Документ взят из кэша поисковой машины. Адрес оригинального документа : http://xmm.vilspa.esa.es/calibration/documentation/CALHB/node412.html
Дата изменения: Tue Sep 20 19:45:19 2011
Дата индексирования: Mon Apr 11 03:01:32 2016
Кодировка:

Поисковые слова: m 103
Procedure

Calibration Access and Data Handbook


next up previous contents
Next: Calling Parameters Up: CAL_getLSFdefocusDist Previous: CAL_getLSFdefocusDist   Contents

Procedure

These formulae are derived from the description in [4]. The distribution is computed according to the inner ($R_1$) and outer ($R_2$) radii of the XRT assemblies, so that the contribution appears like the projected telescope aperture for finite defocus distance $\Delta x$ (which is provided by CAL_getRFCdefocus).

$\displaystyle D(\Delta\beta) =
\frac{ 2 F L}
{\pi R_2 \left [ 1 - \left (\frac{R_1}{R_2} \right )^2\right ]\Delta x}$ $\textstyle \times$    
$\displaystyle \left [\sqrt{1-\left ( \frac{F L \Delta\beta}{R_2 \Delta x}\right
)^2}
\right .$ $\textstyle \times$ $\displaystyle \left .
\Theta\left ( \left \vert \frac{R_2\Delta x}{F L} \right \vert - \vert\Delta\beta\vert\right )
\right . -$ (25)
$\displaystyle \left .
\frac{R_1}{R_2}\sqrt{1-\left ( \frac{F L\Delta\beta}{R_1 \Delta x}\right )^2}
\right .$ $\textstyle \times$ $\displaystyle \left .
\Theta\left ( \left \vert \frac{R_1\Delta x}{F L} \right \vert - \vert\Delta\beta\vert\right )
\right ] \ ,$  

with $F=F'$, which is the result from Eq. (24), and $L$ as in Eq. (21), $\Theta(x)$ is the Heaviside-step function with its derivative $\delta(x)$, and $\Delta\beta_i=\beta_i-\beta_{\rm m}$. Eq. (25) needs to be integrated for each bin of $\Delta\beta_i$ , and thus the probability for bin $i$ is

$\displaystyle P_i$ $\textstyle =$ $\displaystyle \left . Q(R_1) \times
\Theta\left ( \left \vert \frac{R_2\Delta x...
... x_i}{F L} \right \vert -
\vert\Delta\beta_i\vert\right ) {\rm d}\Delta\beta_i}$  
      (26)
  $\textstyle -$ $\displaystyle \left . G(R_2) \times
\Theta\left ( \left \vert \frac{R_1\Delta x...
... x_i}{F L} \right \vert -
\vert\Delta\beta_i\vert\right ) {\rm d}\Delta\beta_i}$  

with

\begin{displaymath}
Q(R) = \frac{-1}{\pi \Delta x (R_1^2-R_2^2)} \left [
\Delta\...
...^2 \arcsin\left(\frac{FL\Delta\beta}{R\Delta x}\right) \right]
\end{displaymath} (27)

and $\Delta x_i = \frac{1}{2}\left[\Delta x(\Delta\beta_1)+\Delta
x(\Delta\beta_2)\right]$. $P_i$ is filled such that the first moment of $P_i$ is 0.


next up previous contents
Next: Calling Parameters Up: CAL_getLSFdefocusDist Previous: CAL_getLSFdefocusDist   Contents
Michael Smith 2011-09-20