Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://www.stsci.edu/~webdocs/STScINewsletter/2006/fall_06.pdf
Äàòà èçìåíåíèÿ: Mon Jan 19 23:39:26 2009
Äàòà èíäåêñèðîâàíèÿ: Sun Apr 5 23:28:45 2009
Êîäèðîâêà:

Ïîèñêîâûå ñëîâà: âîçäóøíûå ìàññû
VOL

23

ISSUE

02

S p a c e Te l e s c o p e S c i e n c e I n s t i t u t e

The Institute Hosts a Workshop
Mat t Moun t ain, mmountain@stsci.edu
Image Credit: Lick Observatory

O

n November 28 ­30, 2006, the Institute will host a workshop on astrophysics enabled by NASA's plans to return to the Moon in the n e x t d e c a d e. T h e s t a te d is s u e is w h e t h e r t h e e x p l o r a t i o n i n i t i a t i v e p o s e s a n o p p o r t u n i t y f o r p r o g r e s s o n i m p o r t a n t p r o b l e m s i n as t r o p h y s i c s . T h e u n s t a te d q u e s t i o n is a b o u t t h e o n g o i n g r e l a t i o n s h i p b e t w e e n s p a c e s c i e n c e and human exploration of space: W hat are the true terms, values, and risks of this relationship? The astronomical communit y has been challenged to f o r m u l a t e t h e b e s t p o s s i b l e a ns w e r s t o t h o s e u n d e r l y i n g q u e s t i o ns . T h is e d i t i o n o f t h e N e w s l e t t e r c o n t a i ns t w o i n v i t e d o p i n i o n p i e c e s o n t h e is s u e f r o m R i c c a r d o G i a c c o n i a n d B e r n a r d B u r ke. I t a ls o r e p r i n t s a n a r t i c l e b y M a r t i n H a r w i t , i n w h i c h h e a d d r e s s e s a r e l e v a n t q u e s t i o n: " H o w d i d w e g e t to b e s o l u ck y? " T h e o v e r a l l g o a l is to f o s t e r r e f l e c t i o n o n w h y t h is workshop is impor tant and timely. Because of the Institute's unique experience with Hubble -- an epitome o f t h e s ci e n t i f i c b e n e f i t s o f h u m a n sp a c e f l ig h t a n d te ch n o l o g i e s d e v e l o p e d f o r o t h e r p u r p o s e s -- i t is b o t h a n o b l i g a t i o n a n d a p r i v i l e g e f o r us to c o n d u c t t h is o p e n, o b j e c t i v e d is cus si o n a b o u t t h e p o s si b i l i t i e s f o r astrophysics enabled by a N ASA's commitment to retur n to the Moon, M a r s, a n d b e y o n d . In A pril 1990, the Space Shut tle Discover y blasted of f f rom Kennedy Space Flight Center car r ying the Hubble Space Telescope to orbit. So b e g a n a h is to r i c a n d s o m e w h a t c o n t r o v e r si a l r i d e a l o n g a t r e m e n d o us jour ney of discover y. Today, Hubble is an integral par t of the moder n scienti f ic landscape, ser ving a communit y of roughly 7,0 0 0 astronomers w o r l d w i d e , h a v i n g p r o d u c e d o v e r 5, 0 0 0 p a p e r s i n r e f e r e e d j o u r n a l s , a n d , in 16 years, having dispensed over $ 30 0 million in grants and fellowships.

F o r t h e p u b l i c, H u b b l e h a s b e c o m e a n i c o n o f m o d e r n s c i e n c e . W h a t o t h e r t e l e s c o p e i n h i s t o r y h a s i t s i m a g e s o n p o s t a g e s t a m p s, U - H a u l t r u c k s, r o c k a l b u m s, a n d t h e w a l l s o f a l m o s t e v e r y s c h o o l ? Hubble's long jour ney f rom Lyman Spit zer 's imagination in 19 4 6 to i ns t r u m e n t a n d i c o n i n 2 0 0 6 w o u l d n e v e r h av e b e e n p o s si b l e w i t h o u t m ajo r te ch n i c al c o n t r i b u t i o ns f r o m n a t i o n al p r o g r a ms t h a t t h e s ci e n c e b u d g e t c o u l d n e v e r a f f o r d, i n c l u d i n g s u b s i d i z e d s p a c e t r a n s p o r t a t i o n, o p t i c a l a n d d e t e c t o r t e c h n o l o g i e s, a n d s e r v i c i n g b y a s t r o n a u t s t o r e p a i r s p h e r i c a l a b e r r a t i o n , r e p l a c e f a i l e d h a r d w a r e, a n d u p g r a d e i n s t r u m e n t a t i o n . As we look for ward to the nex t decade, or perhaps more impor tantly, t h e n e x t D e c a d a l S u r v e y o f A s t r o n o m y a n d A s t r o p h y s i c s, a r e w e c o n f i d e n t we can "go it alone" in pursuit of our visions -- imaging ear ths around other s t a r s, w a t c h i n g t h e d e t a i l e d p l i g h t o f m a t t e r f a l l i n g i n t o b l a c k h o l e s, a n d hunting for gravitational waves f rom the Big B ang? I f the space science b u d g e t is l i m i t e d -- a n d i t o b v i o us l y is -- t h e n o n l y a f e w e n d e a v o r s c a n a f f o r d to d e v e l o p t h e i r o w n t e c h n o l o g i e s a n d i n f r as t r u c t u r e s. T h e r e m a i n d e r m u s t a d a p t t o a v a i l a b l e o p p o r t u n i t i e s, o r w a i t i n d e f i n i t e l y i n t h e a n t e c h a m b e r s o f f u n d i n g . A s M a r t i n H a r w i t c o n c l u d e d, " We c a n n o t , e x c e p t i n r a r e c a s e s o f u n c o m m o n i m p o r t a n c e, a s k f o r s u p p o r t o f m i s s i o n s t h a t re q u ire c ap ab ili t ies w hich sig ni f ic an t l y o u t s t r ip co m m o n l y av ail ab l e militar y or industrial capacities." I f the retur n to the Moon is an oppor tunit y for astronomy, and the s ci e n c e su f f i ci e n t l y c o m p e l l i n g, p e r h a p s w e c a n i n f l u e n c e asp e c t s o f N ASA's exploration architecture to help some of our ambitious f uture science missions become more likely. W

FALL

2006


Astronomical Observatories on the Moon
Riccardo Giacconi

I

h a v e b e e n as ke d t o c o m m e n t b r i e f l y o n t h e p o t e n t i a l s i g n i f i c a n c e o f l u n a r e x p l o r a t i o n t o astronomy. Most of the arguments that I have had the oppor tunit y to read in f avor of lunar as t r o n o m i c a l o b s e r v a to r i e s a r e n o t b as e d o n s ci e n t i f i c r e q u i r e m e n t s t h a t c a n b e u n i q u e l y achieved on the Moon, but rather on arguments of convenience, continuit y, ser viceabilit y, and cost(!). It is asser ted that once a human habitat inf rastructure is available on the Moon, a s t r o n o m i c a l o b s e r v a t o r i e s c o u l d e a s i l y b e b r o u g h t t h e r e, o r e v e n b u i l t t h e r e, a t l o w c o s t . T h e si m i l a r i t y o f t h e s e a r g u m e n t s to t h o s e w e h e a r d i n t h e p as t c o n c e r n i n g t h e Sp a ce Shu t tl e a n d International Space Station ( ISS) is f rightening. I believe that to answer the question of utilization of a lunar base, one must consider the NASA program as a whole. Most people would agree that NASA has historically been given t wo tasks: m a n n e d ex p l o r a t i o n o f t h e S o l a r S y s t e m a n d s t u d y o f t h e u n i v e r s e b y s p a c e - b o r n e i ns t r u m e n t a t i o n . I t i s i n t e r e s t i n g t o n o t e t h a t N A S A h a s i n v e s t e d o n e -t h i r d o f i t s t o t a l b u d g e t i n r e s e a r c h -- m o r e t h a n t h e r e s t o f t h e w o r l d c o m b i n e d -- a n d h as a c h i e v e d i t s g r e a t e s t s u c c e s s e s i n p l a n e t a r y r o b o t i c exploration and in astronomy. T he opening up of new obser vational windows unimpeded by the a b s o r b i n g a n d s c a t t e r i n g e f f e c t s o f t h e a t m o sp h e r e h as c o n t r i b u t e d to s o m e o f t h e m o s t si g n i f i c a n t a d v a n c e s i n as t r o n o m y o f t h e l as t 5 0 y e a r s. T he other side of N ASA's mission -- of ex tending man's presence in the Solar System -- has not made signi f icant progress since the Moon landings of the Apollo program f rom 1969 to 1972. T h e Shu t tl e p r o g r a m a n d t h e I n te rn atio n al Sp a ce S tatio n h a v e f i n a l l y b e e n r e c o g n i ze d f o r t h e d e a d e n ds t h e y a r e. I n f a c t , t h e m a i n a c h i e v e m e n t o f t h e Shu t tl e p r o g r a m h as b e e n to s e r v i c e a n d upgrade the Hubble Space Telescope. W hile a wonder f ul contribution in itsel f, it is scarcely an a d v a n c e i n o u r a b i l i t y to g e t to M a r s a n d e s t a b l is h a h u m a n b as e t h e r e -- t h e i m p l i ci t o r ex p l i ci t g o a l of the manned space program. In f act, ver y lit tle has been lear ned in the Shut tle or ISS programs a b o u t t h e m a i n i s s u e s r e g a r d i n g a f l i g h t t o M a r s, s u c h a s d e v e l o p m e n t o f l a u n c h v e h i c l e s, p o t e n t i a l mission prof iles, and crew issues, such as long-ter m exposure to radiation and low gravit y. Si n c e M a r s is t h e m o s t p l a usi b l e p l a c e i n t h e S o l a r S y s t e m -- i t is r e a c h a b l e b y h u m a ns a n d o f f e r s i n s i t u r e s o u r c e s to s u p p o r t a p e r m a n e n t b as e -- i t s h o u l d b e t h e g o a l o f o u r ex p l o r a t i o n p r o g r a m f o r t h e f o r e s e e a b l e f u t u r e. T h e l i m i t e d r e s o u r c e s o f t h e N A S A m a n n e d p r o g r a m s h o u l d b e ex p e n d e d only on items that are programmatically required to achieve this goal. From this point of view, I see the lunar base as a new potential dead end -- essentially an ISS in a higher and stable orbit-- but n o t c o n t r i b u t i n g si g n i f i c a n t l y to a M a r s m is si o n . T h e a r g u m e n t o f p o s si b l e s ci e n t i f i c us e f u l n e s s to bolster its acceptance in Congress is as devoid of meaning as were the arguments for ISS. T h e e n t h u s i as m o f s c i e n t is t s t o t a ke a d v a n t a g e o f t h e " M o o n i n f r as t r u c t u r e" t o c a r r y o u t as t r o n o m i c a l o b s e r v a t i o ns s h o u l d b e m e as u r e d c o m p e t i t i v e l y a n d i n t e r ms o f r e a l c o s t s w i t h i n t h e s ci e n c e b u d g e t . I w o u l d b e d is m a y e d i f a l u n a r o b s e r v a to r y w e r e to h a v e h i g h p r i o r i t y i n t h e n ex t National Academy of Science's Decadal Astronomy Sur vey. W

2


Astronomy from the Moon?

T

Bernard F. Burke, MIT

h e d r i v e r s f o r t h e n e x t g e n e r a t i o n o f o p t i c a l i n s t r u m e n t s a r e c l e a r : m o r e c o l l e c t i n g a r e a, b r o a d s p e c t r u m c o v e r a g e, a n d h i g h e r a n g u l a r r e s o l u t i o n . T h e s c i e n t i f i c g o a l s a r e f u n d a m e n t a l , b u t t h e te ch n i c a l d e m a n ds a r e ch a l l e n g i n g. L a r g e te l e s c o p e s a r e a b s o l u te l y n e c e s s a r y to g a t h e r t h e t r i ck l e o f p h o to ns f r o m t h e e a r l i e s t c o n d e ns a t i o ns i n t h e yo u n g u n i v e r se a f te r t h e e r a o f t h e c o s m i c m i c r o w a v e b a c kg r o u n d . H u b b l e h a s d e m o n s t r a t e d t h e i m p o r t a n c e o f a n g u l a r r e s o l u t i o n f o r a v a s t r a n g e o f a s t r o n o m i c a l p r o b l e m s, f r o m t h e s t u d y o f h o w p l a n e t a r y s y s t e m s c o n d e n s e a n d e v o l v e t o t h e e v e n t u a l s t u d y o f E a r t h - l i ke e xo p l a n e t s . O n t h e g r o u n d, E u r o p e a n p l a n n i n g s t a r t e d with an instr ument 10 0 meters in diameter-- but it is now shrinking as realit y sets in. T he A merican p l a n n i n g t a r g e t , 3 0 m e t e r s , m a y w e l l b e r e v i s e d d o w n w a r d . S o o n t o b e i n s p a c e , t h e J a m e s We b b Space Telescope is at an advanced planning stage; at six meters in diameter, it is already proving t o b e a c h a l l e n g e . A s y e t , t h e r e a r e n o d e f i n i t i v e p l a n s f o r i m a g i n g i n t e r f e r o m e t e r a r r a y s i n s p a c e, largely because the technical challenges have been recognized. However, this is a direction that m u s t u l t i m a t e l y b e t a ke n . Planning for a new generation of telescopes should star t now, because the thrust toward greater i n s t r u m e n t a l c a p a b i l i t y b r i n g s w i t h i t a s e t o f p r o b l e m s t h a t m u s t b e f a c e d: p o s s i b l e f a i l u r e d u e to complexit y. In this light, a comprehensive comparison of the relative advantages of orbiting telescopes versus lunar-based instr uments would be wise. At present, the general at titude of the astronomical communit y toward instr uments on the Moon is "Hell, no, we won't go!" A h u m a n p r e s e n c e o n t h e M o o n m a y c h a n g e t h i s a t t i t u d e . I t i s n o t a t a l l c l e a r t h a t a l a r g e, c o m p l e x i n s t r u m e n t a t L 2 w i l l b e m o r e r e l i a b l e t h a n a h u m a n - s e r v i c e a b l e i n s t r u m e n t o n t h e l u n a r s u r f a c e, nor is it clear how much a suite of robots, operating with a three-second time delay, will add to the cos t , w h e n co mp are d to t h e h u m an in te r ac t io n o n t h e M o o n. Af ter a review of the literature available so far, I have to repor t that quantitative studies, which address lunar bases in a realistic, comparative way, have not yet been carried out. ESA sponsored a c o m p a r a t i v e s t u d y o f o p t i c a l i n t e r f e r o m e t e r s, b u t i t o n l y a d d r e s s e d a u t o m a t e d i n s t r u m e n t s . T h e c o n cl usi o n -- t h a t t h e M o o n p r e se n te d m a n y u n c e r t ai n t i e s w i t h o u t o f f e r i n g sig n i f i c a n t advantages-- was correct, in my view, but it did not specifically address the ef fect of human s e r v i c i n g . T h e A m e r i c a n s t u d i e s s o f a r h a v e m o s t l y b e e n P o w e r P o i n t p r o j e c t s -- a s t a r t , p e r h a p s, b u t t o o s p e c u l a t i v e t o b e a j u s t i f i c a t i o n . O n t h e o t h e r h a n d, t h e o b j e c t i o n s t o a l u n a r i n s t r u m e n t b y o r b i t a l enthusiasts have had much the same qualit y: the dreadful lunar dust (even though the retroreflectors continue to ser ve well af ter 30 years of exposure); the fear ful moonquakes (ignoring the seismic data that demonstrates that these pose no problem); and the insidious condensing volatiles (most unlikely to be a problem, given the tenuous exosphere of the Moon). T here have even been mut terings about lunar gravit y, even though that is more likely to be a help than a hindrance. T h e ex p e r i e n c e o f t h e as t r o n o m i c a l c o m m u n i t y w i t h t h e I n te rn atio n al Sp a ce S tatio n h as c e r t a i n l y s o u r e d t h e a t m o sp h e r e b e t w e e n s ci e n t is t s a n d t h e m a n n e d sp a c e f l i g h t p r o g r a m . I t d o e s n o t n e c e s s a r i l y f o l l o w t h a t t h e s a m e w i l l b e t r u e f o r t h e f u t u r e. T h e p o l i t i c a l r e a l i t y is t h a t t h e M o o n is o n c e m o r e a t a r g e t f o r ex p l o r a t i o n . T h e E x p l o r a t i o n M is si o n D i r e c to r a t e o f N A S A h as e s t a b l is h e d a L u n a r P r e c u r s o r a n d R o b o t i c s P r o g r a m ; t h i s p r i m a r i l y a d d r e s s e s t h e n e x t t e n y e a r s o r s o, p r e p a r i n g the way for a renewed human presence on the Moon. O ther nations are joining the lunar club: in addition to the European Space Agency, China, Japan, and probably India, all have mission planning under way. P lanetar y scientists are mak ing plans to take advantage of the new climate to resume the work on hiatus f rom 30 years ago. T he near-ter m prospects for astronomy lie with orbiting i n s t r u m e n t s, b u t t h i s i s t h e r i g h t t i m e t o c o n s i d e r w h a t m a y b e p o s s i b l e o n c e t h e h u m a n p r e s e n c e is r e e s t a b l is h e d o n t h e M o o n . W

3


Instrumentation and Astrophysics: How Did We Get to Be so Lucky?
Martin Harwit, Cornell University T h i s h a s b e e n a f a b u l o u s c o n f e r e n c e, s h o w i n g t h e e n o r m o u s i n f l u e n c e t h a t i n s t r u m e n t a t i o n i s having on the directions we are currently pursuing in astronomy. To see where the future might take us, I thought I might review how we got to be where we are now-- how we got to be so luck y. 1. A Golden Age

T

h e exci t i n g d is c o v e r i e s o f r e c e n t d e c a d e s h a v e c o m e a b o u t t h r o u g h a w e a l t h o f n e w techniques. As we built instruments of ever-greater acuit y, we stumbled upon a dazzling r ang e o f p h e n o m e n a t h a t reve al e d a Uni ve r se r ich b eyo n d any t hing w e co u l d h ave im agin e d. Gamma rays displayed the most violent outbursts witnessed in the Universe. X-rays led to the d is c o v e r y o f ex t r e m e l y h o t i o n i ze d g as e s p e r v a d i n g c l us t e r s o f g a l a x i e s. I n f r a r e d r a d i a t i o n s h o w e d t h e ex is t e n c e o f g a l a x i e s u n d e r g o i n g h u g e b u r s t s o f s t a r f o r m a t i o n, w h i l e r a d i o t e l e s c o p e s r e v e a l e d r a d i a t i o n e m i t t e d l o n g a g o, w h e n t h e U n i v e r s e w a s t h i r t y t h o u s a n d t i m e s y o u n g e r t h a n t o d a y (Har wit 1981). I n t h e s p i r i t o f t h e s e s u c c e s s e s, w e p r e s s o n , k n o w i n g t h a t w e m u s t c o n t i n u e t o p r o b e t h e U n i v e r s e i n as m a n y w a y s as w e c a n, t o w h a t e v e r d e p t h w e a r e a b l e. T h is is t h e s p i r i t o f t h is c o n f e r e n c e -- i t i s w h y w e a r e h e r e . I f w e k n e w m o r e a b o u t t h e U n i v e r s e, w e m i g h t t a k e a d i f f e r e n t , more targeted approach, guided to key truths by astrophysical theor y. But we know we cannot. Our t h e o r i s t s a r e s u p p o s e d t o b e o u r b o d y g u a r d s, p r o t e c t i n g u s a g a i n s t c o s m i c s u r p r i s e s . I n t h i s w e know they are failing. Instead of relying on them, we have opted, rather, for an increasingly heav y b a r r a g e o f i n s t r u m e n t a t i o n t o c o n q u e r t h e U n i v e r s e -- a m as s i v e s t r a i g h t f o r w a r d e x t r a p o l a t i o n o f t h e a p p r o a c h t h a t y i e l d e d s o m a n y g r e a t a d v a n c e s i n r e c e n t d e c a d e s . T h e q u e s t i o n i s, " W i l l t h i s a p p r o a c h succeed? " To answer this, we may look at the histor y of other straight for ward ex trapolations. 2. Jules Verne O ver the weekend of March 20, 1999, Ber trand Piccard and Brian Jones completed the f irst ci r cu m n a v i g a t i o n o f t h e E a r t h b y b a l l o o n . M o s t r e m a r k a b l e w as i t s p r e d i c t i o n a c e n t u r y a n d a quar ter earlier. In 1873, when Jules Ver ne w rote Around the World in Eight y Days, ballooning seemed the most obvious way for f lying around the world. Today the f light of the Breitling Orbiter-3 is considered more of a stunt. Af ter 190 3 and the f light of the Wright brothers, the air plane took over. Aeronautics under went a discontinuit y. P redictions about the balloon's technological f uture s u d d e n l y w e r e a l l w r o n g. T h e b a l l o o n h a d g i v e n w a y to t h e a i r p l a n e. W hen we went to the Moon, a f light that Jules Ver ne had predicted even earlier, in 1865, it involved another discontinuit y. Ver ne wanted to launch his spacecraf t with a cannon. T he actual f l i g h t r e q u i r e d r o c ke t s -- a n e n t i r e l y n e w t e c h n o l o g y w h i c h h a d t h e m e r i t s o f s u f f i c i e n t l y l o w g -f o r c e s t h a t as t r o n a u t s c o u l d s u r v i v e. T h e b a r r e l o f a c a n n o n to l a u n c h h u m a ns i n to sp a c e w i t h a n a c c e l e r a t i n g f o r c e a s l o w a s a t o l e r a b l e 2g w o u l d b e a s u r p r i s i n g t w o t h o u s a n d m i l e s l o n g -- p e r h a p s p o s s i b l e, b u t u n w i e l d y i n p r a c t i c e . T h e c a n n o n h a d g i v e n w a y t o t h e r o c k e t . T h e d e s i r e t o g o to t h e M o o n h a d s t a y e d t h e s a m e. G o i n g a h e a d j us t as a l w a y s i n t h e p as t is n o t i n v a r i a b l y t h e e asi e s t a p p r o a c h . W h a t is m o r e impor tant is keeping one's ultimate goals clearly in sight, and then taking the technological path of least resistance. Jules Ver ne had laid out the goals. We just followed a di f ferent path -- an i m p o r t a n t l e s s o n t o ke e p i n m i n d . S o m u c h f o r ex t r a p o l a t i o n . B u t t h e r e is a ls o a m a t t e r o f c o s t . 3. Cost W hen our colleagues in high-energy physics began constructing the Superconducting Supercollider, they were ex tending previously successful accelerator technology. By the time the project was stopped, a huge circular tunnel many miles long had been dug beneath a Texas landscape. Was this t h e i r e q u i v a l e n t o f a 2 0 0 0 - m i l e c a n n o n b a r r e l ? I h a v e t h e g r e a t e s t r e s p e c t f o r t h e s e p h y s i c i s t s . We n e e d to h e e d t h e i r p l i g h t to a v o i d t h e i r f a t e. T he natural question for us becomes, "How much f ur ther can present trends in astronomy, and their projections now before the cur rent U.S. "Decadal Review," be continued into the f uture before w e , t o o, a r e t u r n e d b a c k ? " Continued A s t r o n o m i c a l m is si o ns t h a t c o s t m o r e t h a n t w o b i l l i o n d o l l a r s a r e b e y o n d page the limits of even inter national collaborations. Yet some of the more ambitious




AC S Status

T

Ken Sembach, sembach@stsci.edu

h e A d v a n c e d C a m e r a f o r S u r v e y s ( A C S) i s o p e r a t i n g n o r m a l l y a f t e r a b r i e f h i a t u s d u e t o a f ailure in an electronics box this summer. ACS activities were suspended on June 19, 2 0 0 6, a n d r e s u m e d u s i n g b a c k u p e l e c t r o n i c s o n J u l y 2 . A n a n o m a l y r e v i e w b o a r d w a s e s t a b l is h e d t o d e t e r m i n e t h e c a u s e o f t h e p r o b l e m . T h e b o a r d f o u n d t h a t t h e m o s t l i ke l y cu l p r i t w as a c o m p o n e n t o n a ci r cu i t b o a r d i n o n e o f t h e l o w - v o l t ag e p o w e r s u p p l i e s t h a t power the ACS's CCD detectors. Af ter the switchover t o t h e b a c k u p e l e c t r o n i c s, t h e A C S i s f u l l y f u n c t i o n a l, o p e r a t i n g as ex p e c t e d, a n d s t i l l d e l i v e r i n g t h e s u p e r b i m ag e q u al i t y ex p e c te d by t h e s ci e n c e c o m m u n i t y a n d g e n e r a l p u b l i c. I m a g e s t a ke n i m m e d i a t e l y a f t e r r e s u m p t i o n o f s c i e n c e a c t i v i t i e s c o n f i r m t h a t t h e A C S is o p e r a t i n g as e x p e c t e d a n d se n d i n g b a ck d e t ai l e d i m ag e s o f o bj e c t s i n b o t h t h e April 24, 2006 distant and nearby universe. (See Figs. 1 & 2.) As par t of the reactivation of ACS, the temperature setpoint of the W ide Field Channel ( W FC) CCD was lowered from ­77° C to ­ 81° C. This change reduced the number of hot pixels and the dark current in the W FC images, i m p r ov i n g i m ag e q u a l i t y a n d t h e d e te c t a b i l i t y o f f a i n t o b j e c t s . T h e A C S t e a m is c o n d u c t i n g c a l i b r a t i o n s t o f u l l y July 5, 2006 characterize the instrument in its new state, and is updating Figure 1: Supernova images from April and July 2006, illustrating the ACS t h e A C S d a t a p i p e l i n e as t h e a n a l y s e s a r e c o m p l e t e d . is fully restored and operating normally. Hubble periodically revisits about 20 Obser vers should consult the ACS website (h t tp: // distant galaxy clusters on a cosmic "fishing trip" to find Type Ia supernovae w w w.stsci.edu / hs t /acs / ) for the most recent infor(Perlmutter: GO­10496). Left: a rich galaxy field containing a cluster of galaxies m a t i o n o n i n s t r u m e n t p e r f o r m a n c e, i n c l u d i n g i n s t r u m e n t 9 billion light-years away (redshift z = 1.4). In April 2006, no supernova is science repor ts (ISRs) that describe the calibration results evident in the field. Lower right: In July 2006, ACS images a supernova in a in detail. Recent ISRs include (1) new infor mation about field galaxy 1 billion light-years closer (z = 1.2) than the cluster. r e l a t i v e a s t r o m e t r y w i t h i n A C S v i s i t s , ( 2) p o l i c i e s a n d pro ce du res f or t ar g e t s su bje c t to u n p r e d i c t a b l e o u t b u r s t s w h e n usi n g t h e M u l t i - A n o d e M i cr o ch a n n e l A r r ay detectors, (3) wavelength and f lu x calibrations of the PR130L and PR200L prisms, and (4) ef fective point-spread functions for W FC photometr y. We are pleased to announce the availability of a new web-based ACS b u l l e t i n b o a r d, w h i c h w e h o p e w i l l m a ke i t e asi e r f o r o b s e r v e r s to sh are and f ind in f or m a t ion abou t c o ns t r u c t i n g A C S o b se r v a t i o ns a n d an al y zing AC S da t a. T he bulle t in bo ard c an b e accessed f rom t he A C S w e b s i t e. W

Uranus and Ariel

Figure 2: A July 2006 ACS image of a moon of Uranus traversing the face of the planet accompanied by its shadow. The white dot is the icy moon Ariel, which is 700 miles in diameter. The moon is casting a shadow onto the cloud tops of Uranus (black dot). Such transits are rare for Uranus because its spin axis and the poles of the orbits of its moons lie nearly in the planetary orbital plane. As a result, the necessary configuration for transits--satellite orbits aligned edge-on to the Sun--occurs only every 42 years.




Update on STIS Data Enhancement Program

A

Paul Goudfrooij, goudfroo@stsci.edu

f ter the Space Telescope Imaging Spectrograph (S T IS) became inoperative in August 20 0 4, the Institute's S T IS team established a " data enhancement program," which was endorsed by the Space Telescope Users Commit tee and the Hubble project at N ASA's Goddard Space Flight Center. T he focus of the program is to f inalize the calibrations and d o c u m e n t a t i o n a n d e n s u r e t h a t t h e a r c h i v e o f e x is t i n g S T I S d a t a is s u i t a b l e f o r h i g h - l e v e l, h i g h a c cu r a c y s ci e n c e. A d e t a i l e d d e s cr i p t i o n o f t h e p r o g r a m is a v a i l a b l e t h r o u g h t h e S T IS i ns t r u m e n t website at h t tp: // w w w.s t sci.edu / hs t /s tis under "S T IS Closeout C alibration." T he S T IS team a n d t h e A r ch i v e B r a n ch a t t h e I ns t i t u te w i l l also e n h a n c e t h e r e t r i e v al o f S T IS d a t a f r o m t h e Hu bble ar chi ve a f te r t h e S T IS d a t a h ave b e e n f u ll y re c alibr a te d an d s tore d. M o s t c a l i b r a t i o n asp e c t s o f t h e d a t a e n h a n c e m e n t p r o g r a m a r e f i n a l i ze d a n d i m p l e m e n t e d i n t h e o n - t h e - f l y - r e c a l i b r a t i o n (O T F R ) p i p e l i n e . O b s e r v e r s i n t e r e s t e d i n t h e d e t a i l s o f a p a r t i c u l a r c a l i b r a t i o n s h o u l d c o n s u l t t h e S T I S w e b s i t e f o r t h e m o s t u p -t o - d a t e i n f o r m a t i o n , i n c l u d i n g i n s t r u m e n t s c i e n c e repor ts (ISRs) and other items in the document archive, such as Space Telescope A nalysis Newslet ters (S TA Ns). T he following is a summar y of recent calibration updates, with references.
(a) 104

Fractional Charge Loss at Row 512

(b) Solution w/o Halo term 0.3

(d) Solution with Halo term

Electrons Per Column in 7­pixel Extraction

0.2

104

0.1

(c)

(e)

104 GD 71 GD 71 LDS 749B G191­B2B AGK+81D266 WD1657+343 GD 71 2000 4000 6000 8000 Wavelength (Angstroms) 10
4

CTE / Model Ratio

1.05

1

0.95 Solution w/o Halo term 10
1

10

4

Solution with Halo term
4

102 103 104 101 102 103 10 Electrons in 7­pixel extraction Electrons in 7­pixel extraction

Figure 1: The impact of the new CTE correction algorithm for STIS CCD spectra. Panel (a): Smoothed flux standard star spectra used to determine the functional form of the CTE loss of the STIS CCD in spectroscopic mode. The legend links the symbols with the standard stars used. Panel (b): Fractional charge loss at the central row of the CCD versus extracted signal level. Symbols as in panel (a). The smooth curves represent the predictions of the previous CTE model for those data. Panel (c): The ratio of measured CTE values and the model predictions shown in panel (b) versus signal level. Panel (d): Same as panel (b), but now using the new CTE model. Note the much better fit to the green and dark blue symbols (i.e., the data beyond 7500 å). Panel (e): Same as panel (c), but now using the new CTE model. For reference, the dashed lines represent the uncertainty due to Poisson noise associated with the binned spectra shown in panel (a) as a function of signal level, while the dotted lines represent the Poisson error associated with a resolution element of unbinned spectra.

6

· A revision of the correction for imper fect charge transfer ef ficiency (CT E) for spectroscopic CCD data, including treatment of the ef fect of the ex tended point-spread function in the r e d p a r t o f t h e sp e c t r u m. N o te t h a t t h e a m p l i t u d e o f C T E l o s s c a n b e q u i te sig n i f i c a n t f o r ST IS CCD spectra of faint sources: losses of 10 ­25% are not uncommon, especially during the l as t f e w y e a r s o f S T I S o p e r a t i o n s . T h e n e w C T E a l g o r i t h m c a l i b r a t e s t h e S T I S f l u x w i t h a precision within about 1.5% over the f ull wavelength range covered by the spectroscopic C C D m o d e s. T h is m e a ns t h a t t h e f l u x p r e cisi o n o f c a l i b r a t e d S T IS C C D sp e c t r a is n o w limited by Poisson noise, not by CTE loss (ISR 2006-01 and ISR 2006 - 0 3). T he impact of the new C T E algorithm is illustrated in F igure 1.


· A signi f ic an t l y improved f lu x c alibr a t ion f or t he S T IS objec ti ve prism mode (ISR 20 05 - 01). ·A co co wi c alibr ation of waveleng th - dependen r rections for the f irst- order, low-resolu t upled device (CCD) spectroscopic modes, th slits less than t wo arcsec wide (S TA N 2 t aper ture ion ch arge w h e n use d 005 -12).

11

10

Flux (10-12 ergs cm-2 s-1 å-1)

9

· A f ull revision of the f lu x calibration for the f irst-order, medium-resolution spectroscopic modes (ISR 2006 - 0 4). · A deter mination of the spectroscopic point-spread f unction across the spectrograph slit for the f irst-order CCD modes (ISR 20 0 6 - 02). · A f i n al r e v isio n o f t h e w ave l e ng t h - d e p e n d e n t t i m e d e p e n d e n c e o f t h e s e n s i t i v i t i e s o f t h e f i r s t- o r d e r spectroscopic modes and the imaging modes (STAN 2006-10). · A v e r i f i c a t i o n o f t h e q u a l i t y o f t h e d isp e r si o n s o l u t i o ns f o r the f irst- order spectroscopic modes that use the CCD or the far ultraviolet Multi-Anode Multichannel Array detectors.

8

7

6 2000

2050

2100 Wavelength (å)

2150

2200

· N e w a n d c o m p r e h e n s i v e f l u x c a l i b r a t i o n s f o r t h e e ch e ll e m o d e s o f S T I S. T h i s i n c l u d e s u p d a t e s f o r w a v e l e n g t h d e p e n d e n t a p e r t u r e c o r r e c t i o n s, w a v e l e n g t h - d e p e n d e n t time dependence o f the sensi ti v i t y, order- dependent s p e c t r u m e x t r a c t i o n l o c a t i o n s, a c o r r e c t i o n f o r o f f s e t s o f t h e m o d e - s e l e c t m e c h a n is m a n d e c h e l l e g r a t i n g , a n d their associated blaze shif ts. (STAN 2006-10). The significant i m p r o v e m e n t o f t h e n e w e c h e l l e f l u x c a l i b r a t i o n is i l l u s t r a t e d i n F i g u r e 2.

Figure 2: Illustration of the significant improvement allowed by the new Echelle flux calibration. The figure shows a spectrum of a flux standard star observed in May 2004 using the E230M grating at central wavelength 1978 å. The spectrum calibrated with the old blaze shift correction is shown in green. Note the ~10% flux offset between adjacent orders. The spectrum calibrated with the new blaze correction is shown in red, which reduces this error to less than about 1%. For reference, the spectrum of this star was taken with the Faint Object Spectrograph and is shown in black.

· A major update to the trace table reference f iles for all three detectors within S T IS. ( Trace tables describe the shape of the projection of point-source spectra onto the detector.) T he n e w t r a c e t a b l e s i n c l u d e a c o r r e c t i o n f o r a r e c e n t l y d is c o v e r e d s l o w r o t a t i o n o f t h e t r a c e s with on- orbit time (S TA N 20 0 6 -10). · N e w so f t w a r e t h a t i n c o r p o r a te s a n i m p r ov e d i n te r p o l a t i o n al g o r i t h m f o r t h e ex t r a c t i o n o f o n e - d i m e nsi o n al sp e c t r a f r o m sp a t i al l y r e so l v e d t w o - d i m e nsi o n al d a t a. T h e n e w a l g o r i t h m is b as e d o n w a v e l e t i n t e r p o l a t i o n, a n d c a n si g n i f i c a n t l y r e d u c e t h e a m p l i t u d e o f the "scallop -like" features that arise in ex tractions of spectra with a spatial coverage of o n l y a f e w C C D p i xe ls a l o n g t h e s p e c t r o g r a p h s l i t , f o r g r a t i n g m o d e s i n w h i c h t h e t r a c e is tilted signi f icantly relative to the CCD pixel ar ray (S TA N 2006 -10). · N e w so f t w a r e to c o r r e c t r e l e v a n t c o l u m ns i n p h o to m e t r y t a b l e s d e r i v e d f r o m S T IS C C D imaging obser vations for the time - dependent ef fect of imper fect C T E (S TA N 2006 -10). · A n e w s e t o f as s o ci a t i o n r u l e s f o r S T IS sp e c t r a l d a t a t h a t d i d n o t h a v e a u to m a t i c w a v e l e n g t h c a l i b r a t i o n s m a d e d u r i n g t h e o b s e r v a t i o n s . A s m a l l s u b s e t o f S T I S d a t a w as t a ke n i n t h is m o d e, w h e r e p r i n c i p a l i n v e s t i g a t o r s w e r e a l l o w e d b y t h e S T I S t e a m t o i n s e r t t h e i r o w n waveleng th calibration exposures in their P hase I I proposal. Up to now, these so - called " G O w a v e c a l s" w e r e n o t a u t o m a t i c a l l y a s s o c i a t e d w i t h t h e c o r r e s p o n d i n g s c i e n c e d a t a s e t s d u r i n g a r c h i v e r e t r i e v a l s . T h e s e n e w as s o c i a t i o n s h a v e n o w b e e n d e f i n e d a n d w i l l b e m a d e available in OT FR data over the nex t few months (STAN 2006-10). · A n e w s e t o f as s o c i a t i o n r u l e s f o r S T I S d a t a t a ke n i n t h e G 7 5 0 L a n d G 7 5 0 M s p e c t r a l m o d e s . Since these modes exhibit signif icant f ringing (see ISR 1998-19), principal investigators were urged to inser t so-called " f ringe flat" exposures in their Phase II proposals. Up to now, t h e s e e x p o s u r e s w e r e n o t a u t o m a t i c a l l y a s s o c i a t e d w i t h t h e c o r r e s p o n d i n g s c i e n c e d a t as e t s during archive retrievals. T his association has now been enabled (S TA N 2006 -10). T h e S T IS te a m a n d t h e A r ch i v e B r a n ch a t t h e I ns t i t u te h av e s t a r te d a c o m p r e h e nsi v e e f f o r t to r e c a l i b r a t e a l l S T I S d a t a i n t h e H u b b l e a r c h i v e, u s i n g a l l c a l i b r a t i o n i m p r o v e m e n t s i m p l e m e n t e d w i t h i n t h e S T I S d a t a - e n h a n c e m e n t p r o g r a m . W h e n c o m p l e t e, t h e f i n a l s e t o f c a l i b r a t e d S T I S d a t a w i l l b e s t o r e d i n t h e H u b b l e a r c h i v e. T h e p r e s e n c e o f a f i xe d a r c h i v e o f c a l i b r a t e d S T I S d a t a w i l l h a v e s e v e r a l b e n e f i t s r e l a t i v e f o r t h e O T F R p i p e l i n e . F o r e x a m p l e, f u l l y c a l i b r a t e d S T I S d a t a w i l l b e a v a i l a b l e f o r p r e v i e w p u r p o s e s . M ore d a t a - re t r iev al pro cessing p ow e r w ill b e av ail ab l e f or O T F R re q u es t s o f t h e cu r re n t l y ac t i ve Hu bble i ns t r u m e n t s. F o r a n s w e r s t o a n y q u e s t i o n s r e g a r d i n g S T I S, p l e a s e s e n d e m a i l t o t h e I n s t i t u t e h e l p d e s k a t help@stsci.edu. W




Webb Status
Peter Stockman, stockman@stsci.edu i n c e N A S A r e v i s e d t h e p r o j e c t p l a n a y e a r a g o , We b b h a s r e m a i n e d o n s c h e d u l e f o r a l a u n c h in June 2013. A xsys Technologies has machined most of the 18 primar y mir ror blanks and sent them to T i ns l e y L a b o r a to r i e s f o r p o l is h i n g -- t h e l as t s t ag e i n t h e p r o d u c t i o n c y c l e. T h e p o l is h i n g p r o c e s s is slow, even with parallel lines operating at T insley, and includes cr yogenic tests to ensure that the proper f igure is reached at operating temperature. Polishing and testing all 21 blanks, including 3 s p a r e s, w i l l t a ke f o u r y e a r s . The scientific instrument teams are completing their critical design reviews. They have begun building engineering models for preliminar y tests, and ordering par ts with long lead times for the flight instruments, which will be delivered to NASA in 2009. N A S A is v e r i f y i n g t h e p e r f o r m a n c e o f t h e n e w technologies for Webb under flight-like conditions. Af ter enduring the strong acceleration, harsh vibrations, and acoustics of launch, followed by continuous e x p o s u r e t o r a d i a t i o n , c r y o g e n i c t e m p e r a t u r e s, a n d vacuum, Webb 's components and systems will have to f u n c t i o n p r o p e r l y f o r te n y e a r s. T h e su nsh i e l d material and detector technologies (HgCd Te, Si: As) were veri f ied in spring 2006. O ver the summer, t h e p r i m a r y m i r r o r s e g m e n t s p as s e d f i n a l t e s t i n g, sh o w i n g n o p e r m a n e n t d e f o r m a t i o ns a f te r ex p o su r e t o r e a l i s t i c v i b r a t i o n s a n d a c o u s t i c s, w h i l e m o u n t e d in a f light-like structure. T he electronics for the near-inf rared detectors (HgCd Te) also passed. T he programmable Multi-Slit A r ray (MSA) for the neari n f r a r e d sp e c t r o g r a p h p as s e d a l l exc e p t t h e a c o us t i c Figure 1: Prototype, three-segment portion of the Webb primary mirror backplane prior t e s t s, d u r i n g w h i c h 5 % o f t h e s l i t s j a m m e d . A c o u s t i c to cryogenic testing at the X-ray Calibration Facility at Marshall Space Flight Center. reso n an ces in t h e m e mbr an e t h a t su p p or t s t h e sli t s Each hexagon is approximately 1.2 m flat-to-flat. a r e t h e p r o b a b l e c a us e. T h e d e v e l o p m e n t t e a m is p u r su i n g t w o p o s si b l e so l u t i o ns -- a f i n e r su p p o r t s t r u c t u r e f o r t h e m e m b r a n e a n d a d d i t i o n a l s u p p o r t o n l y d u r i n g l a u n c h -- a n d w i l l t e s t t h e s e f i xe s i n f a l l 2 0 0 6. In August 20 0 6, Nor throp Grumman Space Technology began to test the cr yogenic stabilit y of a 1/ 6 th por tion of the back plane for the Webb primar y mir ror (F ig. 1). T he goal of this testing is c o n f i d e n c e i n t h e d e si g n a n d m a n u f a c t u r a b i l i t y o f t h e f u l l - s c a l e b a ck p l a n e a n d t h e s t r u c t u r e to suppor t the instr uments. T he testing location is the X-ray C alibration Facilit y at Marshall Space Flight Center, which has been modi f ied to provide temperatures below 30 K. In the initial phase, t h e t e s t a r t i c l e w a s r e p e a t e d l y c y c l e d b e t w e e n r o o m t e m p e r a t u r e, a h o l d i n g t e m p e r a t u r e o f 5 0 K , and the operating temperature of 30 K. T he ef fect on piston distor tion was monitored continuously, using a novel inter ferometer invented by B abak Sai f at the Institute and 4 -D Technology Cor poration in Tucson, A Z. T he inter ferometer is sensitive to distor tions at the 5 ­10 nm level, with a bandwidth of 5 Hz. P reliminar y analysis of the 14 T B of data accumulated in this testing indicates that t h e b ack p l an e s amp l e su ccess f u ll y m e e t s t h e s t ab ili t y cr i te r i a ag re e d u p o n by N A S A an d t h e indep enden t op t ics rev iew te am. Three other technologies must pass their verification tests by the end of 2006, with results to be reported at the non-advocate review of the Webb project in January 2007. Those technologies are cryogenic heat switches, wavefront sensing and control, and the cryocooler for the mid-infrared instrument. W hen all these veri f ication tests are completed satis f actorily, the project will have show n that t h e m a j o r t e c h n o l o g i e s a r e i n h a n d f o r t h e We b b m i s s i o n . W

S




Instruments and Astrophysics from page 4

e n t e r p r is e s w e n o w h a v e i n m i n d w i l l h i t t h is b a r r i e r i f w e ex p e c t to l a u n c h t h e m i n t h e f o r e s e e a b l e f u t u r e. T h e m a i n d o w n f a l l o f t h e S u p e r c o n d u c t i n g S u p e r c o l l i d e r w as i t s c o s t . Many among us still remember L DR, the L arge Deployable Ref lector for submillimeter astronomy, p r o p o s e d a c o u p l e o f d e c a d e s a g o f o r l a u n c h i n t o s p a c e. We s t i l l h a v e n o t b u i l t i t , a n d i f w e d i d, today, it would cer tainly still break the bank. It too was too costly for its time, with its 10 - to 30 -meter aper ture, depending on who was talking, and its demanding technology. Our aims in submillimeter astronomy, however, have not been stopped by this setback. Our goals are still f ir mly i n p l a c e. S u b m i l l i m e t e r as t r o n o m y is h e a l t h y a n d g o i n g f o r w a r d . 4. The Rise in Data Rates A f u r t h e r c h a l l e n g e t o d a y i s t h e e n o r m o u s r i s e i n d a t a r a t e s . We ke e p b u i l d i n g i n c r e a s i n g l y l a r g e d e t e c t o r a r r a y s, w i t h h i g h e r s e n s i t i v i t i e s, d y n a m i c r a n g e s, a n d s p e c t r a l, s p a t i a l, a n d t i m e r e s o l u t i o n . M a n y sp a c e m is si o ns n o w o n t h e d r a w i n g b o a r ds c o u l d i d e a l l y us e g i g a b y t e p e r s e c o n d transmission rates. But our telemetr y systems are a thousand times slower. T his is a real wor r y. We s p e a k w i t h c o n f i d e n c e o f c o m p r e s s i n g d a t a t o r e d u c e t h e t r a n s m i s s i o n p r o b l e m . O n c u r r e n t l y p l a n n e d m i s s i o n s, t h e p r o j e c t e d d a t a g a t h e r i n g r a t e s a l r e a d y e x c e e d t h e t r a n s m i s s i o n r a t e b y o n e o r t w o o r d e r s o f m a g n i t u d e. F i r s t w e b u i l d a n i n s t r u m e n t t o c o l l e c t h u g e a m o u n t s o f d a t a, t h e n w e throw most of it away. W here obser vations are mar red by varieties of cosmic-ray glitches or other u n p r e d i c t a b l e s o u r c e s o f n o i s e, d a t a c o m p r e s s i o n i s l i k e l y t o b e w a s t e f u l . We speak with similar conf idence about laser-based telemetr y. But these systems do not yet exist, and I k now of no astronomer who has proposed building a large light collector-- a laser r e c e i v i n g s t a t i o n -- a t a n i d e al cl o u d l e s s si te o p t i m i ze d so l e l y to r e c e i v e t h e to r r e n t o f d a t a w e ex p e c t s o o n to b e r e a ch i n g us f r o m a n a r m a d a o f sp a c e cr a f t a t t h e s e c o n d L ag r a n g i a n p o i n t , L 2. I f w e a r e s e r i o u s a b o u t g a t h e r i n g m a s s i v e d a t a s t r e a m s i n s p a c e, w e w i l l n e e d f a r h i g h e r c a p a c i t y t r a ns m is si o n s y s t e ms. A l as e r t r a ns m i t t e r a t L 2 w o u l d r e q u i r e a o n e - m e t e r d is h -- w h i c h is n o t much, but it would also need 0.1 arcsecond pointing stabilit y so its beam would not wander too f ar around the receiving station on the ground. Ideally, three such receiving stations would need to be d e p l oy e d a r o u n d t h e g l o b e f o r c o n t i n u o us d a t a r e c e p t i o n. M o s t as t r o n o m e r s as su m e t h a t a l l su c h p r o b l e ms w i l l s o o n b e o v e r c o m e. I a m n o t s o c o n f i d e n t . To see why, we need to look at the origins of our past successes -- just how we got to be so l u c k y -- s o w e m i g h t o n c e a g a i n t a ke a p a t h o f l e as t r e s is t a n c e as w e m o v e a h e a d . 5. Brief Recapitulation of the History of Radio Astronomy L e t us b e g i n b y r e c o l l e c t i n g h o w s o m e o f o u r p r i m e a d v a n c e s a n d d is c o v e r i e s c a m e a b o u t : Radar was one of the most power ful weapons systems developed during World War II. Invented just before the onset of hostilities and fur ther developed throughout the conflict, radar enabled British and German intelligence to see the approach of enemy aircraf t long before they had crossed the English Channel. Fighter planes could be scrambled in time, and the approaching airplanes shot down. On t wo successive mor nings in the winter of 19 42, an aler t shook up defense forces all over England. Years later, James Stanley Hey, in charge of trouble shooting the British war time radar net work , repor ted on this incident in a 19 4 6 let ter to the jour nal Nature. He w rote (Hey 19 4 6): "It is now possible to disclose that, on one occasion during the War, A r my equipments obser ved solar radiation of the order of [a hundred thousand] times the power expected f rom the Sun...this abnor mally high intensit y...occur red on Februar y 27 and 28, 19 42...the main evidence that the disturbance was...of solar origin was obtained by the bearings and elevations measured independently by the [radar] receiving sets, sited in widely separate par ts of Great Britain...[Hull, Bristol, Southampton, Yar mouth]..." Unknown to the British, the obser vator y at Meudon had detected strong solar flares at the time, and it soon became evident that solar radio emission was enhanced during periods of solar activit y. Shor tly af ter the War, Hey and his coworkers also discovered that the galax y now catalogued as C yg n us A e m i t s a n e n o r m o us r ad i o f l u x . Right af ter the War, also, Mar tin Ryle gathered discarded British militar y radar equipment to set up a radio astronomy research group at Cambridge; Bernard Lovell did the same at Manchester; and Jan O o r t u s e d f o r m e r G e r m a n r a d a r e q u i p m e n t t o s t a r t a r a d i o as t r o n o m y p r o g r a m i n T h e N e t h e r l a n d s . Thus was radio astronomy born. The next twenty-five years would revolutionize astrophysics with discoveries of quasars, cosmic masers, pulsars, superluminal sources, and the microwave background. 6. The Age of the Rockets Let me tur n to a di f ferent stor y. O ver a period of a dozen years star ting in the early 1930s, Wer nher von Braun and a huge ar my of technical exper ts had painstak ingly lear ned how to build the power f ul militar y V-2 rockets with which Hitler hoped to win the War. In 19 4 5, the U.S. militar y captured
Continued page 10




Instruments and Astrophysics from page

many of these rockets and brought them home for testing. Onboard the test f lights, Richard Tousey and Herber t Friedman of the U.S. Naval Research L aborator y placed the f irst ultraviolet and X-ray se nso r s to c o n d u c t o b se r v a t i o ns o f t h e Su n. T he V-2s became the basis for A merica's post-war rocket- astronomical discoveries and also the foundation on which an entire U.S. rocket industr y would arise. T h e S ov i e t Un i o n h ad si m i l a r l y g a t h e r e d t h e i r o w n G e r m a n ex p e r t s a n d h ad also b e g u n to d e v e l o p a power f ul rocket industr y. W ith the launch of Sputnik in 1957, they exhibited an impressive abilit y t o a c c u r a t e l y p l a c e s a t e l l i t e s i n t o E a r t h o r b i t , a n d s h o w e d t h a t t h e i r r o c ke t s c o u l d n o w r e a c h a n y p l a c e o n E a r t h w i t h g r e a t p r e cisi o n a n d p r e s u m a b l y w i t h si g n i f i c a n t n u c l e a r w a r h e a ds. T h e h i g h g r o u n d o f sp a c e g av e t h e m t h e u l t i m a te m e a ns o f su r v e i l l a n c e a n y w h e r e o n E a r t h. To counter this advance, the United States created a crash program to develop both more power ful rockets and exquisitely incisive sur veillance techniques. The Space Race of the 1960s had begun! 7. The Military as Pioneering Astronomers T his race, though in the public's mind a contest to reach the Moon f irst, was f ar more a scramble to gain militar y ascendancy. Perhaps the most phenomenal discover y this brought about came in 1968. So secret was the f inding that it remained classi f ied till 1973. You may recall the Atmospheric Test B an Treat y, signed in the Kennedy ­ K hrushchev era, which h ad f in all y b an n e d t h e tes t ing o f n u cl e ar b o mbs ab ove g ro u n d to e limin a te t h e r adio ac t i ve f all o u t t h e y cr e a t e d . T h e p r o b l e m t h e t r e a t y p o s e d w as t h a t a n a n t ag o n is t c o u l d l e a r n a g r e a t d e a l a b o u t t h e y i e l d o f a w e a p o n t e s t e d u n d e r g r o u n d b y s e nsi n g t h e s e is m i c w a v e s i t g e n e r a t e d . T h e U n i te d S t a te s w o r r i e d t h a t t h e S o v i e t U n i o n m i g h t s t r i v e to s e e k g r e a te r s e cr e c y by ex p l o d i n g their test devices not underground, but sur reptitiously, at great distances out in space. To detect such bursts, the U.S. designed the " Vela" project. It involved several gamma-ray sensing satellites i n E a r t h - o r b i t , s t a t i o n e d s o a t l e as t o n e s a t e l l i t e w o u l d a l w a y s b e p o si t i o n e d to d e t e c t a n u c l e a r ex p l o si o n a n y w h e r e i n sp a c e. T he f irst gamma-ray burst the Vela satellites detected must have been a tremendous shock to the militar y. A nd then others followed, one ever y few months. Once the militar y realized that these b u r s t s w e r e n o t d u e t o S o v i e t n u c l e a r b o m b s, b u t t o u n i m a g i n a b l y v a s t e r e x p l o s i o n s s o m e w h e r e o u t i n s p a c e, t h e y d e c l a s s i f i e d t h e m a n d p u b l i s h e d t h e i r f i n d i n g s i n t h e A s t r o p h y s i c a l J o u r n a l Le t t e r s (Klebesadel et al. 1973). T he news stunned the astronomical communit y. It has taken us t went y-five y e a r s to d e ci d e t h e b u r s t s a r e ex t r ag a l a c t i c a n d t h e i r p o w e r is s t ag g e r i n g. 8. Theorists Play the Same Game Astronomical obser vers were not alone in working with militar y suppor t. Throughout World War II and the Cold War, theorists were heavily involved ( T hor ne 199 4). P h y si cis t s a n d as t r o p h y si cis t s w h o h a v e s t r a d d l e d t h e f e n c e b e t w e e n a c a d e m i c a n d m i l i t a r y work read like a W ho's W ho of theorists: J. Rober t Oppenheimer in 1939 had done seminal work on n e u t r o n s t a r s a n d b l a ck h o l e s. H a ns B e t h e t h a t s a m e y e a r ex p l ai n e d h o w s t a r s sh i n e by c o n v e r t i n g hydrogen into helium. Edward Teller similarly had made impor tant contributions to astrophysics before the War. John A rchibald W heeler pioneered the study of black holes. A ll were major f igures on the A merican nuclear bomb projects. In Nazi Ger many, the young astrophysicist C arl Friedrich v o n We i z s Ä c ke r h a d w o r ke d t o w a r d a G e r m a n a t o m i c b o m b u n d e r We r n e r H e i s e n b e r g . I n t h e Soviet Union, Yakov Borisovich Zel ' dovich, perhaps the most proli f ic theoretical astrophysicist of the post-war era, was deeply involved in the design of Soviet nuclear bombs. A nd the f ather of the Soviet hydrogen bomb, A ndrei Dmitrievich Sak harov, who later became celebrated for his ef for ts at establishing world peace, also made f undamental contributions to cosmology. Accompanying t h e s e g i a n t s c a m e a n a r m y o f l e s s w e l l - k n o w n t h e o r is t s w h o w o r ke d o n i n f l a t i o n, g a m m a - r a y bursts, super novae, and other outbursts of interest to astronomers -- and to the militar y, which, in the classi f ied sphere, f unded a good f raction of the basic theor y, as well as experiments to d e t e r m i n e c r o s s - s e c t i o n s n e e d e d t o c a l c u l a t e s t e l l a r o p a c i t i e s a n d n u c l e a r r e a c t i o n r a t e s i n s t a r s, n e e d e d i n ci d e n t al l y also f o r d e sig n i n g n u cl e a r w e a p o ns. 9. The Inconspicuous Military Influence T he militar y 's ef for ts, however, have not always been this obvious, and most of us tend to r e m a i n u n a w a r e o f t h e t r u e ex t e n t to w h i c h t h e y p e r v a d e v i r t u a l l y a l l asp e c t s o f o u r w o r k . Europeans, in par ticular, tend to be under the impression that militar y inf luences are largely an A merican phenomenon. But the Infrared Space Obser vator y, the most success f ul inf rared astronomical mission of the decade, launched by the European Space Agency in 1995, is a clear c o u n t e r e x a m p l e . T h e i n f r a r e d c a m e r a o n b o a r d , c o n s t r u c t e d p r i m a r i l y i n F r a n c e, h a d a d e t e c t o r a r r a y e sp e ci a l l y c o ns t r u c t e d f o r t h e m is si o n b y t h e F r e n c h d e f e ns e e s t a b l is h m e n t . T h e Sh o r t Waveleng th Spectrometer, built primarily in T he Netherlands, incor porated previously classi f ied inf rared detectors provided through the ef for ts of a co -investigator at the U.S. A ir Force. Yet most

10


o f t h e m a n y h u n d r e ds o f as t r o n o m e r s w h o h a v e c a r r i e d o u t o b s e r v a t i o ns w i t h t h e s e i ns t r u m e n t s r e m a i n u n a w a r e o f t h o s e c o n t r i b u t i o n s, a n d w o u l d h e a t e d l y d e n y t h a t t h i s s p a c e m i s s i o n h a d a n y militar y ties. SIRTF, of course, will have vastly greater sensitivit y than ISO and incomparably larger d e te c tor ar r ays -- all mili t ar y h an d - m e - d ow n d ev ices. 10. Ground-Based Optical Astronomy O u r g r o u n d - b as e d c o l l e ag u e s w o r l d w i d e h a v e si m i l a r l y b e n e f i t e d f r o m a d a p t i v e o p t i c s n o w installed on all the most power f ul optical telescopes (cour tesy of our hosts here at L iver more). Long shrouded in militar y secrecy and researched at signi f icant cost to the U.S. defense e s t a b l is h m e n t , t h e s e t e c h n i q u e s h a v e i n r e c e n t y e a r s b e e n m a d e a v a i l a b l e to t h e as t r o n o m i c a l c o m m u n i t y w o r l d w i d e . A l a r g e i n t e r n a t i o n a l u s e r c o m m u n i t y i s n o w i n p l a c e, a d v a n c i n g t h e a r t i n a f ie l d o f sig ni f ic an t mili t ar y in te res t . 11. The Role of Astronomers I f we now ask how we in astronomy have come so f ar, we must truthf ully answer, somewhat like Isaac New ton, and say, "B y standing on the shoulders of militar y/ industrial giants." T h e r o l e t h a t w e as t r o n o m e r s h a v e p l a y e d i n a l l t h e s e e f f o r t s h as b e e n to b u i l d u p o n t e c h n i c a l a d v a n c e s w r o u g h t b y o t h e r s . T h i s i s q u i t e n a t u r a l . I n t y p i c a l y e a r s, D e p a r t m e n t o f D e f e n s e a n d D e p a r t m e n t o f E n e r g y b u d g e t s f o r r e s e a r c h a n d d e v e l o p m e n t h a v e exc e e d e d t h e as t r o n o m y a n d space science research budgets of N ASA and the NSF, combined, by least an order of magnitude. T hese larger-scale ef for ts have been central to our success. Industrial research par ticularly on c o m p u t i n g, w h i c h l i e s a t t h e h e a r t o f t h e 3 - D a p p r o a c h -- t h e to p i c o f t h is m e e t i n g -- h as a ls o p l a y e d a m aj o r r o l e. W h e r e m i l i t a r y o r i n d us t r i a l su p p o r t d i d n o t ex is t a n d w e h a d to g o a h e a d o n o u r ow n, progress has been much slower. T hat is why the Gravitational P robe GP-B has already taken m o r e t h a n t h i r t y y e a r s t o d e v e l o p. N e i t h e r i n d u s t r y n o r t h e m i l i t a r y h a v e h a d a n i n t e r e s t i n g e n e r a l relativit y. Nor have they show n an interest in inter ferometers placed in space. So, we might have to s t a r t o u t i n i n te r f e r o m e t r y i n sp a c e by so l v i n g a w h o l e r a n g e o f te ch n i c al p r o b l e ms o f f o r m a t i o n f l y i n g a n d s t a t i o n ke e p i n g . T h e s e a r e ex p e n s i v e p r o p o s i t i o n s . O u r l i m i t e d as t r o n o m y b u d g e t s m a y not stretch su f f iciently f ar, and we cannot expect these budgets to greatly increase. T his means t h a t w e c a n n o t , e x c e p t i n r a r e c a s e s o f u n c o m m o n i m p o r t a n c e, a s k f o r s u p p o r t o f m i s s i o n s t h a t r e q u i r e c a p ab i l i t i e s w h i ch sig n i f i c a n t l y o u t s t r i p c o m m o n l y av ai l a b l e m i l i t a r y o r i n d us t r i al c a p a ci t i e s. G r a v i t a t i o n a l w a v e d e t e c t i o n is o n e o f t h e s e f e w u r g e n t exc e p t i o ns. H e n c e w e a r e d e e p l y i n v o l v e d i n t h e L I G O p r o j e c t . B u t s h o u l d w e, f o r e x a m p l e, s p e n d o u r o w n l i m i t e d b u d g e t s o n d e v i s i n g a n d per fecting laser telemetr y or delicate station-keeping systems in space? I f others will build these f o r u s b e c a u s e t h e y h a v e p r a c t i c a l i n d u s t r i a l o r m i l i t a r y a p p l i c a t i o n s, o u r p a t h o f l e a s t r e s i s t a n c e m i g h t b e to w a i t f o r s u c h t e c h n o l o g i e s to e v e n t u a l l y a r r i v e. T h e s e a r e c h o i c e s w e s h o u l d b e considering as we plan astronomy 's f uture. 12. A Societal Connection Astronomy is a luxur y that societ y can af ford only when it has provided people with life's primar y needs--food, shelter, securit y. T his is why we see astronomy flourishing precisely where societ y h a s p r o d u c e d e q u i p m e n t w e c a n a d a p t a n d a d o p t . I n r e c e n t d e c a d e s, s e c u r i t y h a s p l a y e d a d o m i n a n t r o l e, a n d s o w e i n h e r i t e d s e n s i t i v e d e t e c t i o n t e c h n i q u e s , s o p h i s t i c a t e d c o m p u t e r s , a n d p o w e r f u l launch vehicles. But increasingly, preoccupations in the United States have shif ted to health and the environment. To the ex tent that our search for the origins of life fits into astronomy, we may e x p e c t t h a t t o o l s d e v e l o p e d f o r m e d i c a l a n d b i o t e c h n o l o g i e s w o u l d , i n t h e n e x t f e w d e c a d e s, p r o v i d e i n s i g h t s i n t o t h e m o s t p r i m i t i v e o r g a n i s m s a n d t h e i r m a c r o m o l e c u l a r c o m p o n e n t s . We m a y h a v e t o s e a r c h f o r t h e s e d e e p i n t h e o c e a n s, o r f a r b e n e a t h t h e s u r f a c e o f t h e e a r t h , w h e r e t h e h y p e r t h e r m o p h i l e s r e s i d e, o r l o o k f o r t r a c e c o n s t i t u e n t s i n c a r b o n a c e o u s c h o n d r i t e s , o r f o s s i l s i n a n c i e n t t e r r e s t r i a l r o c k s, o r t h e a t m o s p h e r e s o f e x t r a s o l a r p l a n e t s . T h e n e x t g e n e r a t i o n o f as t r o n o m e r s c o u l d b e d e d i c a t i n g i t s e l f t o a v as t s e a r c h f o r t h e o r i g i n s o f l i f e u s i n g t o o l s t o t a l l y f o r e i g n to most of us today but common, by then, to biomedical industr y. T his might be one way to follow a p a t h o f l e as t r e s is t a n c e. I t m i g h t n o t b e t h e p a t h w e w o u l d b e p l a n n i n g t o d a y -- b u t t h e n, m a n y o f the most-striking astronomical advances of recent decades were not planned by us either. 13. Return to the Decadal Review As far as data-intensive ef for ts go, the 3-D approach we are discussing at this meeting may persist as t h e p r i m e t h r u s t o f r e s e a r c h f o r s o m e t i m e t o c o m e. T h e d e c i d i n g f a c t o r w i l l b e t h e d i r e c t i o n s that industrial and militar y research take. As long as Moore's law, with its doubling of computing capabilities ever y eighteen months continues to hold, the 3-D approach will flourish. W hen we reach t h e p o i n t w h e r e t h is l a w b r e a k s d o w n, o r l i m i t a t i o n s o n d a t a t r a n s m is s i o n r a t e s are reached, we should be ready to take a long hard look at our discipline's Continued future. This may not be too many years from now. page 12

11


Instruments and Astrophysics from page 11

14. Summary O u r f i e l d as a w h o l e c a n n o t g e t o u t to o f a r a h e a d o f t e c h n o l o g i e s d e v e l o p e d b y o t h e r s to m e e t b asi c s o ci e t a l n e e ds. A ll the generations of scientists who preceded us shared in one cer taint y, namely that societ y c o u l d p r o v i d e t h e m o n l y w i t h l i m i t e d s u p p o r t , a n d t h a t t h e y w o u l d h a v e t o m a ke u s e o f w h a t e v e r t o o l s w e r e r e a d y a t h a n d t o f o r g e a n e w v i e w o f t h e c o s m o s . W h e r e t h e y as ke d f o r m o r e t h a n s o c i e t y c o u l d e as i l y a f f o r d, p r o g r e s s i n e v i t a b l y w as s l o w a n d o f t e n f a l t e r e d . I t is u p t o u s t o f i n d t h e n e c e s s a r y m e a ns. T h is m a y i n v o l v e s t e a d y p r o g r e s s as cu r r e n t l y p l a n n e d i n 3 - D i ns t r u m e n t a t i o n, o r p e r h a p s r a d i c a l l y n e w d i r e c t i o ns -- d is c o n t i n u i t i e s t h a t m a y u l t i m a t e l y p r o v e m o r e us e f u l i n u npre dic t ab l e w ays. A s l o n g as p e o p l e a l l o v e r t h e w o r l d c o n t i n u e to i n v e n t n e w w a y s to i m p r o v e t h e i r l o t , n e w t e c h n o l o g i e s w i l l a ls o o p e n u p f o r o u r s e a r c h t h r o u g h t h e U n i v e r s e. I f w e r e m a i n s u f f i ci e n t l y as t u t e t o t a k e a d v a n t a g e o f t h e s e, t o l e a r n m o r e a b o u t t h e C o s m o s a n d a n s w e r q u e s t i o n s t h a t g e n e r a t i o n s of people have posed since antiquit y, we will be both ser ving societ y and working with means that societ y can af ford. T his is how we've succeeded these past few decades. T hat 's how we came t o b e s o l u c k y! I t h a n k t h e o r g a n i ze r s o f t h is c o n f e r e n c e f o r t h e i r g e n e r o us i n v i t a t i o n to a t t e n d . I a m p l e as e d to also a ck n o w l e d g e r e se a r ch su p p o r t f r o m N A S A . W
References Harwit, M. 1981, Cosmic Discovery--The Search, Scope and Heritage of Astronomy, Hey, J.S. 1946, "Solar Radiations in the 4­6 meter Radio Wavelength Band," Nature Klebesadel, R.W., Strong, I.B. & Olson, R.A . 1973, "Observations of Gamma-Ray Astrophysical Journal 182, L85. Thorne, K.S. 1994, Black Holes & Time Warps--Einstein's Outrageous Legacy, W. W. Basic Books, New York. 157, 47. Bursts of Cosmic Origin," Norton & Co, New York.

Reprinted with the permission of the author and the publisher; from Imaging the Universe in Three Dimensions: Astrophysics with Advanced Multi-Wavelength Imaging Devices. ASP Conference Series, Vol. 195, 2000 W. van Breugel & J. Bland-Hawthorn, eds.

http://www.stsci.edu/institute/conference/moon

12


AntennAe g a l a x i e s

NGC 4038/4039

http://hubblesite.org/newscenter/newsdesk/archive/releases/2006/46

T his new N ASA Hubble Space Telescope image of the A ntennae galaxies is the shar pest yet of this merging pair of galaxies. During the course of the c o l l isi o n, b i l l i o ns o f s t a r s w i l l b e f o r m e d . T h e b r i g h t e s t a n d m o s t c o m p a c t o f t h e s e s t a r b i r t h r e g i o ns a r e c a l l e d s u p e r s t a r c l us t e r s. T h e t w o s p i r a l g a l a x i e s s t a r t e d t o i n t e r a c t a f e w h u n d r e d m i l l i o n y e a r s a g o, m a k i n g t h e A n t e n n a e g a l a x i e s o n e o f t h e n e a r e s t a n d y o u n g e s t e x a m p l e s o f a p a i r o f c o l l i d i n g g a l a x i e s. N e a r l y h a l f o f t h e f a i n t o b j e c t s i n t h e A n te n n a e i m ag e a r e yo u n g cl us te r s c o n t a i n i n g te ns o f t h o us a n ds o f s t a r s. T h e o r a n g e b l o b s to t h e l e f t a n d r i g h t o f i m ag e c e n t e r a r e t h e t w o c o r e s o f t h e o r i g i n a l g a l a x i e s a n d c o nsis t m a i n l y o f o l d s t a r s cr is s - cr o s s e d b y f i l a m e n t s o f d us t , which appears brow n in the image. T he t wo gala xies are dot ted with brilliant blue star-for ming regions sur rounded by glowing hydrogen gas, appearing in t h e im ag e in p in k . T h e n e w i m ag e a l l o w s as t r o n o m e r s to b e t t e r d is t i n g u is h b e t w e e n t h e s t a r s a n d s u p e r s t a r c l us t e r s cr e a t e d i n t h e c o l l isi o n o f t w o sp i r a l g a l a x i e s. B y ag e dating the clusters in the image, astronomers f ind that only about 10 percent of the newly for med super star clusters in the A ntennae will sur vive beyond the f irst 10 million years. T he vast majorit y of the super star clusters for med during this interaction will disperse, with the individual stars becoming par t of the smooth background of the gala x y. It is however believed that about a hundred of the most massive clusters will sur vive to for m regular globular clusters, similar to the globular clusters found in our ow n Milk y Way galax y.


A new image taken with NASA's Hubble Space Telescope provides a detailed look at the tat tered remains of a supernova explosion known as Cassiopeia A (C as A). It is the youngest k now n remnant f rom a super nova explosion in the Milk y Way. T he new Hubble image shows the complex and intricate structure of the star 's shat tered f ragments. The image is a composite made from 18 separate images taken in December 2004 using Hubble's Advanced Camera for Sur veys, and it shows the Cas A r e m n a n t as a b r o ke n r i n g o f b r i g h t f i l a m e n t a r y a n d c l u m p y s t e l l a r e j e c t a . T h e s e h u g e s w i r l s o f d e b r is g l o w w i t h t h e h e a t g e n e r a t e d b y t h e p as s a g e o f a s h o c k w a v e f r o m t h e s u p e r n o v a b l as t . T h e v a r i o us c o l o r s o f t h e g as e o us s h a r ds i n d i c a t e d i f f e r e n c e s i n c h e m i c a l c o m p o si t i o n . B r i g h t g r e e n f i l a m e n t s a r e rich in ox ygen, red and pur ple are sul f ur, and blue are composed mostly of hydrogen and nitrogen. A super nova such as the one that resulted in C as A is the explosive demise of a massive star that collapses under the weight of its ow n gravit y. T he collapsed star then blows its outer layers into space in an explosion that can brief ly outshine its entire parent galax y. C as A is relatively young, estimated to b e o n l y a b o u t 3 4 0 y e a r s o l d . H u b b l e h as o b s e r v e d i t o n s e v e r a l o c c asi o ns to l o o k f o r c h a n g e s i n t h e r a p i d l y ex p a n d i n g f i l a m e n t s.

SupernovA Remnant
http://hubblesite.org/newscenter/newsdesk/archive/releases/2006/30

CASSIOPEIA A


Extraterrestrial Fireworks

N

ASA's Hubble Space Telescope has captured an image of a cosmic explosion that is quite similar to f ireworks on Ear th. In the nearby galax y, the Small M a g e l l a n i c C l o u d, a m as s i v e s t a r h as e x p l o d e d as a s u p e r n o v a, a n d b e g u n t o d is si p a t e i t s i n t e r i o r i n to a sp e c t a cu l a r d isp l a y o f c o l o r f u l f i l a m e n t s. T h e g r e e n is h - b l u e super nova remnant, E0102, resides 50 light-years away f rom the edge of a bright glowing massive star-for ming region.
http://hubblesite.org/newscenter/newsdesk/archive/releases/2006/35/

Image Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)

Contact STScI:
The Institute's website is: http://www.stsci.edu Assistance is available at help@stsci.edu or 800-544-8125. International callers can use 1-410-338-1082. For current Hubble users, program information is available at: http://presto.stsci.edu/public/propinfo.html. The current members of the Space Telescope Users Committee (STUC) are: Martin Elvis (chair), Harvard-Smithsonian CfA , elvis@cfa.harvard.edu David Axon, RIT Martin Barstow, U. of Leicester Eric Emsellem, CRAL Laura Ferrarese, HIA Peter Garnavich, U. Notre Dame Jean-Paul Kneib, OAMP David Koo, UCSC Mario Mateo, U. of Michigan Pat McCarthy, OCIW Phil Nicholson, Cornell U. C. Robert O'Dell, U. Vanderbilt Alvio Renzini, INAF Abi Saha, NOAO Regina Schulte-Ladbeck, U. Pittsburgh Tomasso Treu, UCSB Monica Tosi, OAB Marianne Vestergaard, U. of Arizona Donald G. York, U. Chicago

T

h p a g b and s t a te Telescope

e Sp a c e Te l e s c o p e ­ E u r o p e a n C o o r d i n a t i n g F a ci l i t y u b l ish e s a n e w s l e t te r w h i ch, a l t h o u g h a i m e d p r i n ci p a l l y t European Space Telescope users, cont ains ar ticles of ener al interest to the HST communi t y. I f you w ish to e i n cl u d e d i n t h e m a i l i n g l is t , p l e as e c o n t a c t t h e e d i to r yo u r a f f ili a t io n an d sp e ci f ic invo l ve m e n t in t h e Sp ace P rojec t.

ST- E C F Newsletter

Richard Hook (Editor) Space Telescope­European Coordinating Facility Karl Schwarzschild Str. 2 D-85748 Garching bei MÝnchen Germany E-Mail: rhook@eso.org

The Space Telescope Science Institute Newsletter is edited by Robert Brown, rbrown@stsci.edu, who invites comments and suggestions. Technical Lead: Christian Lallo, clallo@stsci.edu Contents Manager: Sharon Toolan, toolan@stsci.edu Design: Krista Wildt, wildt@stsci.edu To record a change of address or to request receipt of the Newslet ter, please send a message to address-change@stsci.edu.

1


Contents:
Institute News T h e I n s t i t u t e H o s t s a Wo r k s h o p . . . . . . . . A s t ro n o mic al O bse r v a tor ies o n t h e M o o n Astronomy on the Moon? . . . . . . . . . . . . . I ns t r u m e n t a t i o n a n d A s t r o p h y si c s . . . . . . A C S S t a t us . . . . . . . . . . . . . . . . . . . . . . . . Update on S T IS DATA . . . . . . . . . . . . . . . . We b b S t a t u s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 2 3 4 5 6 8

Calendar
Cycle 15 Open enrollment period for all benefits plans of AURA employees . . . . . . Nov. 6­17, 2006 Parent & Daughter Evening under the Stars, 6­9 p.m. . . . . . . . . . . . . . . . . . Nov. 17, 2006 Workshop: Astrophysics Enabled by the Return to the Moon . . . . . . . . . Nov. 28­30, 2006 Cycle 16 deadline for proposals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jan. 26, 2007 Institute Visiting Committee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Feb. 27­ Mar. 1, 2007 Telescope Allocation Committee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mar. 19­23, 2007 ESA Symposium: The Impact of HST on European Astronomy, at ESTEC, Noordwijk, Netherlands. (D. Macchetto is Chairman of SOC.) . . . . . . . . . . . . . . . . . . . . . . . . May 29­June 1, 2007

Contact S TScI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 C alendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

NON PROFIT U.S. POSTAGE

PAID
PERMIT NO. 8928 BALTIMORE, MD

3700 San Martin Drive, Baltimore, Maryland 21218

STScI N-02-06