Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://xmm.vilspa.esa.es/docs/documents/Appendix/Daly.pdf.gz
Äàòà èçìåíåíèÿ: Mon Jan 8 10:36:52 2001
Äàòà èíäåêñèðîâàíèÿ: Tue Oct 2 12:31:53 2012
Êîäèðîâêà:

Ïîèñêîâûå ñëîâà: ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï
Space Environments and Effects Analysis Section

Review of Analyses of XMM Radiation Problem
E. Daly on behalf of : R. Nartallo, H. Evans, A. Hilgers, P. Nieminen, J. SÜrensen ESA Space Environments and Effects Analysis Section F. Lei, P. Truscott, DERA Space Department, U.K. S. Giani, J. Apostolakis, CERN, Switzerland S. Magni, INFN, Milan and others
29 November 2000 TOS-EMA 1


Space Environments and Effects Analysis Section

Outline

· · · · ·

Low energy proton problem modelling in ESTEC (TRIM, Geant4,...) validation attempts environment assessment (then) environment (recent)

29 November 2000

TOS-EMA

2


Space Environments and Effects Analysis Section

XMM had a potentially more severe environment than Chandra (Rad Belts)
· · · · · Orbit parameters Apogee Perigee Inclination Argument of Perigee Chandra 140000km 10000km 28o 270o
1.E+14

XMM 114000km 7000km 39o 57o
Proton Fluence GEO CHANDRA G8 Fluence (#/cm2) G10 Fluence (#/cm2) XMM

Integral Fluence (#/cm2)

60-day fluence (AP8) - large numbers at low E, high dENIEL/dx, if unshielded

1.E+13 1.E+12 1.E+11 1.E+10 1.E+09 1.E+08 1.E+07 1.E+06 1.E+05

29 November 2000

0.1

TOS-EMA

1 Energy (MeV)

10

3

100


Space Environments and Effects Analysis Section

TRIM demonstrated that low-angle scattering was very efficient

29 November 2000

TOS-EMA

4


Space Environments and Effects Analysis Section

Fraction of particles in each 0.5o scattered angle bin [0,0.5], [0.5,1] as a function of incident angle.

Fraction of particles scattering into each scattered angle bin for various incident angles.

1

o

Incident Angles 2
o o

3

4

o

Scatter Angle

29 November 2000

TOS-EMA

5


Space Environments and Effects Analysis Section

Assuming these protons illuminate an area of the focal plane given by L2 where is the acceptance solid angle and L the focal length, the fluence of particles of energies between E and dE is: Q(E) 2 f(E) dE S {/4} / L2 = Q(E)2 f(E)dE S /4 L2 Where Q(E) is the scattering from a single encounter with a shell (either a single scatter of a "condensed" multiple scatter) and is a strong function of energy, S is the telescope acceptance area and f is the omnidirectional flux of particles, differential in energy.
fluence values in Table 1 as being lower bounds. If Q is as high as 0.3, the 10MeV equivalent 10 -2 fluence from 100keV protons will be of the order of 10 cm in 60 days at the CCDs.
Acceptance Area S 2 (cm ) Chandra 1145 XMM 1700/mirror Fluence interval -2 (f(E) E) (cm ) >10 >10
13 12

Acceptance Angle (Sr) 10
-4

L (cm) 10
3

E (MeV) 0.1 1

Q 0.065 0.065 0.065 0.065

Fluence -2 (cm ) ~ 1.3 10 5 ~4.8 10 ~3.5 10 ~1.1 10
6 6 6

10MeV Equivalent -2 Fluence (cm ) ~1.3 10 ~4.8 10 ~3.5 10 ~1.1 10
8 6

6.5 10

-5

7 10

2

0.1 1

>2 10 12 >2 10

13

8 7

Table 1.

Telescope parameters and orbit fluences for Chandra and XMM.

29 November 2000

TOS-EMA

6


Space Environments and Effects Analysis Section

Geant4 simulations
· Geant4 is the next generation of general-purpose MonteCarlo codes, successor to Geant 3.21 uses object oriented methodologies and coded in C++ to allow quality control, distributed (modular) development and rapid (modular) updating ESA is a formal member of the Geant4 collaboration, initiated by CERN complete geometrical capabilities complete physics capabilities: only question-mark was small angle scattering - extensive tests and comparison to TRIM
29 November 2000
Stmin = 0.1 um --- demax = 0.05 --- demax = 0.01 Stmin = 0.01 um --- demax = 0.05 --- demax = 0.01

·

·

Protons/Bin

· ·

Stmin = 0.005 um --- demax = 0.05 --- demax = 0.01

Stmin = 0.001 um --- demax = 0.05 --- demax = 0.01

Scattered Energy / Incident Energy
TOS-EMA 7


Space Environments and Effects Analysis Section

Full 3D simulations

29 November 2000

TOS-EMA

8


Space Environments and Effects Analysis Section

·

The number of counts registered at each of the detector volumes is converted to an efficiency measurement defined by

= / 4 ( A

source

/A

detector

)( N

detected

/N

incident

)

· where is the solid angle that corresponds to the selected source half-angle and · is given by 2 (1 - cos) · Asource is the area over which the isotropic particle distribution is generated · Adetector is the area of the detector volume on which particles are recorded · Nincident is the total number of particles generated over Asource · Ndetected is the number of particles recorded at a detector location within Adetector · · The efficiency is the number that the omnidirectional incident flux must be multiplied by to derive the flux at the "target". In the XMM simulations the areas involved in the efficiency calculations are: · Asource = 3455.75cm2 · Amirror_detector = 3739.28cm2 · ARGS_detector = 126.88cm2
» The size of the RGS collecting area was doubled to ensure detection of particles arriving outside the detector nominal position due to the approximation made by neglecting the "saw-tooth" surface.
EPIC_detector

·
29 November 2000

A

=
TOS-EMA

33.18cm

2

9


100keV protons
(°) 0.5 1 2 4 10 0.5 1 2 4 10 0.5 1 2 4 10 30 0.5 1 2 4 10 30 0.5 1 2 4 10 N
inc

N

Mirror (scattered)
det

2.8E-07 9.1E-07 2.2E-06 4.5E-06 8.7E-06 5.7E-07 1.7E-06 4.0E-06 8.6E-06 1.5E-05 7.1E-07 2.0E-06 4.9E-06 9.6E-06 1.7E-05 2.1E-05 7.4E-07 2.2E-06 5.1E-06 1.0E-05 2.0E-05 2.4E-05 7.5E-07 2.2E-06 5.2E-06 1.1E-05 2.5E-05

± 9.9E-10 3.6E-09 1.1E-08 2.5E-08 7.1E-08 1.4E-09 4.9E-09 1.5E-08 3.5E-08 9.3E-08 1.6E-09 5.4E-09 1.7E-08 3.7E-08 1.0E-07 1.8E-07 1.6E-09 5.5E-09 1.7E-08 3.8E-08 1.2E-07 1.9E-07 1.6E-09 5.5E-09 1.7E-08 3.9E-08 1.3E-07

N

Mirror (direct)
det

1.8E-09 5.2E-08 2.6E-07 3.1E-07 3.2E-07 1.9E-09 5.2E-08 2.7E-07 3.1E-07 3.3E-07 1.8E-09 5.1E-08 2.6E-07 3.1E-07 2.9E-07 3.2E-07 1.9E-09 5.2E-08 2.6E-07 3.1E-07 2.9E-07 3.3E-07 1.9E-09 5.2E-08 2.6E-07 3.0E-07 4.1E-07

± 7.9E-11 8.6E-10 3.9E-09 6.6E-09 1.4E-08 8.1E-11 8.6E-10 3.9E-09 6.6E-09 1.4E-08 7.9E-11 8.5E-10 3.8E-09 6.6E-09 1.3E-08 2.2E-08 8.2E-11 8.6E-10 3.9E-09 6.6E-09 1.4E-08 2.3E-08 8.2E-11 8.5E-10 3.8E-09 6.5E-09 1.7E-08

N

Space Environments and Effects RGS EPIC
det

Section Analysis N det ±
8.6E-10 2.9E-09 9.7E-09 2.4E-08 6.7E-08 1.4E-09 5.1E-09 1.7E-08 3.6E-08 1.0E-07 1.7E-09 6.2E-09 1.9E-08 3.7E-08 1.0E-07 1.8E-07 1.8E-09 6.6E-09 2.0E-08 4.4E-08 1.1E-07 1.4E-07 2.0E-09 7.1E-09 2.2E-08 4.8E-08 1.3E-07 410 381 200 126 40 1232 1087 572 344 83 1878 1446 688 376 101 37 1744 1391 708 431 88 61 1836 1464 718 384 127

± 8.0E-09 3.1E-08 9.0E-08 1.8E-07 4.2E-07 1.4E-08 5.2E-08 1.5E-07 2.9E-07 6.0E-07 1.7E-08 6.0E-08 1.7E-07 3.1E-07 6.6E-07 1.1E-06 1.7E-08 5.9E-08 1.7E-07 3.3E-07 7.4E-07 1.4E-06 1.7E-08 6.1E-08 1.7E-07 3.1E-07 8.9E-07

5.0E+06 5.0E+06 5.0E+06 8.0E+06 1.2E+07 5.0E+06 5.0E+06 5.0E+06 8.0E+06 1.2E+07 5.0E+06 5.0E+06 5.0E+06 8.0E+06 1.2E+07 4.0E+07 5.0E+06 5.0E+06 5.0E+06 8.0E+06 1.0E+07 4.0E+07 5.0E+06 5.0E+06 5.0E+06 8.0E+06 1.0E+07

79272 64636 38477 31682 14875 163257 121473 71857 61104 25394 202896 145581 86738 68360 29300 13746 209847 153276 90840 73559 28172 15490 212232 154651 92165 76141 35312

508 3724 4699 2206 547 528 3724 4733 2217 564 508 3607 4673 2179 504 208 547 3725 4677 2169 419 214 542 3677 4669 2153 585

69 48 34 34 15 181 150 101 77 36 272 220 134 80 36 15 286 256 142 112 26 10 372 292 170 133 38

7.2E-09 2.0E-08 5.6E-08 1.4E-07 2.6E-07 1.9E-08 6.2E-08 1.7E-07 3.2E-07 6.2E-07 2.8E-08 9.1E-08 2.2E-07 3.3E-07 6.2E-07 6.8E-07 3.0E-08 1.1E-07 2.4E-07 4.6E-07 5.4E-07 4.6E-07 3.9E-08 1.2E-07 2.8E-07 5.5E-07 7.9E-07

1.6E-07 6.0E-07 1.3E-06 2.0E-06 2.6E-06 4.9E-07 1.7E-06 3.6E-06 5.5E-06 5.5E-06 7.4E-07 2.3E-06 4.4E-06 6.0E-06 6.7E-06 6.5E-06 6.9E-07 2.2E-06 4.5E-06 6.8E-06 7.0E-06 1.1E-05 7.3E-07 2.3E-06 4.6E-06 6.1E-06 1.0E-05

300keV protons

600keV protons

1MeV protons

1.5MeV protons

29

Table 1 . X M M simulation runs for protons in the energy range 0.1 to 1.5 M eV for source half-angles and N inc number of incident particles. The number of protons recorded at each of the dummy detector volumes N det November 2000is used to calculate the efficiency , its error is estimated assuming Poisson statistics TOS-EMA apply.

10


Space Environments and Effects Analysis Section

1.E-04

1.E-05

1.E-06

Efficiency

1.E-07

Scattered 0.1 MeV Scattered 0.3 MeV Scattered 0.6 MeV Scattered 1.0 MeV Scattered 1.5 MeV

1.E-08

Direct Hits 0.1 MeV Direct Hits 0.3 MeV Direct Hits 0.6 MeV Direct Hits 1.0 MeV Direct Hits 1.5 MeV

1.E-09 0 5 10 15 20 25 30 35

Source half-angle (deg)

Figure 1. Efficiency of the mirrors is plotted against source half-angle for proton energies in the range 0.1 to 1.5MeV. Scattered protons and direct, unhindered protons are shown.
29 November 2000 TOS-EMA 11


Space Environments and Effects Analysis Section

1.E-04

1.E-05

1.E-06

Efficiency

EPIC 0.1 MeV

1.E-07

EPIC 0.3 Mev EPIC 0.6 MeV EPIC 1.0 MeV EPIC 1.5 MeV RGS 0.1 MeV RGS 0.3 MeV RGS 0.6 MeV RGS 1.0 MeV RGS 1.5 MeV

1.E-08

1.E-09 0 5 10 15 20 25 30 35

Source half-angle (deg)

Figure 1. Efficiency of the EPIC and RGS detectors is plotted against source half-angle for proton energies in the range 0.1 to 1.5MeV.
29 November 2000 TOS-EMA 12


Space Environments and Effects Analysis Section 1.E-04

1.E-05

1.E-06

Efficiency

EPIC 0.5 deg EPIC 1 deg EPIC 4 deg EPIC 2 deg EPIC 10 deg EPIC 30 deg RGS 0.5 deg RGS 1 deg RGS 2 deg RGS 4 deg RGS 10 deg RGS 30 deg

1.E-07

1.E-08

1.E-09 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Proton Energy (MeV)

Figure 1. Efficiency of the EPIC and RGS detectors is plotted against proton energy for each source half-angles in the range 0.5 to 30 degrees.
29 November 2000 TOS-EMA 13


Space Environments and Effects Analysis Section

4 2 0 -2 -4 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10

Y (cm)

Z (cm)

29 November 2000

TOS-EMA

14


Space Environments and Effects Analysis Section
1.E-04

1.E-05

Efficiency of the ACIS detector plotted against source half-angle for proton energies in the range 0.1 to 1.5MeV.

Efficiency

1.E-06

ACIS 0.1 MeV ACIS 0.3 Mev ACIS 0.6 MeV ACIS 1.0 MeV ACIS 1.5 MeV

1.E-07 0 2 4 6 8 10 12

Chandra has similar efficiency to XMM (Qualitative: NOT definitive Geometry may be incomplete)

Source half-angle (deg)

1.E-04

1.E-05

Efficiency of the ACIS detector plotted against proton energy for each source half-angles in the range 0.5 to 10 degrees.
29 November 2000

Efficiency
1.E-06
ACIS 0.5 deg ACIS 1 deg ACIS 2 deg ACIS 4 deg ACIS 10 deg

1.E-07 0.0 0.5 1.0 1.5 2.0

Proton Energy (MeV)

TOS-EMA

15


Space Environments and Effects Analysis Section

Comparison with experiment (Columbia)
100 100 Flux (#/cm 2 /st/inc. p+) Flux (#/cm 2 /st/inc. p+)
RGS Acceptance Range

10

10

RGS Acceptance Range

1 0 2 4 6 8 10 12 14

1 0 2 4 6 8 10 12 14

Scatter Angle (degrees)
Columbia: 1.3 MeV, 1.576deg G4: 1.3 MeV, 1.576deg

Scatter Angle (degrees)
Columbia: 1.3 MeV, 1.826deg G4: 1.3 MeV, 1.826deg

Grating samples

29 November 2000

TOS-EMA

16


Space Environments and Effects Analysis Section

Experiment - mirror shard sample
1.3 MeV; Position 2: 0.75 deg.
Geant 4 Monte-Carlo
1000.00

Columbia BDRF Columbia BDRF Uncor.
1000.00

0.3 MeV; Position 1: 1.4 deg.
Geant 4 Monte-Carlo

Columbia BDRF Columbia BDRF Uncor.

#/sr/inc. proton

#/sr/inc. proton

100.00

100.00

10.00

10.00

1.00 1.00 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

Angle of incidence

Angle of incidence

1.3 MeV; Position 1: 1.4 deg.
Geant 4 Monte-Carlo
1000.00

Columbia BDRF Columbia BDRF Uncor.
1000.00

0.3 MeV; Position 3: 2.38 deg.
Geant 4 Monte-Carlo

Columbia BDRF Columbia BDRF Uncor.

#/sr/inc. proton

#/sr/inc. proton

100.00

100.00

10.00

10.00

1.00 1.00 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

Angle of incidence

Angle of incidence

Geant4 results reasonable, but do not fall off towards low angles
29 November 2000 TOS-EMA 17


Space Environments and Effects Analysis Section

Environment
.3 - .5 1E+6 1E+5 1E+4 1E+3 1E+2 1E+1 1E+0 1E-1 1E-2 1E-3 0 50 100 150 200 doy 250 300 350 400 .5-1 1.0-2.0

flux (/cm2/s/sr/mev)

1981 from IMP: a bad year

29 November 2000

TOS-EMA

18


Space Environments and Effects Analysis Section

Evaluation of time lost in protection
10000

Number of days in IMP-8 EPAM record (0.3 - 0.5MeV) in given flux ranges.
1.E+12

The contribution to the total fluence from days of certain average flux.

Protons/cm2/day

1000

1.E+11

100

1.E+10

10

1.E+09

1.E+08
10000
1

100

1000

10

1

10000

Range

10000

to

10

1

100

10

to

1000

Average Flux (#/cm2/s/st)
1.E+12

Contribution

from

Ave Daily Flux Range (/ cm2/ sr/ s)
1000 to 10000

>10000

100

to

1000

1.E+11

(#/cm 2)

10

to

100

Fluence

1.E+10

1

to

10

Number

<1

29 November 2000

1.E+09 10

TOS-EMA
100 # days in range 1000 10000

1000

100

to

to

19

10000

10

1000

100

1

+

<

to

to

to

<

to

1

+


magnetospheric

Space Environments and Effects Analysis Section

Question: where do you have to stop operation?

Check EQ-S vs. LANL
29 November 2000 TOS-EMA 20


Space Environments and Effects Analysis Section

ACE and IMP average flxes

129-407keV: multiply numbers by 3500 to get p/cm2/s Equator-S Magnetospheric

1E+4

Interplanetary
"ACE" Series2

1E+3

ACE
flux (/cm2/sr/s/MeV) 1E+2

1E+1

~ACE ave

Ave 3.14e3 p/cm2/s in 112-580 keV

IMP

1E+0

p/cm2/ster/s/keV

1E-1 0.01

0.1 E(MeV)

1

10

· How does magnetospheric environment compare with interplanetary?
· NOTE!!: different periods! - next slides show that peak
29 November 2000 periods are similar inside and outside magnetosphere; baseline is higher inside (instrument or magnetospheric particles?) TOS-EMA 21


This year's environment has been stormy (as expected)
10000 1000 100 10 1 0.1
0.6 to 4.2 4.2 to 8.7 8.7 to 14.5 15 to 44 39 to 82

Space Environments and Effects Analysis Section

ACE (Heliospheric)
p >30 MeV p >10 MeV p >5 MeV p >1 MeV

Recent Environment
1.E+05

0.01

1.E+04
0.001
Feb-00 Mar-00 Jan-00 Dec-99 Apr-00 May-00 Jun-00 Jul-00 Aug-00 Dec-00 Sep-00 Oct-00 Nov-00

1.E+03 1.E+02 1.E+01 1.E+00

GOES (Magnetospheric L~61/2
29 November 2000

/cm2/s

1.E-01 1.E-02

Jul-00

Aug-00 TOS-EMA

Sep-00

Oct-00

Nov-00

Dec-00 22


Space Environments and Effects Analysis Section
1.E+06

Recent Environment
1.E+05

Heliospheric low energ(~0.3MeV) heliospheric medium (~1MeV) magnetospheric medium energy (~1MeV) high energy particles (~30MeV solar/heliospheric)

1.E+04

1.E+03

/cm 2/s

1.E+02

1.E+01

1.E+00

1.E-01

1.E-02

29 November 2000
Aug-00 Sep-00

TOS-EMA
Oct-00 Nov-00

23
Dec-00

Jul-00


Space Environments and Effects Analysis Section

Recent series of X-ray flares

29 November 2000

TOS-EMA

24


Space Environments and Effects Analysis Section

ACE

29 November 2000

TOS-EMA

25


Space Environments and Effects Analysis Section

29 November 2000

TOS-EMA

26


Space Environments and Effects Analysis Section

Conclusions
· A lot of work was done to quantify the problem pre-launch · Tools that have proved useful: Geant4, TRIM, on-line data;
(aside: many space weather resources are thanks to science missions, with science goals, not a guaranteed service in the future - is more something more needed? )

· Environment data available for interplanetary space but magnetospheric is largely missing; · Effort now need to understand what is observed in flight and: ­ validate modelling methods ­ interpret observations ­ anticipate evolution of problem(s) ­ prepare for other missions
29 November 2000 TOS-EMA 27