 sum of a family in the sense of Lp , 5.5.9 (6) sum of germs, 8.1.16 summable family of vectors, 5.5.9 (7) summable function, 5.5.9 (4) superset, 1.3.3 sup-norm, 10.8.1 support function, 10.6.4 support of a distribution, 10.10.5 (6) support of a functional, 10.8.12 support of a measure, 10.9.4 (5) supporting function, 10.6.4 supremum, 1.2.9 symmetric Hahn­Banach formula, Ex. 3.10 symmetric relation, 1.2.1 symmetric set, 3.1.2 (7) system with integration, 5.5.9 (4) Szankowski Counterexample, 8.3.13



tail filter, 1.3.5 (2) -dual of a locally convex space, 10.2.11 Taylor Series Expansion Theorem, 8.1.9 tempered distribution, 10.11.16 tempered function, 5.1.10 (6), 58; 10.11.6 tempered Radon measure, 10.11.17 (3) test function, 10.10.1 test function space, 10.10.1 theorem on Hilbert isomorphy, 6.3.17 theorem on the equation AX = B , 2.3.13 theorem on the equation XA = B , 2.3.8 theorem on the general form of a distribution, 10.10.14 theorem on the inverse image of a vector topology, 10.1.6 theorem on the repeated Fourier transform, 10.11.13 theorem on the structure of a locally convex topology, 10.2.2 theorem on the structure of a vector topology, 10.1.4 theorem on topologizing by a family of mappings, 9.2.16 Tietze­Urysohn Theorem, 10.8.20 topological isomorphism, 9.2.4 topological mapping, 9.2.4 Topological Separation Theorem, 7.5.12 topological space, 9.1.7 topological structure of a convex set, 7.1.1 topological subdifferential, 7.5.8 topological vector space, 10.1.1

343
topologically complemented subspace, 7.4.9 topology, 9.1.7 topology compatible with duality, 10.4.1 topology compatible with vector structure, 10.1.1 topology given by open sets, 9.1.12 topology of a multinormed space, 5.2.8 topology of a uniform space, 9.5.3 topology of the distribution space, 10.10.6 topology of the test function space, 10.10.6 total operator, 2.2.1 total set of functionals, 7.4.11 (2) totally bounded, 4.6.3 transitive relation, 1.2.1 translation, 10.9.4 (1) translation of a distribution, 10.11.17 (7) transpose of an operator, 7.6.2 trivial topology, 9.1.8 (3) truncator, 9.6.19 (1) truncator direction, 10.10.2 (5) truncator set, 10.10.2 twin of a Hilbert space, 6.1.10 (3) twin of a vector space, 2.1.4 (2) Two Norm Principle, 7.4.16 two-sided ideal, 8.3.3, 132; 11.6.2 Tychonoff cube, 9.2.17 (2) Tychonoff product, 9.2.17 (2) Tychonoff space, 9.3.15 Tychonoff Theorem, 9.4.8 Tychonoff topology, 9.2.17 (2) Tychonoff uniformity, 9.5.5 (4) T1 -space, 9.3.2 T1 -topology, 9.3.2 T2 -space, 9.3.5 T3 -space, 9.3.9 T31 /2 -space, 9.3.15


344
T4 -space, 9.3.11 ultrafilter, 1.3.9 ultrametric inequality, 9.5.14 ultranet, 9.4.4 unconditionally summable family of vectors, 5.5.9 (7) unconditionally summable sequence, 5.5.9 (7) underlying set, 2.1.3 Uniform Boundedness Principle, 7.2.5 uniform convergence, 7.2.10, 105; 9.5.5 (6) uniform space, 9.5.1 uniformity, 9.5.1 uniformity of a multinormed space, 5.2.4 uniformity of a seminormed space, 5.2.2 uniformity of a topological vector space, 10.1.10 uniformity of the empty set, 9.5.1 uniformizable space, 9.5.4 uniformly continuous mapping, 4.2.5 unit, 10.9.4 unit ball, 5.2.11 unit circle, 8.1.3 unit disk, 8.1.3 unit element, 11.1.1 unit sphere, Ex. 10.6 unit vector, 6.3.5 unital algebra, 11.1.1 unitary element, 11.7.1 unitary operator, 6.3.17 unitization, 11.1.2 unity, 11.1.1 unity of a group, 10.9.4 (1) unity of an algebra, 11.1.1 unordered sum, 5.5.9 (7) unorderly summable sequence, 5.5.9 (7) Unremovable Spectral Boundary Theorem, 11.2.6


upper bound, 1.2.4 upper envelope, 3.4.8 (3) upper right Dini derivative, 4.7.7 upward-filtered set, 1.2.15 Urysohn Great Lemma, 9.3.13 Urysohn Little Lemma, 9.3.10 Urysohn Theorem, 9.3.14 2-Ultrametric Lemma, 9.5.15 vague topology, 10.9.5 value of a germ at a point, 8.1.21 van der Waerden function, 4.7.7 vector, 2.1.3 vector addition, 2.1.3 vector field, 5.5.9 (6) vector lattice, 3.2.7 vector space, 2.1.3 vector sublattice, 10.8.4 (4) vector topology, 10.1.1 Volterra operator, Ex. 5.12 von Neumann­Jordan Theorem, 6.1.9 V -net, 4.6.2 V -small, 4.5. weak derivative, 10.10.5 (4) weak multinorm, 5.1.10 (4) weak topology, 10.3.5 weak topology, 10.3.11 weak uniformity, 9.5.5 (6) weaker pretopology, 9.1.2 weakly holomorphic function, 8.1.5 weakly operator holomorphic function, 8.1.5 Weierstrass function, 4.7.7 Weierstrass Theorem, 4.4.5, 46; 9.4.5 Well-Posedness Principle, 7.4.6 Wendel Theorem, 10.9.4 (7) Weyl Criterion, 6.5.4 X-valued function, 5.5.9 (6) Young inequality, 5.5.9 (4) zero of a vector space, 2.1.4 (3)




10.11.4 5.6.2 5.6.3 10.9.4 (7) 6.4.13 8.3.5 5.6.3 11.6.11 8.1.18 ¨ 10.11.11 C - 6.4.13 8.5.6 7.6.8 2.2.9 (5) 6.3.8 1.3.1 10.5.5, 10.5.7 10.10.9 (1) 10.3.1 - 10.3.1 - 10.3.5 - 10.3.1 3.7.1 5.1.10 (8) 4.5.11 4.1.13 4.1.13 4.7.4 - 3.1.1 - 3.1.11 - 3.1.6

- 11.9.11 3.8.9 4.8.2 7.4.1 1.2.4 1.2.9 4.1.13 1.2.4 1.2.9 10.11.2 - 10.9.4 (1) 10.11.2 10.3.3 2.3.15, 7.4.16 2.3.3 7.6.5 6.4.8 4.5.3 2.1.7 6.2.5 7.4.9 10.3.3 4.8.2 11.1.1 10.10.7 (5) 6.1.8 4.1.13 10.9.4 (3) 10.2.7 11.4.1 11.6.2 11.4.5 8.3.3


346
11.4.5 4.5.11 2.2.5 6.3.17 7.4.6 - 11.8.3 6.4.13 8.5.1 5.5.9 (4), 10.9.3 5.5.9 (6) 8.1.20 10.9.4 (1) 10.9.3 8.2.1 11.3.1 10.9.4 (1) - 10.3.1 - 10.3.5 - 10.3.1 9.4.17 9.4.21 4.8.5 9.4.22 3.7.4 8.4.8 1.1.4 9.5.12 3.1.2 (9) 3.1.2 (4) 3.2.4 3.2.5 3.2.4 2.3.1 2.3.1 10.5.3 4.4.7, 9.4.4 6.5.4 8.3.11 10.7.1 4.5.6 7.4.20 5.4.5 5.4.2 7.5.1 ¨ 8.5.14 8.5.22 6.2.14


8.4.2 4.6.7 9.2.17 (2) 10.8.16 9.4.18 10.8.7 11.9.7 1.2.20 9.6.3 2- 9.5.15 7.6.6 3.8.2 3.6.4 9.3.12 7.6.11 6.6.6 2.3.16 3.8.3 3.7.9 3.2.15 7.1.1 11.9.3 7.3.4 - 8.4.1 6.2.8 9.3.10 9.3.13 10.9.3 10.9.4 (3) 10.9.4 (3) 10.9.4 (1) 10.9.4 (2) 10.9.4 (1) 10.9.4 (3) 10.9.4 (2) 10.9.1 10.11.17 (3) 10.9.4 (1) 10.9.4 (3) F- 10.9.3 4.1.1 ¨ 4.6.8 3.1.2 (5) 4.7.1 3.1.2 (8) 3.1.2 (6) 7.1.3



1.2.19 9.1.4, 4.1.11 9.4.2, 4.4.1 4.4.4 3.6.1 3.8.1 3.1.2 (2) 2.2.9 (5) 1.2.19 4.5.3 1.2.15 4.7.1 4.7.1 8.1.1 8.1.1 5.4.3 4.6.3 6.3.1 4.7.4 9.1.4, 4.1.11 4.7.1 4.5.10 3.4.9 1.2.2 4.2.8 10.8.9 4.7.1 8.2.9 4.7.1 1.2.2 3.1.2 (7) 1.2.15 2.1.1 3.2.12 2.3.1 8.2.2 9.5.9 5.1.6 8.3.8 5.1.10 (2) 5.1.10 (4) 5.3.9 5.1.8 3.4.2 1.2.15 10.10.2 (3) 6.3.7 ¨ 5.5.9 (4) 3.4.5 6.1.5

347
5.5.9 (4) 5.1.10 (7) 4.1.1 (3), 9.5.7 (3) 5.1.9 5.1.10 (8) 5.6.1 5.1.10 (7) 10.8.12, 10.9.4 (5) 10.10.5 (6) 9.6.4 1.1.2 1.1.2 3.4.2 1.1.1 1.1.1 3.1.14 3.1.14 7.4.19 1.1.3 (5) 9.2.12 1.3.5 (1) 11.9.1 3.7.2 9.3.7 4.1.9, 9.1.1 4.1.5 2.2.1 3.1.7 2.3.5 (5) 2.2.9 (4) 6.6.1 8.3.6 2.2.1 2.2.1 8.2.2 ¨ 8.5.1 7.6.9 5.6.10 10.9.4 (4) 5.1.10 (7) 3.2.6 (3) 8.5.9 8.5.9 3.2.6 (3) 6.5.1 10.9.4 (1) 7.6.2 6.4.5 6.3.17 8.5.2


348
6.5.1 6.3.14 6.2.7 6.2.12 1.1.3 (2) 1.2.1 1.2.2 1.2.2 3.2.1 1.1.3 (3) 1.2.1 1.2.1 1.1.3 (3) 1.2.2 1.1.3 (3) 1.2.3 (5) 1.2.3 (4) 9.2.4, 4.2.2 4.2.5 10.10.5 (9) 4.8.2 11.1.5 C - 11.7.8 4.4.2 2.1.4 (3) 3.2.6 (2) 3.3.2 9.2.17 (1) 1.3.5 (2) 9.6.1 9.6.2 4.4.2 9.6.2 9.5.7 3.7.6 2.1.2 7.6.8 10.5.1 10.5.1 4.5.13 1.2.2 1.2.3 (2) 10.10.5 (3) 1.2.16 9.6.15 2.3.5 (6)


2.3.5 (5) 2.3.5 (1) 1.2.16 2.3.4 4.5.2 4.1.16 4.1.17 5.5.9 (4) 9.1.1 1.2.2 1.2.3 (2) 10.9.4 (4) 8.2.2 11.1.7 8.2.2 8.2.2 - 11.8.3 9.1.1 11.6.8 10.11.3 6.3.16 10.11.15 10.11.19 7.5.5 7.1.5 7.4.17 7.4.10 7.3.5 7.4.6 10.9.10 10.10.11 7.5.11 7.4.18 7.3.13 7.2.5 7.2.4 7.2.12 7.2.11 7.6.7 7.6.13 6.4.9 6.4.12 11.1.2 2.2.9 (4) 2.2.9 (3) 8.2.11



6.2.3 2.1.4 (4) 9.5.5 (4) 6.1.4 9.2.17 (2) 9.3.2, 9.2.17 (2) 10.10.5 (4) 10.10.5 (4) 5.1.4 1.2.3 (3) 9.5.5 (3) 9.2.9 4.8.8 5.5.1 5.5.9 (5) 10.10.9 (3) 7.1.8 4.7.2 2.1.3 3.2.2 6.1.7 6.1.10 (4) 2.1.4 (2) 3.2.8 9.4.4 5.5.9 (5) 10.2.9 11.6.7 4.1.1 4.5.5 10.10.9 (2) 9.5.10 9.5.9 5.1.6 10.2.7 5.4.1 5.2.13 5.1.9 5.1.10 (8) 5.1.10 (8) 5.4.1 9.6.9 5.1.5 6.1.7 6.1.10 (3) 9.1.1 9.5.1 6.3.14

349
10.2.11 8.3.10 5.4.1 9.1.7 10.1.1 9.3.15 10.1.3 9.4.20 9.3.11 9.3.2 9.3.9 9.3.15 9.3.5 11.6.5 5.5.2 10.11.16 10.11.6 K - 3.2.8 10.9.11 6.3.16, 10.11.12 9.5.1 4.1.5 9.5.9 5.2.4 5.2.2 9.5.5 (6) 9.5.5 (6) 9.5.5 (6) 9.5.5 (4) 10.1.10 11.6.11 5.6.16 9.6.6 10.10.4 10.10.5 (3) 10.11.16 10.11.17 (7) 10.10.5 (2) 10.10.5 (1) 10.10.5 (9) 10.11.16


350
10.10.5 (5) 8.5.9 8.5.9 5.6.13 11.2.1 1.2.12 3.2.7 1.2.13 5.6.9 (1) ¨ 10.9.4 (7) 10.10.5 (9) 9.6.17 10.9.4 (7) 10.10.5 (9) 1.1.3 (4) 5.5.9 (7) 5.5.9 (7) 5.5.9 (7) 1.2.16 4.5.2 4.5.2 V - 4.6.2 - 8.3.2 5.5.9 (4) 1.2.3 (4) 6.6.3 1.1.1 3.1.7 7.3.8 7.3.3 2.2.1 1.1.3 (1) 1.1.3 (3) 11.9.1 5.6.13 11.2.1 5.6.6 9.6.19 (1) 3.5.1 3.7.8 7.5.8 1.1.3 (5) 2.1.4 (5) 6.1.10 (5) 5.5.9 (7) p 5.5.9 (6) 5.5.9 (7)


5.5.9 (4) 10.6.7 4.6.10 8.5.18 7.4.4 7.4.7 7.4.5 5.6.12 7.2.9 9.2.2, 4.1.19 4.7.6 4.4.5, 9.4.5 10.9.9 10.9.4 (7) 7.2.2 8.2.3 11.3.2 11.2.3 11.9.12 11.8.4 6.6.7 8.3.9 8.2.7 8.1.3 10.11.2 5.5.9 (7) 10.7.5 7.2.10 10.8.6 4.8.3 7.4.11 (2) 8.3.4 4.4.9 3.3.4 8.1.7 10.6.5 3.6.5 3.3.8 11.4.8 6.2.2 7.4.11 10.10.5 (9) 8.1.10



10.4.9 10.4.6 10.4.5 3.8.11 10.5.8 6.5.5 10.3.9 8.5.20 10.9.10 10.10.11 11.5.3 11.5.1 11.8.6 10.11.9 11.7.9 11.6.9 9.2.8 10.1.6 8.2.12 9.6.20 8.2.13 8.1.9 AX = B 2.3.13 XA = B 2.3.8 C - 11.9.10 5.6.22 10.1.4 10.2.2 10.6.3 5.3.2 6.3.3 5.6.9 3.8.7 10.5.9 11.6.6 9.2.11 6.6.9

351
10.10.13 10.11.18 8.5.21 6.2.10 8.2.5 10.11.12 4.7.5 3.8.11 7.5.12 10.4.8 3.8.14 10.7.4 6.3.2 10.11.14 10.9.4 (3) 10.11.5 (3) 5.5.9 (7) 5.3.5 6.4.1 3.2.16 5.5.9 (4) 6.3.16 8.4.8 6.5.2 11.8.6 XA = B 7.4.12 6.3.11 10.8.10 10.8.17 C (Q, C) 11.8.2 3.7.11 10.8.20 9.4.8 10.11.5 (6) 9.3.14 AX = B 7.4.14 6.1.9 8.5.8 10.9.4 (6) 10.10.5 (8) 3.5.3 3.5.4 3.8.12


352
3.5.3 7.5.9 3.7.13 7.5.10 7.6.12 4.5.12 8.4.6 10.10.10 11.2.4 5.6.19 6.1.3 8.5.17 9.1.7 9.1.8 (3) 10.1.11 9.1.8 (4) 10.9.6 10.1.3 10.2.1 10.4.4 4.1.9 5.2.8 9.5.5 (6) 10.10.6 10.10.6 10.11.6 10.11.6 9.5.3 9.5.5 (6) 10.3.5 10.4.1 10.9.5 T1 9.3.2 T2 9.3.5 T3 9.3.9 T31 /2 9.3.15 T4 9.3.11 4.1.13 4.1.13 3.4.11 4.1.13 3.6.1 4.1.13 9.4.1


9.5.13 1.3.9 6.3.10 - 11.4.3 - 1.2.3 (4) - 5.3.11 - 5.1.10 (5) - 2.1.4 (6) 1.3.3 4.5.2 1.3.5 (2) 6.1.2 6.1.4 6.1.2 6.1.1 ¨ 8.1.12 5.6.8 3.1.13 3.5.5 3.7.10 10.9.4 (4) 2.2.4 - 2.2.4 3.8.6 3.4.7 (2) 3.2.6 (3) 3.4.7 (4) 3.4.6 8.2, 11.3 11.8.7 3.1.7 10.11.6 3.4.4 9.6.13 8.1.4 3.4.8 (2) 5.5.9 (4) 9.6.17 10.10.4 10.10.5 (3) 10.11.16 10.11.17 (7) 10.10.5 (2) 10.10.5 (1) 10.10.5 (9) 10.6.4



10.10.1 4.3.3 10.10.1 5.5.9 (6) 9.6.4 9.6.19 (1) 10.11.6 9.6.4 10.10.5 (4) 9.6.4 11.6.4 10.11.1 1.2.19 4.1.3 2.2.9 (4) 3.2.12 3.2.12 3.6.3 (4) 4.1.3 5.2.11 5.1.10 (8) 7.6.5 7.6.3 10.2.13 6.4.1 3.3.6 11.1.1 11.1.3 1.2.10 1.2.10 1.2.6 1.2.6 11.7.1 11.1.5 6.2.5 3.2.5, 11.9.4 11.1.3 11.7.1 11.7.1 5.6.4, 8.2.1 2.3.1 3.4.11 2.3.1 5.1.1 (3) 9.6.14

353


¨







. .

- AMS-TEX, . This publication was typeset using AMS-TEX, the American Mathematical Society's TEX macro package.
01.09.2001. 60 â 84 1/16. . . . . 21,5. .-. . 20. 200 . ?.

?!

065614 8 1998 . , . , 4, 630090 . 57­43 22 1998 . , . , 4, 630090 .