Документ взят из кэша поисковой машины. Адрес оригинального документа : http://zebu.uoregon.edu/~uochep/talks/talks01/Hopkins-det-01.PDF
Дата изменения: Wed Sep 19 00:06:23 2001
Дата индексирования: Tue Oct 2 12:05:17 2012
Кодировка:

Поисковые слова: флуоресценция
Detectors for the Next Linear Collider
Jim Brau Univ. of Oregon Johns Hopkins March 21, 2001

Requirements physics subsystems Detector designs have been studied TESLA, JLC, Am-L, Am-S Orange Book High Energy IR: Low Energy IR: Performance studies Cost estimates
Detectors, Jim Brau, J. Hopkins, Mar 21, 2001

L, SD P

1


Detector Requirements
Vertex Detector rates demand excellent efficiency and purity large pair background from Beamstrahlung large solenoidal field pixelated detector min. inner radius (< 1.5 cm), ~5 barrel, < 4 µm resol, thickness < 0.2 % X0 Calorimetry excellent jet reconstruction use energy flow for best resolution (calorimetry and tracking work together) fine granularity and minimal Moliere radius charge neutral separation large BR2

Detectors, Jim Brau, J. Hopkins, Mar 21, 2001

2


Detector Requirements
Tracking Robust in Linear Collider environment Isolated particles (e charge, µ momentum) Charge particle component of jets jet energy flow measurements Assists vertex detector with heavy quark tagging Forward tracking (susy and lum measurement) Muons High efficiency with small backgrounds Secondary role in calorimetry ("tail catcher") Particle ID Dedicated sub-system not needed for energy frontier physics? Some particle ID can be built into other subsystems
Detectors, Jim Brau, J. Hopkins, Mar 21, 2001

3


Detectors which have been studied TESLA Radius 7.4m ~8 m 6.2m 3.7m L B 4T 2-3 T 3T 6T S
Detectors, Jim Brau, J. Hopkins, Mar 21, 2001

JLC

4


Orange Book Detectors
High Energy IR Two options: 1.) L conventional large detector based on the American L 2.) SD (silicon detector) motivated to optimize energy flow measurement Low Energy IR One option is presented P (precision)

Detectors, Jim Brau, J. Hopkins, Mar 21, 2001

5


Orange Book L Detector
5 barrel CCD vertex detector 3 Tesla Solenoid outside hadron calorimeter TPC Central Tracking (52 190 cm) Intermediate Si strips at R=48 cm Forward Si discs (5 each) Pb/scintillator EM and Had calorimeter EM 40 x 40 mrad2 Had 80 x 80 mrad2 Muon - 24 5 cm iron plates with gas chambers (RPC?)

Solenoid

Detectors, Jim Brau, J. Hopkins, Mar 21, 2001

6


Orange Book L Detector

Solenoid

Detectors, Jim Brau, J. Hopkins, Mar 21, 2001

7


Orange Book SD Detector
5 barrel CCD vertex detector 5 Tesla Solenoid outside hadron calorimeter Silicon strips (20 125 cm) 5 layers Forward Si discs (5 each) W/silicon EM calorimeter 0.5 cm pads with 0.7 X0 sampling and Cu or Fe Had calorimeter (4 ) 80 x 80 mrad2 Muon - 24 5cm iron plates with gas chambers (RPC?)
Solenoid

Detectors, Jim Brau, J. Hopkins, Mar 21, 2001

8


Orange Book SD Detector

Now old lay-out

Solenoid

This has recently changed to squared-off barrel design
Detectors, Jim Brau, J. Hopkins, Mar 21, 2001

9


Orange Book HE Detector Comparison
L Solenoid R(solenoid) 3T 4.1 m SD 5T 2.8 m

BR2 (tracking) 12 m2T 8 m2T -------------------------------------------------------------------RM (EM cal) 2.1 cm 1.9 cm 3.8 0.26 trans.seg RM 0.6 (6th layer Si) -------------------------------------------------------------------Rmax(muons) 645 cm 604 cm

Detectors, Jim Brau, J. Hopkins, Mar 21, 2001

10


Orange Book P Detector
5 barrel CCD vertex detector 3 Tesla Solenoid inside hadron calorimeter TPC Central Tracking (25 150 cm) Pb/scintillator or Liq. Argon EM and Hadronic calorimeter EM 30 x 30 mrad2 Had 80 x 80 mrad2 Muon - 10 10cm iron plates w/ gas chambers (RPC?)

Detectors, Jim Brau, J. Hopkins, Mar 21, 2001

11


Vertex Detector
same detector inside all three detectors (L, SD, and P) 670,000,000 pixels [20x20x20 (µm)3] 3 µm hit resolution inner radius = 1.2 cm 5 layer stand-alone tracking

Cos = 0.98

Detectors, Jim Brau, J. Hopkins, Mar 21, 2001

12


Impact Parameter Resolution

B. Schumm
Detectors, Jim Brau, J. Hopkins, Mar 21, 2001

13


Flavor Tagging Precision

bottom

charm

T. Abe
Detectors, Jim Brau, J. Hopkins, Mar 21, 2001

14


Tracking L Inner Radius 50 cm Outer Radius 190 cm Layers Fwd Disks B(Tesla) 144 5 3 SD 20 cm 125 cm 5 5 5 P 25 cm 150 cm 122 5 3

Detectors, Jim Brau, J. Hopkins, Mar 21, 2001

15


Tracking Resolution

B. Schumm
Detectors, Jim Brau, J. Hopkins, Mar 21, 2001

16


Calorimeters
EM Tech Had Tech Inner Radius EM-outer Radius HAD-outer Radius Inside Coil EM trans. seg. Had trans. seg. L Pb/scin Fe/scin 196 cm 220 cm 365 cm EM+Had 40 mr 80 mr SD Si/ W Fe/scin 127 cm 142 cm 245 cm EM+Had 4 mr 80 mr P Pb/scin or Pb/LA Fe/scin 150 cm 185 cm 295 cm EM cal 30 mr 80 mr
17

Detectors, Jim Brau, J. Hopkins, Mar 21, 2001


Calorimeter Resolution EM resolution: L: EM / E = (12% / E) (1%) SD: EM / E = (15% / E) (1%) P: EM / E = (15% / E) (1%) Precision of energy flow strategy under study Estimated L: SD: P: hadronic 50 % / E 40 % / E 50 % / E resolution: 2% 2% 2%
Detectors, Jim Brau, J. Hopkins, Mar 21, 2001

18


Muon Detection Model L 24 в 5 cm Fe plates + RPCs r 1 cm (x 24) z 1 cm (x 4) coverage to ~ 50 mrad Model SD 24 в 5 cm Fe plates + RPCs r 1 cm (x 24) z 1 cm (x 4) coverage to ~ 50 mrad Model P 10 в 10 cm Fe plates + RPCs r 1 cm (x 10) z 1 cm (x 2) coverage to ~ 50 mrad
Detectors, Jim Brau, J. Hopkins, Mar 21, 2001

19


Orange Book Chapter 6 Outline
(T. Abe, J. Brau (editor), M. Breidenbach, G. Fisk, R. Frey, N. Graf, T. Markiewicz, K. Riles, B. Schumm, R. Wilson, et al) Detectors for the NLC (Total length: 26 pages) Introduction (1 page) Discussion of subsystem issues and options (1-2 pages each) 1. 2. 3. 4. 5. 6. 7. 8. Beamline Vertex Tracking Calorimetry Muon System Magnet Particle ID Electronics and DAQ

Detectors (3-5 pages for each of three detectors) 1.) High Energy Options A.) American L design B.) Alternative Design 2.) Low Energy IR Detector Example low energy detector (refined P) Summary and Conclusions (1 page) Detectors, Jim Brau, J. Hopkins, Mar 21, 2001

20


Orange Book Chapter 6 Outline (continued)
Performance Plots we are planning to produce the following performance plots for each of the three detectors (some already exist) Vertex Detector: Impact parameter resolution vs. p Flavor tagging: eff. vs purity for b eff. vs purity for c Tracking: Tracking resolution vs. p and cos Track finding eff. vs. backgrounds (/e±/cm2) for 100 GeV jet Mass resolution for Z and light Higgs Calorimeter: Jet Energyresolution vs. Ejet W/Z mass resolution vs. E(W/Z) dijet mass resolution vs Ejet Muons: Muon eff vs. p

Detectors, Jim Brau, J. Hopkins, Mar 21, 2001

21


Cost Estimates
General considerations: Based on past experience Contingency = ~ 40% Designs constrained HE IR L SD LE IR P 359 M$ 295 M$ 210 M$

Detectors, Jim Brau, J. Hopkins, Mar 21, 2001

22


Cost Estimates
1.1 Vertex 1.2 Tracking 1.3 Calorimeter 1.3.1 EM 1.3.2 Had 1.3.3 Lum 1.4 Muon 1.5 DAQ 1.6 Magnet & supp 1.7 Installation 1.8 Management 1.9 Contingency Total
SUBTOTAL

L 4.0 34.6 48.9 (28.9) (19.6) (0.4) 16.0 27.4 110.8 7.3 7.4
256.4

SD 4.0 12.5 56.3

16.0 38.2 75.6 7.4 7.7
218.0

P 4.0 23.4 40.7 (23.8) (16.5) (0.4) 8.8 28.4 30.5 6.8 7.4
150.0

102.6 77.0 359.0 295

60.0

210.0
Detectors, Jim Brau, J. Hopkins, Mar 21, 2001

23


Cost Estimates

Detectors, Jim Brau, J. Hopkins, Mar 21, 2001

24


Snowmass Study Questions
http://sbhep1.physics.sunysb.edu/~grannis/lcquestions.txt

III. Detectors --------------1. What are the physics reasons for wanting exceptional jet energy (mass) resolution? How do signal/backgrounds and sensitivities vary as a function of resolution? Is mass discrimination of W and Z in the dijet decay mode feasible, and necessary? 2. How does energy flow calorimetry resolution depend on such variables as Moliere radius, delta theta/delta phi segmentation, depth segmentation, inner radius, B field, number of radiation lengths in tracker, etc.?

Detectors, Jim Brau, J. Hopkins, Mar 21, 2001

25


Snowmass Study Questions (continued)
3. What benefits arise from very high precision tracking (e.g. silicon strip tracker); what are the limitations imposed by having relatively few samples, by the associated radiation budget? What minimum radius tracker would be feasible? 4. Evaluate the dependence of physics performance on solenoidal field strength and radius.

Detectors, Jim Brau, J. Hopkins, Mar 21, 2001

26


Conclusions

Three detectors are under being studied for the Snowmass "Orange Book" L - conventional large detector, optimized for High Energy SD - silicon detector, designed to optimized energy flow "alternative high energy detector" P - upgraded SLC/LEP class detector, designed for the lower energy LC operation Initial cost estimates: L SD P 359 M$ 295 M$ 210 M$
Detectors, Jim Brau, J. Hopkins, Mar 21, 2001

27