Документ взят из кэша поисковой машины. Адрес
оригинального документа
: http://www.stsci.edu/~sontag/spicedocs/cspice/georec_c.html
Дата изменения: Sat Dec 17 06:09:05 2005 Дата индексирования: Mon Apr 11 00:02:38 2016 Кодировка: Поисковые слова: reflection nebula |
Convert geodetic coordinates to rectangular coordinates.
None.
VARIABLE I/O DESCRIPTION -------- --- -------------------------------------------------- lon I Geodetic longitude of point (radians). lat I Geodetic latitude of point (radians). alt I Altitude of point above the reference spheroid. re I Equatorial radius of the reference spheroid. f I Flattening coefficient. rectan O Rectangular coordinates of point.
lon Geodetic longitude of the input point. This is the angle between the prime meridian and the meridian containing `rectan'. The direction of increasing longitude is from the +X axis towards the +Y axis. Longitude is measured in radians. On input, the range of longitude is unrestricted. lat Geodetic latitude of the input point. For a point P on the reference spheroid, this is the angle between the XY plane and the outward normal vector at P. For a point P not on the reference spheroid, the geodetic latitude is that of the closest point to P on the spheroid. Latitude is measured in radians. On input, the range of latitude is unrestricted. alt Altitude of point above the reference spheroid. re Equatorial radius of a reference spheroid. This spheroid is a volume of revolution: its horizontal cross sections are circular. The shape of the spheroid is defined by an equatorial radius `re' and a polar radius `rp'. f Flattening coefficient = (re-rp) / re, where `rp' is the polar radius of the spheroid.
rectan Rectangular coordinates of the input point. The units associated with `rectan' are those associated with the input `alt'.
None.
Given the geodetic coordinates of a point, and the constants describing the reference spheroid, this routine returns the bodyfixed rectangular coordinates of the point. The bodyfixed rectangular frame is that having the x-axis pass through the 0 degree latitude 0 degree longitude point. The y-axis passes through the 0 degree latitude 90 degree longitude. The z-axis passes through the 90 degree latitude point. For some bodies this coordinate system may not be a right-handed coordinate system.
This routine can be used to convert body fixed geodetic coordinates (such as the used for United States Geological Survey topographic maps) to bodyfixed rectangular coordinates such as the Satellite Tracking and Data Network of 1973. The code would look something like this /. Using the equatorial radius of the Clark66 spheroid (CLARKR = 6378.2064 km) and the Clark 66 flattening factor (CLARKF = 1.0 / 294.9787 ) convert to body fixed rectangular coordinates. ./ georec_c ( lon, lat, alt, CLARKR, CLARKF, x ); /. Add the North American Datum of 1927 to STDN 73 center offset ./ vadd_c ( x, offset, stdnx ); Below are two tables. Listed in the first table (under lon, lat, and alt ) are geodetic coordinate triples that approximately represent points whose rectangular coordinates are taken from the set {-1, 0, 1}. (Angular quantities are given in degrees.) The results of the code fragment /. Convert the angular quantities to degrees ./ lat = lat * rpd_c(); lon = lon * rpd_c(); georec_c ( lon, lat, alt, CLARKR, CLARKF, x ); are listed in the second parallel table under x[0], x[1] and x[2]. lon lat alt x[0] x[1] x[2] ------------------------------ -------------------------- 0.0000 90.0000 -6356.5838 0.0000 0.0000 0.0000 0.0000 0.0000 -6377.2063 1.0000 0.0000 0.0000 90.0000 0.0000 -6377.2063 0.0000 1.0000 0.0000 0.0000 90.0000 -6355.5838 0.0000 0.0000 1.0000 180.0000 0.0000 -6377.2063 -1.0000 0.0000 0.0000 -90.0000 0.0000 -6377.2063 0.0000 -1.0000 0.0000 0.0000 -90.0000 -6355.5838 0.0000 0.0000 -1.0000 45.0000 0.0000 -6376.7921 1.0000 1.0000 0.0000 0.0000 88.7070 -6355.5725 1.0000 0.0000 1.0000 90.0000 88.7070 -6355.5725 0.0000 1.0000 1.0000 45.0000 88.1713 -6355.5612 1.0000 1.0000 1.0000
None.
1) If the equatorial radius is less than or equal to zero, the error SPICE(VALUEOUTOFRANGE) is signaled. 2) If the flattening coefficient is greater than or equal to one, the error SPICE(VALUEOUTOFRANGE) is signaled.
None.
C.H. Acton (JPL) N.J. Bachman (JPL) H.A. Neilan (JPL) W.L. Taber (JPL) E.D. Wright (JPL)
See FUNDAMENTALS OF ASTRODYNAMICS, Bate, Mueller, White published by Dover for a description of geodetic coordinates.
-CSPICE Version 1.0.2, 30-JUL-2003 (NJB) Various header corrections were made. -CSPICE Version 1.0.1, 11-JAN-2003 (EDW) Removed a spurious non-printing character. -CSPICE Version 1.0.0, 08-FEB-1998 (EDW)
geodetic to rectangular coordinates