Документ взят из кэша поисковой машины. Адрес
оригинального документа
: http://xray.sai.msu.ru/~lipunov/kionewht/node4.html
Дата изменения: Fri Jun 16 18:37:00 2000 Дата индексирования: Tue Oct 2 03:11:31 2012 Кодировка: Поисковые слова: п п п п п п р п р п р п р п р п р п р п р п р п р п р п р п р п р п р п р п р п р п р п р п р п р п р п р п р п р п р п р п р п р п р п р п |
Why it is possible that the Oppenheimer-Volkoff limit exceeds ?
- fast rotation (which is naturally expected after the merging) increases the Oppenheimer-Volkoff limit to the value (Friedman & Ipser, 1987) for hard equations of state.
- high temperature of the formed object.
- relativistic behavior of nuclear forces.
Thus we can present these three sub-scenarios as follows:
1. The lifetime of HSP (``hot'' spinar) is completely determined by the cooling time which is of the order of s according to different calculations. The subsequent collapse is accompanied by the GWB, neutrino emission, and possible weak photon emission can be expected:
It seems very attractive to identify this cooling time with the mean characteristic gamma-ray burst duration s!
2. The lifetime of CSP (``cool'' spinar, the centrifugal forces make the main contribution to the equilibrium) is completely defined by the characteristic time of the angular momentum loss and evolutionary track looks like
3. Finally, for the high Oppenheimer-Volkoff limit for the cool non-rotating object, when
we obtain the formation of a very powerful pulsar (maybe without pulsation) with the maximum spin rotation
The characteristic time of its evolution is governed by the momentum loss rate.