Документ взят из кэша поисковой машины. Адрес оригинального документа : http://xray.sai.msu.ru/~mystery/html/article5c/article5c.4ct
Дата изменения: Fri Jan 5 19:57:44 2007
Дата индексирования: Tue Oct 2 15:14:02 2012
Кодировка:

Поисковые слова: п п п п
\expandafter\ifx\csname doTocEntry\endcsname\relax \expandafter\endinput\fi
\doTocEntry\tocsection{}{\csname a:TocLink\endcsname{1}{Q1-1-0}{}{\numberline {I}Introduction}}{1}\relax
\doTocEntry\tocsection{}{\csname a:TocLink\endcsname{1}{Q1-1-0}{}{\numberline {II}Our Model}}{2}\relax
\doTocEntry\toclof{1}{\csname a:TocLink\endcsname{1}{x1-14r1}{}{\ignorespaces Plot of the evolution of the EOS as a function of $\qopname \relax o{ln}a$. In the numerical calculation, we have taken $V_0=0.8$, $\lambda =1$, $\alpha =1$, and $\beta =-0.8$. For the initial conditions we choose $\phi _i=0.9$, $\mathaccentV {dot}05F\phi _i=0.6$, $(\Box \phi )_i=\frac {d}{dt}(\Box \phi )_i=0$.}}{figure}\relax
\doTocEntry\toclof{2}{\csname a:TocLink\endcsname{1}{x1-15r2}{}{\ignorespaces Plot of the evolution of the EOS as a function of $\qopname \relax o{ln}a$. In the numerical calculation we take $V(\phi )=\frac {V_0}{e^{\lambda \phi }+e^{-\lambda \phi }}$, and $V_0=0.5$. For the model parameters we choose $\lambda =1$, $\alpha =1$, and $\beta =-0.8$. For the initial conditions we take $\phi _i=0.9$, $\mathaccentV {dot}05F\phi _i=0.6$, $(\Box \phi )_i=\frac {d}{dt}(\Box \phi )_i=0$.}}{figure}\relax
\doTocEntry\toclof{3}{\csname a:TocLink\endcsname{1}{x1-16r3}{}{\ignorespaces Plot of the evolution of the EOS as a function of $\qopname \relax o{ln}a$. In the numerical calculation we take $V(\phi )=\frac {V_0}{e^{\lambda \phi }+e^{-\lambda \phi }}$, and $V_0=0.5$. For the model parameters we choose $\lambda =1$, $\alpha =1$, and $\beta =0.8$. For the initial conditions we take $\phi _i=0.9$, $\mathaccentV {dot}05F\phi _i=0.6$, $(\Box \phi )_i=\frac {d}{dt}(\Box \phi )_i=0$.}}{figure}\relax
\doTocEntry\toclof{4}{\csname a:TocLink\endcsname{1}{x1-17r4}{}{\ignorespaces Plot of the evolution of the EOS as a function of $\qopname \relax o{ln}a$. In the numerical calculation we take $V(\phi )=V_0(e^{\lambda \phi }+e^{-\lambda \phi })$, and $V_0=0.5$. For the model parameters we choose $\lambda =1$, $\alpha =1$, and $\beta =-1.2$. For the initial conditions we take $\phi _i=0.9$, $\mathaccentV {dot}05F\phi _i=0.6$, $(\Box \phi )_i=\frac {d}{dt}(\Box \phi )_i=0$.}}{figure}\relax
\doTocEntry\tocsection{}{\csname a:TocLink\endcsname{1}{Q1-1-4}{}{\numberline {III}Conclusion and Discussion}}{17}\relax
\doTocEntry\tocsection{}{\csname a:TocLink\endcsname{1}{Q1-1-4}{}{\numberline {}Acknowledgments}}{17}\relax
\doTocEntry\tocsection{}{\csname a:TocLink\endcsname{1}{Q1-1-4}{}{\numberline {}References}}{17}\relax
\par