Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://xmm.vilspa.esa.es/docs/documents/CAL-TN-0079.pdf
Äàòà èçìåíåíèÿ: Wed Feb 23 00:51:57 2011
Äàòà èíäåêñèðîâàíèÿ: Mon Oct 1 20:48:18 2012
Êîäèðîâêà:

Ïîèñêîâûå ñëîâà: ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï
The RGS wavelength scale D. Coia & A.M.T. Pollo ck December 20, 2007

1

Intro duction

It has b een known since quite early in the XMM mission that the wavelengths of lines measured with the high-resolution RGS instrument have differed from the values exp ected from lab oratory measurements by a typically few m° for a line width in first order of ab out 60m°. These conclusions have b een based on A A empirical measurements of a few of the brightest narrow lines in bright coronal sources. The statistical errors, typically ab out 1m° for bright lines, are significantly smaller than the 7 or 8 m° systematic errors, which A A if brought under control, would allow the RGS to make imp ortant contributions to X-ray line databases. One p ossibility not yet excluded is that these shifts are not instrumental in origin but are from Doppler shifts resulting from bulk motion in the sources themselves. A prop er statistical comparison of line models incorp orating wavelength or velocity shifts is one of the motivations for the current reassessment of the RGS wavelength scale.

2

Data and data pro cessing

The targets selected for this study are presented in Table 1. A total of four stars were chosen for the prop erties of their X-Ray sp ectra (e.g. strength of the lines). The analysis has b een carried out on 66 sp ectra in total. Some of the prop erties of the observations are listed in Tables 2, 3, 5, 4. These stars were chosen among the most common calibrators. The data analysed were downloaded from the XMM-Newton archive as ODFs. The appropriate CCF files were produced with SAS7.1 for each observation. Resp onse matrices with a resolution of 20000 were generated with rgsrmfgen. The sp ectra were then fitted within XSPEC using a Skelta function with sp ectral lines b etween 6.1°(SiXIV) and 37.7°(SXI I) were added. The p osition of the lab oratory and observed A A lines were then compared, and the shift in wavelenght scale ( ) measured. Velocity shifts (v ) were also measured with the same method. Details of the actual procedure as well as parts of the code used are given in App endix. Table 1: The sample. Columns are: name of target, coordinates and prop er motion extracted from SIMBAD; numb er of RGS observations p er target. TARGET RA(2000) DEC(2000) Prop er motion µ (mas/yr) 32.14 75.52 -716.58 -32.98 µ (mas/yr) 150.97 -427.11 -1034.60 -163.45 Numb er of observations 28 19 5 14

AB Dor Cap ella Procyon HR1099

05h 05h

28m 16m

44.5s 41.4s

07h 39m 18.1s 03h 36m 47.3s

27'02.1" + 59'52.8" +05o 13'30.0" +00o 35'15.9" 45o

-65o

1


Confidence region: C!Statistic 7000

Confidence region: C!Statistic

Statistic: C!Statistic

Statistic: C!Statistic !20 !10 0 Parameter: shift1 (mAngstrom)
dcoia 25!Oct!2007 17:43

6500

6000

10

20

6000

6500

7000

!20

!10

0 Parameter: shift1 (mAngstrom)

10

20
dcoia 26!Oct!2007 10:49

Confidence region: C!Statistic 7000 7000

Confidence region: C!Statistic

Statistic: C!Statistic

Statistic: C!Statistic !20 !10 0 Parameter: shift1 (mAngstrom)
dcoia 26!Oct!2007 12:01

6500

6000

10

20

6000

6500

!20

!10

0 Parameter: shift1 (mAngstrom)

10

20
dcoia 26!Oct!2007 12:37

Figure 1: Example of C-statistic for the same observation but with resolution of resp onse matrices of 4000, 20000, 30000, 40000 (up left to right b ottom). The same parameters were used to produce all plots (Procyon, OBS ID: 0123940201).

2.1

High resolution response matrices

The need for resp onse matrices with resolution higher than the default (4000) has arise early in the analysis. Fig. 1 shows the C-statistic produced for the analysis of the same observation using resp onse matrices of resolution 4000, 20000, 30000, 40000. The goodness of the C-statistic increases significantly as to justify the need for resp onse matrices of resolution higher than the default. The higher the resolution the b etter the C-statistic. Unfortunately, the generation of such matrices is prohibitive in term of disk space (several gigabytes) and processing time (days of grid time), b oth during the creation of the matrices and for the subsequent analysis, e.g. sp ectral fitting. It would neither b e realistic nor feasible for ordinary observers to produce their own high resolution matrices but it would b e appropriate for the SOC to accomplish this task. A good compromise is the choice of a resolution of 20000, which will b e adopted in the rest of this analysis.

3

Differences in metho dology with previous studies

The methodology used in this work is not dissimilar to that describ ed in Lorente, Pollock & Gabriel (2003). Main differences with that previous study are:

2


Table 2: Observations of AB Dor. Columns are: revolution; ID and date of observation; displacements in the disp ersion and cross-disp ersion directions and count rates for b oth RGS1 and RGS2. O ID 0123720201 0126130201 0123720301 0133120101 0133120701 0133120201 0134520301 0134520701 0134521301 0134521401 0134521501 0155150101 0134521601 0134521801 0134521701 0134522001 0134522101 0134522201 0134522301 0134522401 0160362501 0160362601 0160362701 0160362801 0160362901 0160363001 0160363201 0412580101 BS Date 2000-05-01 2000-06-07 2000-10-27 2000-12-11 2000-12-11 2000-12-12 2001-01-20 2001-05-22 2001-10-13 2001-12-26 2002-04-12 2002-06-18 2002-06-18 2002-11-05 2002-11-15 2002-12-03 2002-12-30 2003-01-23 2003-03-30 2003-05-31 2003-08-02 2003-08-02 2003-10-24 2003-12-08 2004-11-27 2005-04-18 2005-10-16 2006-12-31 (") +1.2 -6.2 -0.7 +70.5 +70.6 +32.2 +8.4 -6.4 -0.5 +11.7 +1.5 +22.7 -2.4 -2.5 -2.5 +2.6 +0.9 +0.9 -1.2 -1.7 +1.0 +1.8 -0.5 +0.3 -111.8 -0.6 +0.3 +2.1 AB Dor RGS1 (") count rate (s-1 ) -20.1 1.475 ± 0.006 -18.1 1.059 ± 0.005 +0.4 1.086 ± 0.004 -14.1 1.271 ± 0.005 -14.2 1.161 ± 0.012 -83.9 1.259 ± 0.008 -5.5 1.599 ± 0.008 -16.8 1.101 ± 0.005 +8.1 1.077 ± 0.006 +1.3 1.153 ± 0.016 -11.8 0.994 ± 0.005 +7.3 2.154 ± 0.011 -3.7 1.464 ± 0.007 -7.5 1.378 ± 0.011 -5.2 1.244 ± 0.009 -3.7 1.471 ± 0.011 -4.8 1.329 ± 0.005 -6.0 0.993 ± 0.005 -6.1 1.480 ± 0.006 -1.9 1.121 ± 0.009 -3.3 1.125 ± 0.045 -4.9 0.941 ± 0.006 -3.6 1.015 ± 0.006 -6.2 1.344 ± 0.005 -1.2 0.935 ± 0.005 -6.2 1.069 ± 0.006 -3.6 1.206 ± 0.006 -4.2 1.369 ± 0.006 RGS2 (") count rate (s-1 ) -9.1 1.474 ± 0.006 -7.2 1.065 ± 0.004 +11.3 1.396 ± 0.005 -3.0 1.598 ± 0.006 -3.1 1.455 ± 0.013 -72.9 1.539 ± 0.009 +5.3 2.044 ± 0.009 -5.8 1.423 ± 0.006 +19.0 1.375 ± 0.006 +12.2 1.455 ± 0.018 -0.9 1.248 ± 0.005 +18.3 2.632 ± 0.012 +7.1 1.788 ± 0.007 +3.3 1.776 ± 0.012 +5.6 1.609 ± 0.009 +7.1 1.895 ± 0.012 +6.0 1.736 ± 0.006 +4.8 1.289 ± 0.005 +4.8 1.944 ± 0.007 +9.0 1.452 ± 0.010 +7.6 1.450 ± 0.012 +5.9 1.230 ± 0.007 +7.3 1.253 ± 0.007 +4.6 1.716 ± 0.006 +9.3 1.158 ± 0.006 +4.6 1.375 ± 0.006 +7.2 1.570 ± 0.006 +6.6 1.747 ± 0.007

REV 0072 0091 0162 0185 0185 0185 0205 0266 0338 0375 0429 0462 0462 0532 0537 0546 0560 0572 0605 0636 0668 0668 0709 0732 0910 0981 1072 1292

(") +12.6 +5.1 +10.5 +81.8 +81.9 +43.8 +19.8 +4.9 +10.7 +23.0 +12.8 +34.0 +8.8 +8.8 +8.8 +14.0 +12.2 +12.3 +10.0 +9.5 +12.4 +13.1 +10.7 +11.7 -100.4 +10.6 +11.7 +13.4

· Fitting procedure is applied to the whole sp ectrum, instead of single lines. The sp ectrum is made up of a continuum and as many individual X-ray lines as necessary; · The appropriate resp onse matrices are used in conjunction with each individual sp ectrum; · Prop er statistical methods are implemented (e.g. C-statistic); · rgspro c is run using SIMBAD J2000 coordinates and indep endently with SIMBAD J2000 prop er motion corrected p ositions for each star. The effects of prop er motion have in fact never b een considered b efore and it is therefore mandatory to consider it to p ossibly improve the calibration of RGS; · The sample presented here is much larger. It is comprised of four stars and 66 observations in total, while the sample presented in the previous study was comprised of three stars and 28 observations.

3


Table 3: Observations of Cap ella. The meaning of columns is as for Table 2. OBS REV 0043 0043 0043 0043 0043 0046 0053 0053 0053 0054 0232 0517 0790 0871 0971 0972 1149 1318 1412 ID 0119700201 0119700301 0119700401 0119700601 0119700701 0120900201 0121500201 0121500301 0121500401 0121920101 0134720101 0134720401 0134720801 0134721501 0134721601 0134721701 0134722001 0134722101 0510780101 Date 2000-03-03 2000-03-03 2000-03-04 2000-03-03 2000-03-05 2000-03-09 2000-03-24 2000-03-23 2000-03-24 2000-03-25 2001-03-15 2002-10-05 2004-04-01 2004-09-10 2005-03-28 2005-03-31 2006-03-20 2007-02-20 2007-08-27 (") -1.4 -1.3 -3.4 -1.2 -3.6 +3.4 +671.8 -332.7 +340.4 -0.6 +2.7 -0.2 -0.4 +0.6 -1.8 -1.0 -0.1 +3.9 -2.5 Cap ella RGS1 (") count rate (s-1 ) -96.1 2.990 ± 0.020 -96.7 2.898 ± 0.011 -98.1 2.945 ± 0.009 -97.1 3.028 ± 0.009 -98.3 2.953 ± 0.009 +72.5 3.327 ± 0.010 -29.8 1.894 ± 0.011 -6.2 2.812 ± 0.013 -19.4 2.857 ± 0.013 +10.1 3.130 ± 0.008 +15.8 2.322 ± 0.009 -2.9 2.638 ± 0.009 -3.1 2.589 ± 0.007 -4.0 2.648 ± 0.006 -4.9 3.443 ± 0.013 -2.5 3.535 ± 0.015 -4.9 2.082 ± 0.006 -1.0 3.304 ± 0.008 -8.3 3.937 ± 0.008 RGS2 (") count rate (s-1 ) -85.2 3.262 ± 0.021 -85.7 3.304 ± 0.012 -87.2 3.280 ± 0.009 -86.2 3.360 ± 0.009 -87.4 3.543 ± 0.009 +83.5 3.818 ± 0.001 -17.2 1.815 ± 0.011 +3.8 2.581 ± 0.012 -7.6 3.009 ± 0.013 +21.0 3.428 ± 0.008 +26.8 3.184 ± 0.011 +7.9 3.476 ± 0.011 +7.7 3.540 ± 0.049 +6.8 3.662 ± 0.008 +5.9 4.707 ± 0.015 +8.3 4.824 ± 0.017 +5.9 2.457 ± 0.007 +9.8 4.507 ± 0.009 +2.5 5.663 ± 0.010

(") +10.1 +10.3 +8.1 +10.3 +8.0 +14.4 +682.6 -321.0 +351.5 +10.6 +14.0 +11.0 +10.8 +11.9 +9.4 +10.2 +11.2 +15.1 +8.8

Table 4: Observations of Procyon. The meaning of columns is as for Table 2. OBS REV 0160 0160 1341 1341 1341 ID 0123940101 0123940201 0415580101 0415580201 0415580301 Date 2000-10-23 2000-10-24 2007-04-07 2007-04-08 2007-04-08 (") -0.8 -2.9 -16.6 -5.3 +5.1 Procyon RGS1 (") count rate (s-1 ) -10.6 0.118 ± 0.002 -9.1 0.114 ± 0.005 +1.5 0.087 ± 0.002 +5.7 0.096 ± 0.002 +5.6 0.086 ± 0.004 RGS2 (") count rate (s-1 ) +0.3 0.099 ± 0.002 +1.7 0.101 ± 0.005 +12.4 0.081 ± 0.002 +16.6 0.081 ± 0.002 +16.6 0.072 ± 0.003

(") +10.4 +8.3 -5.3 +5.9 +16.4

4


Table 5: Observations of HR1099. The meaning of columns is as for Table 2. OBS REV 0031 0031 0031 0036 0036 0132 0132 0214 0221 0310 0310 0495 0857 0942 ID 0116890801 0116890901 0116891101 0117890801 0117890901 0129350201 0129350301 0134540301 0134540101 0134540401 0134540501 0134540601 0134540801 0134540901 Date 2000-02-08 2000-02-08 2000-02-09 2000-02-18 2000-02-18 2000-08-28 2000-08-27 2001-02-07 2001-02-22 2001-08-18 2001-08-18 2002-08-22 2004-08-13 2005-01-29 (") +0.0 +0.0 -6.1 -469.6 -469.5 -3.9 -3.9 +1.1 +2.7 -4.2 -6.0 +0.0 -0.0 -1.8 HR1099 RGS1 (") count rate (s-1 ) -3.4 4.205 ± 0.020 -3.6 3.619 ± 0.012 -2.1 3.170 ± 0.018 -4.0 1.856 ± 0.030 -4.1 2.529 ± 0.009 -14.1 3.635 ± 0.011 -14.1 4.014 ± 0.017 +6.9 1.858 ± 0.031 +5.2 1.655 ± 0.006 -13.4 1.579 ± 0.009 -13.5 1.533 ± 0.018 -6.2 1.469 ± 0.007 -4.2 1.757 ± 0.006 -5.4 3.024 ± 0.008 RGS2 (") count rate (s-1 ) +7.5 4.250 ± 0.020 +7.3 3.661 ± 0.012 +8.7 3.149 ± 0.018 +5.7 1.790 ± 0.029 +5.6 2.358 ± 0.009 -3.1 3.560 ± 0.011 -3.1 3.941 ± 0.017 +17.8 2.391 ± 0.033 +16.2 2.186 ± 0.007 -2.5 2.040 ± 0.010 -2.6 1.988 ± 0.019 +4.6 1.897 ± 0.008 +6.7 2.293 ± 0.007 +5.4 3.752 ± 0.008

(") +11.3 +11.4 +5.2 -457.8 -457.7 +7.4 +7.4 +12.4 +14.0 +7.1 +5.2 +11.4 +11.2 +9.4

4

Results

A wavelength shift is evident for b oth RGS1 and RGS2 (Fig. 2), but is much larger for the latter, with a ratio ,RGS2 /,RGS1 3 for b oth orders. The shift is minimum for the second order for b oth RGSs. The shift does not seem to b e correlated with neither the cross-disp ersion or the incidence angles (Fig. 3). Figs. 4 and 5 illustrate the most imp ortant results of this analysis. The figures show that there is a linear relation b etween the wavelength shifts for RGS1 and RGS2 for all observations. However, the relation changes A A for first and second order. In first order it is found that ,RGS2 [m°] = (1.034 ± 0.04) â ,RGS1 [m°] + (4.94 ± 0.31). In second order the relation is ,RGS2 [m°] = (1.04 ± 0.06) â ,RGS1 [m°] + (1.61 ± 0.36). A A The comparison b etween first and second order wavelength shifts is in Figs. 6, 7. A similar results is found for velocity shifts (Figs. 8, 9). The relation b etween RGS1 and RGS2 in first order is v,RGS2 [km s-1 ] = (1.06 ± 0.04) â v,RGS1 [km s-1 ] + (-84.65 ± 5.32) while in second order is ,RGS2 [m°] = (±) â ,RGS1 [m°] + (±). The comparison b etween first and second order velocity shifts is A A in Figs. 10, 11. Figs. 6 (10) and 7 (11) compare the results of wavelength (velocity) shifts for a given RGS and b oth orders. Tables 6 and 7 contain wavelength and velocity shifts as well as results from C-statistic for each observation.

5

Future Prosp ects
A A · (RGS2)[m°] - (RGS1)[m°] = 4.94 ± 0.31

This study has established that the difference in wavelength measured by the two RGS instruments is

This should form the basis of a CCF release to align b oth instruments. The absolute shift should b e checked against the p osition of the OVI I absorption lines seen in the accumulated sp ectra of blazars. Further steps 5


Figure 2: Distribution of first and second order wavelength shifts for RGS1 and RGS2. The mean wavelength shift is larger for RGS2. will then include geometry adjustments to individual CCD p ositions and finally an investigation of the origin of the shifts seen in single observations.

6


Figure 3: Mean shift in wavelength p er observations for RGS1 and RGS2, first and second order, as a function of and chi. The results from the different stars are black (Procyon), pink (Cap ella), blue (HR1099) and red (AB Dor). The same colours are used in the remaining figures.

7


Figure 4: Wavelength shifts for RGS1 and RGS2, first order. The relation b etween RGS1 and RGS2 is ,RGS2 [m°] = (1.034 ± 0.04) â ,RGS1 [m°] + (4.94 ± 0.31). A A

Figure 5: Wavelength shifts for RGS1 and RGS2, second order. The relation b etween RGS1 and RGS2 is A A ,RGS2 [m°] = (1.04 ± 0.06) â ,RGS1 [m°] + (1.61 ± 0.36). 8


Figure 6: Wavelength shifts for RGS1 in first and second order. The solid line shows the slop e exp ected for wavelength shift in first and second order.

Figure 7: Wavelength shifts for RGS2 in first and second order. The solid line shows the slop e exp ected for wavelength shift in first and second order.

9


Figure 8: Velocity shifts measured for RGS1 and RGS2, first order. The relation b etween RGS1 and RGS2 is v,RGS2 [km s-1 ] = (1.06 ± 0.04) â v,RGS1 [km s-1 ] + (-84.65 ± 5.32).

Figure 9: Velocity shifts measured for RGS1 and RGS2, second order. The relation b etween RGS1 and RGS2 is v,RGS2 [km s-1 ] = (±) â v,RGS1 [km s-1 ] + (±). 10


Figure 10: Velocity shifts for RGS1 in first order.

Figure 11: Velocity shifts for RGS2 in second order.

11


Table 6: C-statistic values and shifts, order 1. OBS ID 0123940101 0123940201 0415580101 0415580201 0415580301 0119700201 0119700301 0119700401 0119700601 0119700701 0120900201 0121500201 0121500301 0121500401 0121920101 0134720101 0134720401 0134720801 0134721501 0134721601 0134721701 0134722001 0134722101 0510780101 0123720201 0126130201 0134520701 0133120101 0133120701 0134520301 0134521301 0134521501 0134521801 0134522401 0134522301 0134522201 0155150101 0160362501 0160363001 0412580101 0134521601 0160363201 0160362701 0160362901 0134521701 0133120201 0134521401 0134522001 Target Procyon Procyon Procyon Procyon Procyon Cap ella Cap ella Cap ella Cap ella Cap ella Cap ella Cap ella Cap ella Cap ella Cap ella Cap ella Cap ella Cap ella Cap ella Cap ella Cap ella Cap ella Cap ella Cap ella AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor C
=0,v =0

C

, v =0

C

=0,

v



,RGS 1



v,RGS 1



,RGS 2



v,RGS 2

5653.16 5702.44 5671.17 4986.97 5673.78 7301.77 11393.8 14808.9 6357.70 6384.22 16984.3 7986.07 10557.4 9232.99 18888.6 10793.0 11085.7 24158.8 21437.7 14985.7 12887.6 15351.5 26945.8 34214.8 5986.80 6809.83 6379.51 6494.86 5531.59 6648.71 6723.25 6613.60 5885.09 5898.42 6721.03 6525.02 5932.37 5497.76 6912.63 5893.60 6483.12 7589.69 5747.61 5609.87 5810.57 5744.53 5733.89 5286.17

5655.54 5719.48 5632.48 4976.86 5669.28 7182.44 10868.1 13889.4 6333.13 6378.28 16385.6 7943.86 10204.6 9156.75 17746.5 10466.5 10782.4 20638.3 20863.1 13854.5 11663.8 14266.2 22713.3 31245.4 5936.74 6720.99 6165.18 6426.73 5534.62 6598.48 6138.45 6274.98 5706.16 5471.11 6299.46 6330.00 5671.74 5475.26 6529.96 5685.26 6187.64 7392.37 5677.47 5602.86 5741.70 5709.79 5661.84 5216.06

5652.64 5696.58 5630.19 4995.80 5672.20 7187.07 10868.5 13956.8 6332.33 6381.17 16294.5 7935.36 10147.3 9141.96 17699.1 10429.0 10796.9 20062.7 20660.8 13607.5 11427.3 13919.9 23090.0 30535.6 5939.63 6704.03 6149.36 6425.05 5529.55 6590.26 6112.92 6265.69 5697.17 5449.52 6214.91 6277.10 5670.32 5471.68 6469.92 5689.97 6181.25 7336.99 5672.93 5593.81 5715.98 5707.15 5662.44 5220.70

-0.161693 -3.31508 5.77819 1.83909 -1.71621 -4.27156 -7.13769 -5.29240 -7.27221 -4.71752 3.01259 -1.01115 7.62450 0.369580 4.37320 2.93947 -1.47558 10.5443 2.08799 11.5781 13.3186 5.34998 -13.1155 12.6098 8.18210 4.78386 8.59277 0.126967 4.41998 -4.31886 16.9767 10.4363 11.8924 19.3708 8.88510 4.42589 14.1248 3.81412 10.2545 -8.27860 8.59258 5.77790 3.21922 0.377432 6.35530 1.61374 10.2113 -6.16302

13.0580 49.4340 -81.4908 -27.3518 23.8285 68.8528 126.754 100.240 126.291 62.8617 -56.2343 9.18730 -134.516 -4.87698 -78.5365 -52.2456 22.8038 -193.979 -52.1525 -223.117 -256.402 -111.949 216.456 -250.723 -115.351 -77.7403 -148.317 4.87703 -77.4755 61.8296 -254.433 -164.868 -178.591 -282.404 -148.238 -77.4751 -205.748 -55.5053 -164.910 125.756 -135.753 -104.095 -52.9437 -17.2768 -115.320 -22.3849 -164.865 71.7902

3.06656 -0.586980 11.7596 6.77110 -1.47440 -2.88980 -3.30129 -2.45656 -5.42269 -1.47380 8.81427 6.62770 10.3357 5.35132 9.46888 9.02515 3.08679 19.6586 8.51681 15.5638 19.6612 17.8134 -11.2775 15.5833 12.1589 10.0768 13.2800 5.36541 4.90284 2.42207 20.6868 14.0355 17.3941 26.6526 15.4921 11.0605 21.1786 8.81133 15.5833 -2.47313 15.9575 12.4759 5.97301 2.96829 11.2560 4.90272 14.3495 0.662181

-1.75928 12.9351 -135.765 -78.7411 31.8067 47.4475 60.5656 39.1151 80.6534 31.9766 -153.178 -137.714 -190.894 -113.636 -168.255 -152.179 -56.2343 -341.876 -159.433 -309.122 -346.502 -320.355 184.326 -310.569 -194.343 -164.891 -223.094 -106.639 -82.1825 -48.3328 -339.489 -225.237 -281.289 -409.538 -279.652 -199.673 -328.855 -164.864 -264.819 39.1150 -259.258 -223.494 -108.426 -66.7351 -205.813 -77.4719 -249.885 -19.2413

12


OBS ID 0134522101 0160362601 0123720301 0160362801 0116890801 0116890901 0116891101 0117890801 0117890901 0129350201 0129350301 0134540101 0134540301 0134540401 0134540501 0134540601 0134540801 0134540901

Target AB Dor AB Dor AB Dor AB Dor HR1099 HR1099 HR1099 HR1099 HR1099 HR1099 HR1099 HR1099 HR1099 HR1099 HR1099 HR1099 HR1099 HR1099

C

=0,v =0

C

, v =0

C

=0,

v

6368.28 5798.69 6397.80 6779.32 21796.1 36282.3 17179.6 5673.37 7087.95 6836.68 6234.75 7277.78 5827.66 5991.58 5384.95 6287.68 6897.49 6677.77

6196.51 5637.63 6347.20 6519.31 21712.8 36181.0 16956.1 5664.08 6881.73 6506.64 6095.48 6716.96 5809.97 5725.54 5263.91 6148.31 6653.39 6171.77

6195.91 5618.96 6331.54 6528.68 21730.4 36170.4 16948.2 5665.97 6888.01 6493.90 6079.57 6710.04 5808.35 5723.07 5262.78 6146.98 6639.59 6197.04

,RGS 1 -4.71780 7.04522 1.21431 -8.00735 -3.31712 -4.75757 -8.55833 -0.888081 -1.30892 -9.49813 -8.46985 10.8186 -8.50454 8.59257 16.9966 -3.32762 6.77111 -10.2777

v,RGS 1 61.8843 -114.906 -19.1984 122.129 68.2543 87.4491 165.440 23.8298 35.7108 177.414 155.776 -172.062 143.716 -135.752 -262.515 61.5591 -109.843 155.816

,RGS 2 1.36591 14.1257 6.62693 0.404785 -2.04324 -0.631088 -4.71569 1.93355 8.07208 -4.30855 -3.58097 17.2978 4.22467 14.4939 21.5028 -0.191964 10.6599 -4.84510

v,RGS 2 -48.3321 -250.688 -114.801 -17.0685 35.0385 9.97394 81.3738 -20.7141 -123.521 68.2635 73.6267 -281.293 -60.4284 -247.376 -323.033 9.97066 -188.943 78.7775

13


Table 7: C-statistic values and shifts, order 2. OBS ID 0123940101 0123940201 0415580101 0415580201 0415580301 0119700201 0119700301 0119700401 0119700601 0119700701 0120900201 0121500201 0121500301 0121500401 0121920101 0134720101 0134720401 0134720801 0134721501 0134721601 0134721701 0134722001 0160363001 0412580101 0134521601 0160363201 0123720301 0160362801 0116890801 0134540301 0134540401 0134540501 0134540601 0134540801 0134540901 Target Procyon Procyon Procyon Procyon Procyon Cap ella Cap ella Cap ella Cap ella Cap ella Cap ella Cap ella Cap ella Cap ella Cap ella Cap ella Cap ella Cap ella Cap ella Cap ella Cap ella Cap ella AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor HR1099 HR1099 HR1099 HR1099 HR1099 HR1099 HR1099 C
=0,v =0

C

, v =0

C

=0,

v



,RGS 1



v,RGS 1



,RGS 2



v,RGS 2

3276.13 3362.34 3941.76 2526.58 4289.19 4705.36 5950.12 7028.07 4417.79 4056.31 6892.60 5142.34 6136.92 5498.08 8263.25 6397.10 7449.87 12143.1 11850.3 8981.39 7794.10 9584.26 4448.96 3993.43 4713.53 4646.28 4558.83 4690.12 10417.1 4422.81 4423.20 4462.15 4519.70 4983.92 4903.66

3271.80 3360.05 3939.36 2510.20 4277.56 4614.31 5797.80 6701.80 4413.76 3960.37 6920.74 5092.16 6071.90 5540.37 8140.42 6220.16 7244.68 12175.2 11537.9 8483.65 7175.73 9065.24 4402.26 3925.25 4460.19 4503.21 4298.63 4656.52 10097.1 4395.93 4388.48 4447.24 4491.88 4616.65 4576.29

3264.86 3361.02 3938.48 2509.96 4280.69 4621.61 5879.69 6720.56 4412.84 3957.20 6974.33 5080.31 6052.35 6384.07 8196.38 6274.18 7210.26 11563.1 11522.3 8338.82 7317.82 8556.49 4404.35 3924.93 4442.34 4492.44 4292.07 4672.13 10109.8 4394.70 4399.31 4446.07 4404.44 4687.51 4570.98

-3.59102 3.78618 11.1627 16.6586 -18.1256 -4.44180 -5.19962 -4.75550 -1.74541 -3.44008 0.243001 -2.04469 0.243012 -1.50279 1.68739 0.242914 -3.49768 8.36609 3.93340 9.53962 8.59258 7.17621 7.89053 -2.47439 3.80099 6.60932 0.291349 -0.659781 -1.73471 -4.73010 2.42138 8.07317 -4.84486 5.77815 -3.47433

68.2699 -50.7344 -190.474 -560.353 379.954 91.5752 103.011 97.4202 45.9555 68.8869 -4.48949 53.5013 5.02510 24.8357 -41.6835 -4.72135 68.8534 -174.767 -78.5145 -189.458 -188.943 -150.728 -162.511 39.1141 -73.0624 -131.187 -15.2705 9.97507 39.1153 110.998 -21.9665 -151.781 109.192 -110.845 90.9105

6.37568 9.69105 8.53006 18.9073 -21.9004 -3.44650 -3.34234 -3.34761 -3.44737 -7.99614 2.48395 3.93452 3.91589 1.42914 1.08751 1.66640 -1.61840 10.6599 5.03379 11.8102 11.7508 9.29690 8.18250 0.0598262 8.14559 8.07193 2.08801 1.95466 -1.60254 -8.53607 2.94563 5.36372 -1.60449 5.65100 -1.60283

-115.689 -149.927 -78.5188 -483.903 474.534 68.8292 74.1713 72.3458 68.8147 173.842 -56.2343 -78.5404 -63.5391 -36.7606 -22.4960 -41.6849 33.0713 -225.762 -108.391 -248.976 -250.515 -188.887 -188.943 -7.88455 -163.607 -155.294 -41.6847 -47.3686 29.8489 179.475 -62.6704 -108.237 37.5120 -115.324 32.0048

6

References

Lorente R., Pollock A.M.T., Gabriel C., 2003, http://xmm.vilspa.esa.es/docs/documents/CAL-TN-0041-1-0.ps.gz

14


APPENDIX The starting p oint of the analysis, following the creation of CCFs in SAS, is the automatic compilation of a FITS binary table (RGS.2007CoronalSkeltaLineSurvey.fits). This table contains, for each observation: revolution; OBSID; date at b eginning and end of observation; RA, DEC and prop er motion of instrument p ointing; target; coordinates of target at J2000; prop er motion of target; RA and DEC after prop er motion correction; the angles , and ; count rates derived from XSp ec. It also includes columns that would b e automatically filled during the analysis, such as C-statistic values, wavelength and velocity shifts. The table is internally available. The table is then fed into a process of which fitRGSCoronalSpectrum is the main part. Part of the code is as follows. proc fitRGSCoronalSp ectrum {target obsid rgsidList {srcid 003} {order 1} path {modelFile ""} {shap e SkeltaFunction}} { global LineList SHAPE set SHAPE $shap e switch $order 1 {set W1 6.; set W2 38.} 2 {set W1 6.; set W2 20.} setLineVisibility $W1 $W2 data none clearSp ectrumList model clear set LineList [makeRGSCoronalSp ectrum $target $SHAPE] cd $path/$obsid}/RGS set bkgid BGSPEC foreach rgsid $rgsidList { set lab el ${obsid}${rgsid} addRGSXsp ecData $obsid $rgsid $order $srcid $bkgid $lab el $W1 $W2 } } if {$modelFile != ""} { model clear @${modelFile} } query no fit 100; fit 10 return $LineList }

15


The code ab ove loads a sp ecific sp ectrum with the corresp onding background and resp onse matrix, corresp onding to the observation at the line currently loaded from the table. It then reads in a list of ions to b e put into a Skelta function that would b e used for fitting the loaded sp ectrum. A Skelta function is a Delta function sp ectral line of known lab oratory wavelength from which it can b e shifted in wavelength of velocity. The use of the Skelta function has three modes: 000, when b oth starting velocity and wavelength are set to 0. In this case the default matrix. The second mode (W00) is thawing the wavelength fixing the velocity parameter to 0, while the third mode (00V) is thawing the velocity fixing the wavelength parameter to 0. The C-statistic derived from fitting the Skelta function to the actual data in the three modes is then included in the table.

16