─юъєьхэЄ тч Є шч ъ¤°р яюшёъютющ ьр°шэ√. └фЁхё юЁшушэры№эюую фюъєьхэЄр : http://www.stsci.edu/~ksahu/lhs/ms_preprint_short.pdf
─рЄр шчьхэхэш : Mon Nov 12 15:44:56 2007
─рЄр шэфхъёшЁютрэш : Tue Oct 2 18:28:42 2012
╩юфшЁютър:

╧юшёъют√х ёыютр: Ё я Ё я Ё я Ё я Ё я Ё я Ё я Ё я Ё я Ё я Ё я Ё я Ё я Ё я Ё я Ё я Ё я Ё я Ё я Ё я Ё я Ё я Ё я Ё я Ё я Ё я
Revised Co ordinates and Prop er Motions of the Stars in the Luyten Half-Second Catalogue
G┤ ar A. Bakos1,2,3, Kailash C. Sahu1 and P┤ asp┤ ┤ eter N┤ emeth e-mail: gbakos@cfa.harvard.edu,ksahu@stsci.edu ABSTRACT We present refined coordinates and proper motion data for the high proper motion (HPM) stars in the Luyten Half-Second (LHS) catalogue. The positional uncertainty in the original Luyten catalogue is typically > 10 and is often > 30 . We have used the digital scans of the Palomar Observatory Sky Survey (POSS) I and POSS II plates to derive more accurate positions and proper motions of the ob jects. Out of the 4470 candidates in the LHS catalogue, 4323 ob jects were manually re-identified in the POSS I and POSS II scans. A small fraction of the stars were not found due to the lack of finder charts and digitized POSS II scans. The uncertainties in the revised positions are typically 2 , but can be as high as 8 in a few cases, which is a large improvement over the original data. Crosscorrelation with the Tycho-2 and Hipparcos catalogues yielded 819 candidates (with mR 12). For these brighter sources, the position and proper motion data were replaced with the more accurate Tycho/Hipparcos data. In total, we have revised proper motion measurements and coordinates for 4040 stars and revised coordinates for 4330 stars. In the printed version of the paper, we present the updated coordinates and proper motion information on 528 sources which represent the high proper motion subset (╡ > 1 yr-1 ) of the LHS catalogue. The electronic version of the paper1 contains the updated information on all the 4470 stars in the LHS catalogue. Subject headings: astronomical data bases: high proper motion н catalogues
1 2 3 4 1

4

Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA Konkoly Observatory, P.O Box 67, H-1525 Budapest, Hungary Department of Experimental Physics, JATE University, Szeged, D┤ t┤ 9, H-6720 Szeged, Hungary om er The catalogue is available online at http://www.stsci.edu/ksahu/lhs


н2н 1. Intro duction

High proper motion stars serve as useful probes for the determination of many fundamental parameters, such as the stellar luminosity function, luminosities and masses of individual stars, and the structure and kinematics of the Galaxy. Among the few high-proper motion catalogues available so far, the most exhaustive ones are those of Luyten, which cover both the southern and the northern hemispheres, and that of Giclas et al. which covers only the northern hemisphere. The Lowell Proper Motion Survey by Giclas et al. (1971) has 8991 stars in the northern hemisphere, with ╡ > 0.26 yr-1 , where ╡ is the proper motion. Luyten's catalogues can be mainly divided into 2 parts: the NLTT Catalogue, which has 58,845 stars with ╡ > 0.18 yr-1 both in the northern and the southern hemispheres (Luyten, 1961; Luyten, 1980); and the Luyten Half-Second Catalogue (hereafter referred to as the LHS catalogue) н the main sub ject of this paper н which has the higher proper motion subset of 4470 stars with ╡ > 0.5 yr-1 (Luyten, 1979). As explained in more detail later, the positional information of the stars in the LHS catalogue have generally large uncertainties, which can be as high as several arcminutes. However, the LHS catalogue is used as the basis for many different studies, including the luminosity functions of the halo population in the solar neighborhood (e.g. Dawson, 1986) and the nearby white dwarfs (e.g. Oswalt & Smith 1995). Many astronomical pro jects, particularly the ones that need follow-up observations, would greatly benefit from more accurate positions of the high-proper motion stars. So we undertook the task of deriving accurate positions and proper motions for these high proper motion stars using the Digitized Sky Survey I (DSS) I and DSS II images, which are the digitized versions of the first and second epoch Palomar Observatory Sky Survey (POSS) plates6 . The results are presented in this paper. The paper is arranged as follows: in з2 we describe the details of the LHS catalogue, in з3 we describe our procedure for determining more accurate positions and proper motions of these stars, in з4 we provide the details of the use of Tycho-2/Hipparcos catalogues for the brighter stars, in з5 we give the accuracy of our new catalogue and some overall statistics, and in з6 we outline some suggestions for future work. The actual catalogue is given in tabular form, an online version of which is available through the WWW at
Based on photographic data obtained using The UK Schmidt Telescope. The UK Schmidt Telescope was operated by the Royal Observatory Edinburgh, with funding from the UK Science and Engineering Research Council, until 1988 June, and thereafter by the Anglo-Australian Observatory. The Digitized Sky Survey images were produced from these photographic data at the Space Telescope Science Institute under US Government grant NAG W-2166.
6


н3н http://www.stsci.edu/ksahu/lhs. The electronic version of the paper and the online catalog contain information on all the 4470 stars in the LHS catalogue, with updated positions and proper-motions for 4040 stars, and only updated positions for 4340 stars. The printed version contains information on 528 sources which represent the high proper motion subset (╡ > 1 yr-1 ) of the LHS catalogue. The finding charts for these sources can be obtained using the Digitized Sky Survey server at STScI (http://archive.stsci.edu/cgi-bin/dss form), by providing the coordinates appropriate for the epoch of the DSS observations.

2.

Accuracy of LHS Co ordinates and Magnitudes

Table 1 gives the details of the number of entries in various proper motion bins in the LHS catalogue. It is worth noting that out of the total of 4470 stars, 40 are common proper motion binaries. Most of the HPM stars in the LHS and the NLTT catalogues were detected and catalogued through a massive effort by W. J. Luyten, which involved blinking the plates taken at two epochs, either by hand or by an automated machine (Luyten, 1979). This was done for 804 fields, and the remaining 160 low galactic latitude fields could not be processed because of high density of stars. As a result, the catalogue contains fewer stars in the low-galactic latitude fields than in the high-galactic latitude fields. Furthermore, the ESO plates (covering area south of -33 declination) were not available. So the density of HPM stars is smaller south of -33 (limit of the Palomar Survey) compared to the northern region. The positions of a small fraction ( 10%) of these HPM stars were measured from the meridian circle observations, for which `absolute' positions are given in the LHS catalogue. For the remaining ma jority of the stars, only the `relative' positions are given. As a result, although the LHS catalogue gives the positions of the stars to an accuracy of 1s (or 15 ) in RA and 0.1 in dec, the positional uncertainty is often larger. The uncertainty amounts to as much as several arcminutes in some cases, as discussed in the next section. Apart from the positions and the proper motion information, the LHS catalogue also contains the estimated magnitudes. For a ma jority of the stars, both red (R) and blue (pg) magnitudes are given, as determined from the plates. In the LHS catalogue, the number of stars with no red magnitude is 7, and the number of stars with no blue magnitude is 163. The magnitude distribution of the stars is shown in Fig. 1 which shows that the catalogue has a limiting (red) magnitude of about 18. For reference, a straight-line fit to the points in the brighter bins is plotted, which indicates that the catalogue is affected by incompleteness beyond mR 14.


н4н We would like to emphasize that the overall precision of the proper motions (the magnitude of the motion ╡, as well as its position angle ) in the LHS catalogue is generally good, only the positions have high uncertainties (more details in the following sections).

3.

The Metho d of Manual Search

Manual inspection of several candidates using finder charts of the LHS Atlas (Luyten & Albers, 1979) revealed that the position errors can readily exceed 1 arcmin (see upper panel of Fig. 2). Such a large positional uncertainty makes it difficult to use an existing catalogue such as the Guide Star catalogue (GSC) to derive more accurate positions of the candidates through cross-correlation. Indeed, we first attempted to derive accurate coordinates through an automated approach, by correlating the positions of the LHS stars with the sources in the GSC after performing the appropriate coordinate-transformations to the epoch of the GSC observations. However, the number of matching pairs was small even with a search radius of 30 , yielding accurate positions for only a small number of sources. If the search radius was made bigger, the chance of finding another random star in the field was high, and hence the cross-correlation technique was not reliable. The automated search was made even more difficult by numerous plate-flaws, dense stellar fields, possible minor planets, double stars, etc. In order to reliably identify the HPM stars in an existing catalogue or image, it is not only necessary to make sure that the candidate lies within a specified search radius, but it is also important to confirm that the ob ject has a high proper motion and has a similar brightness as specified in the original catalogue. The first and second epoch POSS plates are ideally suited for this purpose since (i) they cover the whole sky, (ii) the limiting magnitude of the plates makes al l the LHS stars readily visible, and (iii) there are observations at two epochs so that the motion of the HPM stars can be readily identified by a comparison of the first and second epoch images. Furthermore, these digital scans were originally made at STScI and hence are locally available to the authors, which makes the task easier. An example is shown in Fig. 3 where the two panels show the DSS I and DSS II images of LHS 36. The size of each image is 10 x 10 , and the epochs of observations are 1953.28 and 1995.15 for of DSS I and DSS II, respectively. The HPM star is easily seen because of its motion between the two epochs. Since the source coordinates as determined from the DSS images are accurate to 1 , the coordinates at two epochs can be used to derive more accurate positions and proper-motion data for these HPM stars. To identify the candidates with the greatest certainty, we performed manual identification of all the 4470 stars using the DSS I and DSS II images and the finder charts of the


н5н LHS Atlas (Luyten & Albers, 1979), with the help of our self-written, IRAF-based gluyfin, gluypossi scripts7 . The procedure for the manual identification is briefly described below. The DSS images for the two epochs were first retrieved through an automatic script. The sizes of the images were selected to be large enough so that the candidates would be in the field even with 1 initial errors in the coordinates and after undergoing the proper motions for 40 years, but as small as possible in order to achieve good resolution which is required for precise astrometry. The size of the images for Luyten stars 1 to 100 (╡ > 2 yr-1 ) was 15 т 15 , the size of the images for stars 101-1000 (2 yr-1 > ╡ > 1 yr-1) was 5 т 5 , and the size of the images for stars 1001-6433 (1 yr-1 > ╡ > 0.48 yr-1 ) was 4 т 4 (cf. Table 1). DSS I charts were retrieved for al l fields, but DSS II charts were not available for 644 coordinates out of the 4470 (marked with "P" in Table 2). Four DSS I and twenty-one DSS II images were of poor quality (edge of the plates), which were not usable at all (marked with "1" and "2", respectively). If b oth DSS scans were available, and both scans had no ma jor defects (3801 cases), then the procedure for determining the positions of the HPM star was as follows. The gluyfin script was used to display and blink the two frames, and the HPM star was conspicuous by its shift. Manual centering with a cursor and subsequent two dimensional Gaussian-profile fitting were performed for both frames, yielding precise pixel coordinates of the star for the two epochs. These pixel coordinates were transformed to astrometric positions using the stsdas/gasp package, which uses the plate-constants stored in the header. (The resulting positions are in the GSC system, the details of which are given later.) Using the two positions determined for the two epochs, the proper motion of the star, its position angle and its extrapolated position for epoch 2000.0 were computed. These results are presented in Table 2. Profile fitting sometimes failed or produced incorrect coordinates if the HPM star was saturated (477 cases - flagged as "s"), or if the star is merged with another star in one of the scans (246 cases н flagged as "m"). If the fitted position was obviously off the centroid, which was often caused by the diffraction spikes of a saturated star, the parameters were fine-tuned, and in extreme cases manual centering was performed (305 saturated and 64 merged stars were re-fitted н flagged as "c"). Double stars were looked up from the LHS catalogue, so as to correctly identify the components ("d"). Our proper motion determination (╡, ) is sometimes uncertain, mostly because the
7

All the scripts are available from the first author on request by e-mail


н6н positional shift of the HPM star between the two epochs was not sufficient to determine the proper motion, or because the star was blended on one of the images (522 cases). In such a case, the star was flagged ("b"), and proper-motion data from Luyten was used to compute J2000.0 coordinates, still using our coordinates as initial values. Since the identification of the HPM star is secure, use of the DSS coordinates clearly provides a more accurate position of the star. The same procedure was adopted for all the HPM stars with smaller shift than 5 between the two DSS scans ("B"). If the identification from the DSS plate was uncertain, the identification was reconfirmed using the finding charts in the LHS Atlas (flagged as "i"). However, in some cases finding charts were not available in the LHS Atlas, though they would have been needed for secure identification (140 cases, marked as "W"). Finally, if the star was not found, the original coordinates and proper motion of Luyten are listed in Table 2 (flagged as "N"). If only one DSS image was available or had acceptable quality, stars were identified using the finder charts of the LHS Atlas. Astrometry was carried out on the single frame available using the gluypossi script, and coordinates for J2000.0 were computed from the proper motion given by Luyten. If the DSS II image was not available, the star was flagged as "P". It is worth noting that no Luyten stars with IDs greater than 6000 have finding charts since they were compiled from published data. In many cases, we could identify the star even without a finder, particularly when the initial coordinates were relatively good, and the star was bright and isolated.

4.

Correlation with the Tycho-2 and Hipparcos Catalogues

The Tycho-2 catalogue is an astrometric reference catalogue containing positions and proper motions as well as two-color photometric data for the 2.5 million brightest stars in the sky (H▄g et al. 2000). Tycho-2 is based on observations of the ESA Hipparcos satellite, and supersedes the earlier Tycho-1 catalogue (H▄g et al. 1997) both in the number of sources and in astrometric precision. The limiting magnitude (V 11.5) of Tycho-2 allows cross-identification of only the bright LHS stars, which considerably improves the precision compared to the manual method, especially when the source is saturated in the DSS image. We cross-correlated our refined coordinates with the coordinates in the Tycho-2 catalogue (note that in few cases, e.g. when no DSS images were available, these were identical to the original LHS positions). Tests showed that the number of detections saturated at a critical distance of 8 between coordinates (which is used as one of the selection criteria).


н7н Inspection of histograms of the magnitude differences both in the "blue" (Tycho B and Luyten photographic) and the "red" (Tycho V and Luyten red) bands showed that red magnitudes have a better correlation, which can be expressed as: mT yc,V - mLH S,red = 0.1m ▒1.1 (median▒maximum width of the distribution of the magnitude difference). Using 0.5 the combined criteria of position and magnitude differences, 720 entries were refined and substituted by Tycho data (flagged as "T"). Double stars were handled manually, so as to avoid confusion. The Luyten photographic and red magnitudes were substituted by Tycho B and V magnitudes. The Tycho-2 catalogue Supplement No. 1 lists stars that were published in the Tycho1 or Hipparcos catalogues (Perryman et al. 1997), but not listed in Tycho-2. Some of these stars were excluded from Tycho-2 as they were too bright for proper treatment in the data reduction. We searched the Supplement catalogue by selecting candidates with proper motion and red magnitude measurements, i.e. only by selecting stars that were previously published in the Hipparcos catalogue, but not necessarily in Tycho-1. The same detection criteria as in the case of the Tycho-2 yielded 99 candidates.

5.

The Revised Catalogue 5.1. Overall Statistics

Out of the 4470 HPM stars in the LHS catalogue, 3801 had both DSS I and DSS II images with acceptable quality. Through a manual search as explained above, a total of 4323 stars were identified reliably, 12 stars had uncertain identifications, and 135 stars were not found. New proper motion values were determined for 3894 stars. After cross-correlation with the Tycho-2 and Supplement (Hipparcos) catalogues, six additional stars were identified which were previously not found, two uncertain identifications were clarified and the coordinates and proper motions were improved for 819 stars (720 from Tycho-2, 99 from Supplement). The final number of entries with new (╡, ) and coordinates are 4040 and 4330, respectively.

5.2.

Astrometric Accuracy

In case of manual identification, the uncertainty in the final astrometric position of the HPM star is due to several factors: (i) the error in determining the center of the PSF at each epoch (ii) the positional error in the reference catalogue (iii) the error due to the (imperfect knowledge of the) geometric distortion of the plate, and (iv) the error in the determination of the magnitude and direction of the proper motion and the consequent error


н8н in the extrapolation of the position to the epoch 2000. The point-spread functions (PSFs) in the ma jority of the DSS images had FWHM of 7 (DSS I) and 4 - 5 (DSS II), while the plate scales are 1.68 /pixel and 1 /pixel, respectively. The error in our profile-fitting, except for the saturated and merged stars, was less than 0.2 pixel ( 0.2 ), the typical error being about 0.05 pixel ( 0.05 ). When the Gaussian fit failed, manual re-fitting could have an error of 1 pixel ( 1 ). The absolute astrometry at each epoch also depends on the accuracy of the plateconstants stored in the headers of the digital scans, and their systematic errors caused by the reference catalogues used. The northern hemisphere reference system is based on the AGK3 catalogue (Dritter Katalog der Astronomischen Gesellschaft), and southern hemisphere reference system is based on SAOC (Smithsonian Astrophysical Observatory Catalogue) in the region north of -65 and CPC (Cape Photometric Catalogue for 1950.0) in the far south, below -65 . The positional accuracy of the northern reference catalogue is, in general, 3 times better than the southern one (0.6 vs. 1.7 ). Positional errors caused by the geometric distortion from the plate center to the edge are in the range 0.5 to 1.1 in the northern celestial hemisphere, and 1.0 to 1.6 in the southern celestial hemisphere (Taff et al. 1990). In order to determine the position of the HPM star for the epoch 2000.0, we need to extrapolate the position from the POSS epoch, using the derived magnitude and direction of its proper motion. This procedure accordingly increases the uncertainty in the final astrometric position. We estimate that the combined effect of these uncertainties in the final astrometric position would be typically 2 arcsec, but can be 8 in a few cases. This is confirmed by Fig. 4, which shows that the difference between our coordinates and the Tycho coordinates peaks at 2 , beyond which it drops rapidly and approaches zero beyond 5 . We also tried to empirically estimate the final error by comparing the observed positions of a few HPM stars (as given in the GSC) with the derived positions using our method. We transformed the positions of several stars to the epoch of the appropriate Guide Star Catalogue (GSC) fields (which are based on Palomar Quick-V and the SERC-J survey), and compared them with the position of the GSC star. The positions were consistent within 5 , as expected. We note that the uncertainty is dominated by the systematics explained above, and not by the accuracy in the determinations of the centroids of the stars at each epoch. So the uncertainties are not expected to be correlated with the magnitudes of the stars, which was further confirmed by making plots similar to Fig. 4 for stars in different magnitude bins. The accuracy of the proper motions (╡ and ) is more difficult to estimate since they


н9н clearly depend on the timespan between the two epochs of observations, the quality of the images, etc. But comparison of the proper motions with the Tycho-2 catalog gives a fair estimate, which is shown in Fig. 4. We estimate that for reliably identified sources, the accuracy in ╡ is generally ▒0.1 y r-1 , and the accuracy in is ▒5 . But such a comparison with the Tycho-2 catalog is valid only for the brighter stars. However, we note that the DSS goes much deeper than the magnitude limit of the LHS catalog, and the predominant uncertainty in the proper motions comes from the timespan between the two epochs rather than the brightness of the source. So the error is not likely to be larger than twice these values even for the fainter sources. The accuracy is naturally much higher for brighter sources with Tycho-2/Hipparcos data. In these cases, the standard errors in the coordinates and the proper motions for all the stars are 60 mas and 2.5 mas yr-1 , respectively, but if mT yc,V < 9.0m , the errors in the coordinates are less than 7 mas. Thus there is a large difference between the precisions of the Tycho-2 entries and the entries made with manual identification. In this sense, our catalogue in not homogeneous; but we have provided the best measurements that are currently available in all cases.

6.

Summary and Suggestions for Future Work

We have revised the coordinates and proper motion data for the high proper motion (HPM) stars in the Luyten Half-Second (LHS) catalogue. The positional uncertainty in the original Luyten catalogue is typically > 10 and is often > 30 . The uncertainties in the revised positions are typically 2 , but can be as high as 8 in a few cases. The accuracy in ╡ is generally ▒0.1 y r-1 , and the accuracy in is ▒5 . Out of the 4470 candidates in the LHS catalogue, we have revised proper motion measurements and coordinates for 4040 stars and revised coordinates for 4330 stars. For most of the brighter sources (m R 12), the position and proper motion data have been replaced with the more accurate Tycho/Hipparcos data. As described in з1, the LHS catalogue contains only a subset of the HPM stars currently available in the literature. It would be useful if the work presented here is extended to include the full set of the HPM stars, including those in the Luyten catalogue of HPM stars with ╡ > 0.2 y r-1 , for which the coordinates have large uncertainties. Indeed, now that the DSS I and the DSS II images are available for the whole sky, it should be possible to produce a complete catalogue of all the HPM stars in the entire sky including the Galactic plane region, down to stars with ╡ < 0.1 y r-1 . Fortunately, such a pro ject has been undertaken by a group at STScI, and the product will be extremely useful for several pro jects. Such pro jects would


н 10 н include, to name a few, (i) the prediction of future microlensing events of background stars by HPM stars, the observations of which can be used to derive accurate masses of the HPM stars (see, e.g., Salim and Gould 2001; Dominik and Sahu 2000; Paczynski 1998); (ii) cross┤ correlations with other catalogues to obtain data at other wavelengths; and (iii) determining the contributions of possible halo populations in the solar neighborhood (e.g. Schmidt 1975; Dawson 1986; Oppenheimer et al. 2001; Reid, Sahu and Hawley 2001). ┤ Most of this work was done while GAB was enjoying the hospitality of Space Telescope ┤ Science Institute (operated by NASA for AURA) as a summer student. P. N┤ emeth and GAB would like to thank G. Fur┤ for providing computer facilities to the pro ject. This pro ject esz was supported by the DDRF grant of STScI. We thank the anonymous referee for useful suggestions.

REFERENCES Dawson, P. C., 1986, ApJ 311, 984 Dominik, M. & Sahu, K. C. 2000, ApJ, 534, 213 Dommanget, J. & Nys, O. 1994, Communications de l'Observatoire Royal de Belgique, 115, 1, "Catalogue of the components of double and multiple stars" Giclas, H. L., Burnham, R., Thomas, N. G. 1971, "Lowell Proper Motion Survey, Northern Hemisphere, The G Numbered Stars, 8991 Stars fainter than magnitude 8 with motions > 0. 26/year", Lowell Observatory. H▄g, E. et al. 1997, A&A, 323, L57 H▄g, E. et al. 2000, A&A, 355, L27 Lasker, B. M., Sturch, C. R., McLean, B. J., Russell, J. L., Jenkner, H., Shara, M. M., AJ, 99, 2019 Luyten, W. J., 1961, "A Catalogue of 7127 Stars in the Northern Hemisphere with Proper Motions Exceeding 0.2 Annually", Univ. of Minnesotta, Minneapolis Luyten, W. J., 1979, "LHS Catalogue", Univ. of Minnesotta, Minneapolis Luyten, W. J., and Albers, H, 1979, "LHS Atlas", Univ. of Minnesotta, Minneapolis Luyten, W. J., 1980, "NLTT Catalogue", Univ. of Minnesotta, Minneapolis


н 11 н Oppenheimer, B. R. et al. 2001, Science, 292, 698 Oswalt. T. D., & Smith, J. A., 1995, "White Dwarfs" ed. D. Koester & K. Werner, Springer, p24 Paczynski, B. 1998, ApJ, 494, L23 ┤ Perryman, M. A. C. et al. 1997, A&A, 323, L49 Reid, I. N., Sahu, K. C., & Hawley, S. L. 2001, ApJ, 559, 942 Salim, S., & Gould, A. 2001, ApJ, 539, 241 Schmidt, M. 1975, ApJ, 202, 22 Taff, L. G., Lattanzi, M. G., Bucciarelli, B., et al. 1990, ApJ, 353, L45

A This preprint was prepared with the AAS L TEX macros v5.0.


н 12 н

Fig. 1.-- The figure shows the cumulative number distribution of stars as a function of magnitude. This shows that the LHS catalogue has a limiting (red) magnitude of about 18. A straight line is shown for reference which indicates that the catalogue is affected by incompleteness beyond mR 14.


н 13 н

Fig. 2.-- The upper panel shows a histogram of the distance between our positions (either result of the manual method or cross-correlation with the Tycho catalogue) and the positions in the LHS catalogue, both for epoch and equinox 2000.0. The upper left panel uses 1 bins, while the upper right panel employs 4 bins. Only those stars were included, which were identified by the manual search or cross-correlation with the Tycho catalogue. Note the long tail of the distribution. The mid-panel shows the difference between Luyten's and our proper motion in 200 equally spaced bins with 0.01 binwidth. The lower panel displays the angle between the star's motion determined by Luyten and by the present work (180 bins of 2 width). The lower two panels are shown only for stars not flagged as "B" or "b" in Table 2, i.e. when we have new ╡ and measurements.


н 14 н

(These figures can be obtained from http://www.stsci.edu/ksahu/lhs) Fig. 3.-- An example of the DSS I (left) and DSS II (right) images used for determining the coordinates and the proper motions. The images shown here correspond to LHS 36, and the size of each image is 10 т 10 . The epochs of observations are 1953.28 and 1995.15 for DSS I and DSS II, respectively. The HPM star is easily seen because of its motion during the two epochs. North is up, and east is to the left.


н 15 н

Fig. 4.-- The upper left panel shows a histogram of the distance between the position as determined from the manual identification and that of the Tycho catalogue for all the stars which were found both in the Tycho catalogue and in the manual search (805 entries). The width of the bins is 0.1 . The upper right panel is almost the same, but here the stars with "B,b,s,i,m,c" flags in Table 2, i.e. those with inaccurate proper motion measurements, saturated profiles, etc., are not included. The two histograms are very similar, which shows that the uncertainty in the proper motion (and the consequent uncertainty in the extrapolation to epoch 2000.0) is only a second order effect compared to the original positional errors. The middle panel shows the difference between the proper motions as determined from the manual identification and that of the Tycho catalogue. The middle left panel is for all stars (found both in the Tycho catalogue and in the manual search), using 0.2 /y r binwidth. This shows that saturation of the star or inadequate timespan between the two observations can yield very inaccurate proper motion measurements. The middle right panel shows the same (0.02 /y r binwidth, 384 stars), but after filtering all saturated and merged stars, and those with inaccurate proper motion estimates ("B,b,s,i,m,c" flags). In these cases, our manual method has high accuracy. The lower left panel displays the angle between the star's motion in the Tycho catalogue and that of the manual method (180 bins of 2 width). The lower right panel is the same but after filtering as in the previous panels. Again, this shows that the accuracy in is high if the star is not affected by saturation or merging.


н 16 н

Table 1: Stars in the LHS catalogue

Location in catalogue

Proper motion (╡) ( /y r) >2 1-2 0.5 - 1 0.48 - 0.499 > 0.49

No. of stars

% of total

Main body, 1-100 Main body, 101-1000 Main body, 1001-5000 Appendix I, 5001-6000 Appendix II, >6001 All

73 455 3073 441 428 4470

1.6 10.2 69 9.4 9.8



stars for which at one time or another a value of ╡ > 0.49

yr

-1

was published


Table 2. Revised Positions and Proper Motions for LHS stars
New data Dec (J2000.0) Ts Tdms cs bs bs H Ts NP NP TP Tbs NP PW PW NP Ts P Tcs cm b dms b dms b dms dm dm T T bs T bm Tm m Ts TPWd PWd bm Ts H b s T Ts HN12 P -37 -07 44 44 -64 -77 05 54 -17 -17 13 05 -50 03 06 06 -04 73 -43 -11 35 -53 -07 -07 -07 58 58 53 -45 -03 12 -04 05 -67 08 07 35 43 43 -57 65 67 -64 37 -18 03 14 19 -62 21 32 01 01 52 15 23 55 57 57 03 42 49 34 53 52 59 46 04 29 16 36 39 39 39 58 58 07 01 40 29 10 13 47 46 00 58 31 31 32 50 15 50 43 14 40 53 10 40 26.5 19.4 22.6 38.2 39.6 23.8 19.0 13.1 0.0 0.0 5.3 20.5 25.2 24.0 15.0 18.9 18.0 18.9 11.2 13.1 23.9 10.2 36.1 54.7 6.6 37.8 37.8 42.5 6.7 45.7 21.6 9.7 32.9 32.2 22.2 52.0 11.6 36.4 16.6 54.4 47.4 32.4 29.0 5.4 32.2 44.6 29.5 56.7 46.4 6.11 2.13 2.92 2.93 1.65 2.97 2.98 3.77 3.37 3.37 2.13 2.43 2.25 2.60 2.32 2.32 2.52 2.13 3.12 3.03 2.20 3.77 5.54 8.06 3.11 2.44 2.44 2.02 8.73 2.62 2.55 2.57 3.74 2.15 5.24 4.71 4.80 4.52 4.53 2.64 2.96 3.17 2.64 7.24 2.55 3.88 2.30 2.28 3.81 112.54 197.02 81.94 81.28 76.17 93.98 155.54 115.12 80.40 80.40 148.07 107.07 72.62 223.50 51.40 51.40 138.10 120.67 76.52 152.10 128.06 223.29 194.40 235.28 183.27 146.69 146.69 139.70 131.42 170.65 128.16 167.12 171.17 135.87 167.89 234.65 186.91 282.05 281.90 291.85 273.61 175.25 96.83 143.26 154.56 252.78 129.30 208.67 281.70 5.7 9.5 1.8 4.5 15.6 15.9 5.2 3.3 нн нн 44.6 3.2 4.8 нн 4.1 4.3 нн 2.0 3.9 251.4 0.1 11.6 30.2 65.5 43.8 14.4 6.8 1.1 4.2 3.7 758.4 7.3 8.0 31.9 6.5 9.9 2.4 6.2 3.6 6.0 5.5 25.0 5.1 3.0 7.3 3.4 6.3 4.9 2.5 00 00 00 00 00 00 00 01 01 01 02 02 02 02 02 02 02 03 03 03 04 04 04 04 04 04 04 05 05 05 05 05 07 07 08 10 11 11 11 11 11 11 11 11 12 13 13 14 14 05 06 18 18 20 25 49 08 39 39 00 02 10 12 36 36 46 10 19 38 03 10 15 15 15 31 31 03 11 31 42 55 27 53 11 56 03 05 05 16 20 40 45 52 24 36 45 15 29 24 43 23 26 4 45 10 16 2 2 10 52 26 21 5 15 15 59 56 28 15 26 16 21 21 10 11 24 41 27 9 10 24 14 58 29 20 28 30 1 5 16 43 59 53 32 44 40 43 -37 -07 44 44 -64 -77 05 54 -17 -17 13 05 -50 03 06 06 -04 73 -43 -11 35 -53 -07 -07 -07 58 58 53 -45 -03 12 -04 05 -67 08 07 35 43 43 -57 65 67 -64 37 -18 03 14 19 -62 21 32 01 01 52 15 23 55 57 57 03 42 49 34 53 52 59 46 04 32 16 36 39 39 39 58 58 07 01 40 42 10 13 47 46 00 58 31 31 32 50 15 50 43 14 40 53 10 40 24 12 24 42 24 18 24 12 0 0 6 18 30 24 12 18 18 18 12 6 24 12 12 30 30 36 36 42 6 42 0 6 30 30 18 42 12 36 18 54 42 24 24 6 30 48 24 54 48 6.108 2.041 2.899 2.899 2.063 2.250 2.980 3.762 3.368 3.368 2.097 2.432 2.206 2.598 2.322 2.322 2.524 2.104 3.147 3.033 2.204 2.521 4.079 4.079 4.079 2.383 2.383 2.008 8.688 2.235 2.571 2.377 3.761 2.041 5.211 4.696 4.778 4.531 4.531 2.733 2.950 3.209 2.667 7.042 2.532 3.870 2.298 2.284 3.809 112.5 203.6 82.2 82.2 55.9 81.7 155.7 114.9 80.4 80.4 147.8 106.3 73.1 223.5 51.4 51.4 138.1 120.0 76.5 152.1 128.0 198.1 213.3 213.3 213.3 144.8 144.8 140.5 131.3 160.2 128.4 166.6 171.2 135.6 167.1 234.6 186.8 281.9 281.9 294.9 273.0 175.2 97.2 145.5 154.7 253.6 129.3 208.4 281.7 1977.70569 1983.74939 1954.75684 1954.75684 1977.86694 1977.76855 1953.83081 1954.00842 1978.68945 1978.68945 1950.61768 1954.89648 1975.85071 1953.77356 1954.97302 1954.97302 1982.78809 1953.78467 1977.78247 1982.79346 1954.97058 1978.77441 1982.81555 1982.81555 1982.81555 1953.11267 1953.11267 1954.97339 1975.90845 1984.89795 1951.84497 1983.99341 1954.17578 1978.10278 1951.23621 1953.28552 1953.34583 1955.21179 1955.21179 1987.08142 1954.11084 1954.11084 1987.26160 1950.36768 1979.45312 1950.29956 1954.24756 1950.29407 1976.19324 1996.71313 1989.89038 1989.76233 1989.76233 1993.63562 1987.70410 1994.60938 1990.79260 нннн нннн 1990.88000 нннн 1988.90979 нннн нннн нннн нннн 1994.77905 1994.99451 нннн 1993.70789 1994.98901 1985.95337 1985.95337 1985.95337 1992.76624 1992.76624 1989.89941 1990.06848 1990.97266 1991.85864 1989.02197 1991.10193 1996.13110 1988.94360 1995.15417 1992.09399 нннн нннн 1992.23499 1997.10498 1996.96863 1996.29785 1989.04236 1994.34790 1993.35950 1994.35681 1996.38879 нннн
a

Luyten's original data
b

Ep o ch ╡ POSS I POSS I I mr ed e 8.8 13.0 8.3 10.3 4.3 2.8 12.6 5.2 12.2 12.7 12.5 12.4 6.2 9.6 5.8 11.3 14.8 15.1 4.3 11.9 8.6 13.5 4.4 9.7 10.6 11.2 13.0 10.1 9.0 8.3 11.5 14.5 10.0 14.4 12.7 13.5 7.7 8.9 14.0 11.3 9.5 12.3 11.5 6.4 11.4 14.8 8.6 0.2 11.4 mblue e 10.4 15.5 10.1 12.6 4.8 3.5 нн 6.0 14.1 14.6 14.2 13.6 7.1 11.3 7.0 13.1 16.7 16.3 5.1 13.3 9.6 15.0 5.3 9.7 12.3 12.9 12.8 11.7 10.8 9.8 13.1 15.4 11.8 15.0 14.3 15.6 9.4 10.7 16.0 12.8 11.1 нн 11.3 7.3 12.5 15.6 10.2 нн 13.0 Tycho-2/HIPf 6995-01264-1 нннн 2794-00157-1 нннн нннн нннн 3829 3673-01929-1 нннн нннн нннн 0043-00072-1 8048-01022-1 нннн нннн нннн нннн нннн 7567-01183-1 нннн 2366-03215-1 нннн нннн нннн нннн нннн нннн 3734-00270-1 8078-01749-1 нннн 0722-00455-1 нннн 0173-03208-1 нннн нннн нннн 2521-02279-1 3012-02528-1 нннн нннн 4152-00272-1 56936 нннн нннн 6105-01620-1 нннн 0899-00789-1 69673A нннн

LHS No.

RA (J2000.0)

a





b

Dist.

c

Com.

d

RA (J2000.0)

Dec (J2000.0)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

00 00 00 00 00 00 00 01 01 01 02 02 02 02 02 02 02 03 03 03 04 04 04 04 04 04 04 05 05 05 05 05 07 07 08 10 11 11 11 11 11 11 11 11 12 13 13 14 14

05 06 18 18 20 25 49 08 39 39 00 02 10 12 36 36 46 10 19 38 03 10 15 15 15 31 31 03 11 31 42 55 27 53 11 56 03 05 05 16 20 40 45 52 24 36 45 15 29

24.43 43.40 22.89 25.79 4.07 49.47 09.90 16.36 2.00 2.00 13.05 52.14 25.98 21.00 4.81 15.28 15.00 58.57 55.65 15.58 15.00 27.29 17.23 16.92 18.51 11.85 11.85 23.89 40.61 26.96 09.28 9.58 24.50 8.38 57.67 28.99 20.19 28.57 30.31 0.26 04.83 20.06 42.91 59.25 52.51 32.00 43.78 39.71 43.28


Table 2--Continued
New data Dec (J2000.0) NPW NP c b cs H
a

Luyten's original data ╡
b

Ep o ch ╡ POSS I POSS I I mr ed e mblue e Tycho-2/HIPf

LHS No.

RA (J2000.0)

a



b

Dist.

c

Com.

d

RA (J2000.0)

Dec (J2000.0)

T dms dms TBb dms Tdms TBb s s b s Ts c Tcs

P P Hdm d NP dm dm P Td dim Ps Tb cs T Ts cdims cdms

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

14 14 15 15 15 16 17 17 18 18 19 21 21 21 21 21 21 22 22 22 23 23 23 23 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

39 39 10 10 42 14 49 57 42 42 20 04 06 06 07 09 17 03 38 53 05 13 43 43 02 04 07 09 09 14 16 16 17 19 19 20 31 32 32 35 35 37 38 43 48 49 49 49 50

36.00 36.00 13.40 13.08 06.59 32.78 50.05 48.50 46.90 47.17 48.20 53.38 53.48 55.27 55.58 17.43 15.52 22.62 33.80 53.42 52.42 16.98 13.64 16.64 10.19 36.43 26.84 16.60 17.31 7.62 14.61 16.25 40.00 36.69 37.16 29.50 35.32 29.46 30.17 3.06 55.60 20.70 59.04 35.74 22.98 6.51 6.25 28.87 17.27

-60 -60 -16 -16 -19 19 82 04 59 59 -45 -16 38 38 59 -13 -38 -56 -15 -06 -35 57 -24 -24 27 -40 29 09 -19 -20 19 19 -10 -28 -28 33 -05 67 67 -63 10 -24 30 28 05 57 57 -61 -39

51 51 27 22 28 06 46 41 37 37 33 57 45 44 43 18 52 47 18 46 51 10 09 11 04 44 14 00 42 22 51 51 46 09 09 05 52 14 14 41 28 46 36 26 16 48 48 02 30

6.0 6.0 55.7 52.0 18.4 9.7 25.2 35.8 47.1 35.8 32.3 31.9 1.6 31.3 18.1 9.0 9.4 8.2 2.9 56.3 11.4 6.1 51.0 16.4 55.5 3.1 31.1 40.3 31.4 56.5 37.6 49.1 18.0 40.3 48.0 5.5 13.7 8.1 5.9 44.8 33.8 2.2 58.4 39.5 50.3 54.9 56.3 33.6 11.0

3.66 3.66 4.09 3.95 2.28 1.97 3.59 10.31 2.21 2.28 3.11 2.23 5.12 5.17 2.11 2.12 3.43 4.86 3.24 2.65 7.20 2.10 2.53 2.53 1.29 1.66 1.94 1.21 1.15 1.28 1.04 1.08 1.05 1.40 1.50 1.37 1.10 1.76 1.83 1.10 1.19 1.39 1.56 1.13 1.36 1.36 1.27 1.04 1.16

280.90 280.90 188.36 193.99 242.91 280.10 336.55 355.56 322.45 324.26 165.25 204.21 49.57 52.77 208.56 160.25 250.31 113.98 50.12 107.52 77.20 81.90 147.83 148.40 140.01 154.42 127.41 185.09 59.50 262.80 136.24 136.25 180.80 190.64 186.02 128.85 163.10 98.07 99.69 121.60 111.48 90.54 88.83 183.20 146.30 115.10 114.96 96.61 162.97

нн нн 14.9 10.1 8.4 61.9 20.9 14.3 127.1 120.2 44.9 11.5 6.2 3.4 4.4 213.2 6.9 5.5 57.0 21.2 5.1 0.2 5.8 5.1 3.0 117.3 11.1 6.2 59.4 175.4 7.0 6.0 нн 26.0 24.1 18.9 6.4 21.7 24.9 15.8 9.6 10.2 4.5 4.2 2.3 6.5 6.4 73.8 5.9

14 14 15 15 15 16 17 17 18 18 19 21 21 21 21 21 21 22 22 22 23 23 23 23 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

39 39 10 10 42 14 49 57 42 42 20 04 06 06 07 09 17 03 38 53 05 13 43 43 02 04 07 09 09 14 16 16 17 19 19 20 31 32 32 35 35 37 38 43 48 49 49 49 50

36 36 13 13 6 37 39 49 46 47 44 53 54 55 55 18 15 22 34 52 52 17 14 17 10 41 26 17 18 20 15 16 40 37 37 28 35 26 26 5 55 20 59 36 23 6 7 34 17

-60 -60 -16 -16 -19 19 82 04 59 59 -45 -16 38 38 59 -13 -38 -56 -15 -06 -35 57 -24 -24 27 -40 29 09 -19 -20 19 19 -10 -28 -28 33 -05 67 67 -63 10 -24 30 28 05 57 57 -61 -39

51 51 27 22 28 05 46 41 39 39 33 57 45 44 43 14 52 47 17 46 51 10 09 11 04 42 14 00 43 23 51 51 46 10 10 05 52 14 14 41 28 46 36 26 16 49 48 01 30

6 6 42 42 18 54 24 48 54 36 24 42 0 30 18 36 6 6 6 54 12 6 54 18 54 18 30 42 30 18 42 54 18 6 12 6 18 0 0 54 30 6 54 42 48 0 54 30 6

3.664 3.664 3.681 3.681 2.254 2.033 3.587 10.310 2.273 2.273 2.945 2.251 5.204 5.204 2.098 2.096 3.453 4.695 3.254 2.570 6.907 2.095 2.557 2.557 1.295 1.618 1.890 1.108 1.148 1.277 1.037 1.037 1.055 1.373 1.373 1.362 1.098 1.748 1.748 1.104 1.186 1.369 1.561 1.062 1.367 1.219 1.219 1.119 1.025

280.9 280.9 195.9 195.9 243.2 280.0 337.3 355.8 323.3 323.3 167.3 206.3 52.2 52.2 208.7 160.1 250.5 122.7 46.6 106.0 78.9 81.7 150.1 150.1 139.8 154.5 127.2 187.8 59.5 262.8 137.5 137.5 180.8 191.3 191.3 129.2 163.1 97.8 97.8 121.6 110.5 90.4 88.3 187.0 146.7 115.6 115.6 94.0 165.6

1976.19324 1976.19324 1982.52441 1982.52441 1976.40857 1950.29443 1953.60864 1950.52136 1952.40247 1952.40247 1978.57947 1983.76819 1951.51892 1951.51892 1952.55835 1983.76819 1977.69446 1978.79736 1982.63733 1982.79565 1980.76099 1952.70837 1982.63464 1982.63464 1950.61218 1977.70569 1954.83057 1955.86072 1977.84229 1977.76318 1954.67493 1954.67493 1983.76855 1976.88098 1976.88098 1954.75696 1983.53088 1952.63232 1952.63232 1977.78235 1953.70789 1980.63025 1954.75696 1954.75696 1953.83081 1952.70850 1952.70850 1975.69214 1976.89185

нннн нннн 1987.41638 1987.41638 1991.60828 1987.30518 1996.59619 1991.45837 1991.66345 1991.66345 1993.31775 1984.58472 1991.52161 1991.52161 1991.67188 1984.58472 1991.75891 1993.69043 1991.53967 1991.67944 1996.75684 1990.78955 1996.68579 1996.68579 1991.77600 1996.71313 1989.82507 1991.69678 нннн нннн 1990.63391 1990.63391 нннн 1991.67395 1991.67395 1989.67212 нннн 1991.71057 1991.71057 нннн 1990.78430 1989.73975 1990.81433 1990.81433 1994.60938 1991.68323 1991.68323 1990.78076 1990.72876

0.2 1.6 9.8 9.3 11.9 12.2 14.7 9.8 8.7 9.5 12.1 11.9 4.9 6.1 14.3 11.1 6.4 4.6 12.8 15.0 7.3 5.7 11.7 12.0 5.8 13.0 13.3 12.9 14.2 17.9 11.9 12.1 13.3 13.8 13.3 15.2 12.2 10.6 12.0 9.2 14.3 5.7 11.4 13.7 5.8 7.3 3.4 12.1 13.7

0.8 2.9 10.7 9.9 нн 14.6 15.3 11.7 10.4 11.3 13.7 13.9 6.2 7.6 15.8 12.3 7.9 5.9 14.4 16.8 8.9 6.9 13.2 13.5 6.6 14.5 15.2 14.4 15.8 21.0 нн 14.1 14.7 15.3 14.8 17.2 13.8 12.2 13.9 10.1 16.1 6.6 12.7 15.5 6.9 8.7 3.9 13.6 нн

нннн нннн нннн нннн 76901 нннн нннн 0425-02502-1 нннн нннн нннн 6350-01504-1 нннн 3168-02798-1 нннн 5783-01513-1 нннн нннн нннн нннн нннн 4006-01866-1 нннн нннн 1732-02731-1 нннн нннн нннн нннн нннн 1295 нннн нннн нннн нннн нннн нннн 4027-00803-1 нннн нннн нннн 6421-01924-1 2275-00678-1 нннн 0017-01398-1 нннн нннн нннн нннн


Table 2--Continued
New data Dec (J2000.0) T P s H T TP P Tcs Hb
a

Luyten's original data ╡
b

Ep o ch ╡ POSS I POSS I I mr ed e mblue e Tycho-2/HIPf

LHS No.

RA (J2000.0)

a



b

Dist.

c

Com.

d

RA (J2000.0)

Dec (J2000.0)

TPWi TP

NP P T

2 Ts P

Ts P

P Ts PWi

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 144 145 146 147 148 149 150 151 152 153 154 154a 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 dm dm H

00 00 00 00 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 03 03 03 03 03 03 03 03 03 03 03

51 55 57 58 00 02 02 03 04 05 07 07 12 16 19 21 32 38 43 43 48 53 05 07 11 13 16 17 19 31 34 39 42 52 52 52 56 57 01 06 09 12 13 13 16 17 18 28 30

29.84 43.84 19.76 27.83 56.41 32.24 51.19 38.84 53.64 37.76 08.20 47.95 30.61 29.31 52.27 34.59 26.20 49.15 1.18 4.00 7.65 8.99 04.84 23.42 21.01 50.09 57.46 03.23 10.06 27.74 12.58 50.73 2.92 07.14 22.01 45.65 13.40 31.14 40.83 28.63 04.02 29.53 22.98 24.39 26.91 46.62 14.06 52.97 44.93

58 -21 -62 -27 -04 71 -37 -45 -18 28 63 34 -16 24 84 -41 -21 11 -67 -15 -17 -33 -17 -66 39 15 42 34 -36 57 17 -34 -44 34 -63 01 -35 10 -34 -07 49 -38 04 18 38 -62 -62 37 34

18 13 14 51 26 40 37 47 07 29 56 12 59 19 09 39 54 21 18 56 11 25 36 34 55 59 58 13 46 22 45 08 31 23 40 55 08 47 57 40 36 05 46 49 05 34 30 22 01

7.3 5.5 47.0 25.3 57.0 47.3 45.4 31.5 29.4 32.7 28.8 29.8 56.3 25.9 33.2 23.1 18.5 35.1 34.7 6.0 20.3 2.3 52.6 16.1 20.7 9.8 3.2 27.2 41.3 41.9 48.8 0.5 0.8 21.6 49.0 49.4 29.1 23.8 58.6 40.6 47.8 49.7 27.7 36.0 56.4 38.8 22.8 56.8 5.4

1.62 1.23 1.03 1.33 1.40 1.79 1.58 1.75 1.34 1.97 1.58 1.46 1.37 1.85 1.12 1.32 1.07 1.69 1.24 1.92 1.19 1.11 1.32 1.79 1.19 1.08 1.01 1.18 1.50 1.13 1.23 1.82 1.07 1.41 1.15 1.55 1.14 1.84 1.40 1.51 1.27 1.43 1.76 1.74 1.29 1.34 1.85 1.55 1.65

75.65 98.30 91.59 103.01 70.60 102.33 82.18 189.53 71.50 96.43 78.38 72.27 61.87 112.36 296.68 110.23 213.61 145.28 193.54 296.80 187.60 81.36 97.43 85.35 116.08 108.34 125.20 101.99 68.50 89.39 144.82 162.02 92.04 134.83 58.40 110.70 136.58 103.95 153.98 125.20 94.14 59.70 88.71 129.34 144.01 77.24 68.99 133.57 161.16

6.7 35.4 25.1 2.6 9.3 12.5 3.4 9.9 7.4 4.5 14.6 0.7 9.5 9.6 3.4 4.7 99.7 12.5 39.3 нн 60.9 12.9 5.2 32.4 12.1 8.3 6.8 10.1 14.4 15.3 8.3 6.4 1.1 2.9 59.3 21.6 7.1 6.5 5.0 9.5 11.2 40.7 17.6 5.5 11.0 15.4 7.4 12.7 14.8

00 00 00 00 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 03 03 03 03 03 03 03 03 03 03 03

51 55 57 58 00 02 02 03 04 05 07 07 12 16 19 21 32 38 42 43 48 53 05 07 11 13 16 17 19 31 34 39 42 52 52 52 56 57 01 06 09 12 13 13 16 17 18 28 30

29 46 23 28 57 30 51 38 54 38 6 48 30 30 51 35 30 50 58 4 9 10 5 18 20 50 58 4 9 26 12 51 3 7 18 47 13 31 41 28 5 30 22 24 26 46 13 54 46

58 -21 -62 -27 -04 71 -37 -45 -18 28 63 34 -17 24 84 -41 -21 11 -67 -15 -17 -33 -17 -66 39 15 42 34 -36 57 17 -34 -44 34 -63 01 -35 10 -34 -07 49 -38 04 18 38 -62 -62 37 34

18 13 14 51 27 40 37 47 07 29 56 12 00 19 09 39 52 21 18 56 12 25 36 34 55 59 58 13 46 22 45 08 31 23 41 55 08 47 57 40 36 06 46 49 05 34 30 23 01

6 24 36 24 0 54 48 36 24 36 30 30 0 24 36 24 54 36 0 6 18 0 48 18 24 18 0 24 48 48 48 6 0 24 42 42 24 30 54 42 42 30 18 36 54 24 24 0 12

1.549 1.227 1.076 1.305 1.326 1.783 1.519 1.713 1.342 1.906 1.556 1.464 1.345 1.841 1.081 1.345 1.062 1.623 1.048 1.922 1.186 1.119 1.299 1.798 1.144 1.020 1.009 1.180 1.497 1.042 1.193 1.721 1.095 1.342 1.149 1.455 1.011 1.821 1.320 1.511 1.269 1.434 1.706 1.654 1.286 1.482 1.482 1.550 1.560

75.9 98.3 81.3 102.7 70.5 101.2 80.3 187.6 71.5 95.0 76.5 69.9 62.3 112.2 295.1 109.4 210.7 144.9 197.8 296.8 187.6 84.4 96.8 77.7 115.7 104.1 125.2 101.9 68.5 88.5 145.0 161.7 89.1 136.1 58.4 110.0 138.8 102.9 158.9 125.2 94.0 59.7 86.4 131.1 146.0 64.1 64.1 133.3 161.6

1952.70850 1977.63745 1977.78235 1978.81494 1982.88354 1954.72705 1976.89185 1979.70581 1977.63745 1952.71118 1954.74890 1951.83899 1983.69763 1954.74072 1952.64050 1977.63208 1980.78296 1949.88818 1976.66858 1982.73047 1982.73047 1978.88623 1977.93274 1978.81787 1953.99768 1954.68066 1953.99768 1951.83911 1979.64307 1957.96753 1951.91553 1979.87549 1975.90552 1954.97314 1977.77979 1955.80908 1979.87549 1949.88843 1979.87549 1983.97925 1953.76831 1977.63770 1955.87476 1955.81470 1955.11816 1977.77979 1977.77979 1955.11816 1955.11816

1991.68323 нннн 1990.78076 1988.75415 1995.79724 1995.58740 1990.72876 нннн нннн 1989.82251 1991.71057 1991.75708 1991.67676 1990.81165 1996.77417 нннн нннн 1988.63232 1993.84656 нннн нннн 1996.61743 1991.90955 1989.72876 1987.80078 1990.78455 1989.67505 1986.90747 нннн 1989.95923 1990.85828 1993.80273 1990.72327 1988.71411 нннн 1989.97021 1993.80273 1990.81189 1993.80273 нннн 1989.76257 нннн 1990.74084 1986.74622 1989.74622 1989.89038 1989.89038 1988.71704 1988.71704

10.8 15.2 10.4 11.8 12.8 10.2 18.1 12.0 13.3 14.0 9.2 12.9 12.0 14.2 14.7 10.3 11.2 15.4 13.6 3.4 17.7 15.7 10.4 12.0 14.5 12.9 16.3 4.9 11.3 13.4 13.4 12.0 12.0 9.7 11.0 14.1 15.1 12.0 13.2 13.7 4.1 10.4 12.9 12.8 10.2 5.4 5.0 11.2 12.2

12.4 16.6 11.7 нн 14.1 11.9 нн 13.3 15.0 16.0 10.7 14.6 нн 15.7 16.2 11.8 13.3 17.0 14.7 4.5 18.1 нн 12.1 13.5 14.5 14.0 16.3 5.6 13.2 15.0 15.0 13.5 13.5 11.2 12.4 15.8 нн 13.6 нн 14.8 4.8 12.0 14.8 14.8 11.6 6.0 5.6 нн 13.6

3667-01078-1 нннн нннн 4569 нннн 4304-00700-1 нннн 8032-01230-1 нннн нннн 4025-00626-1 нннн 5643 нннн нннн 7544-00512-1 5854-02050-1 нннн нннн нннн нннн нннн 5856-02250-1 нннн нннн нннн нннн 2318-01874-1 нннн нннн нннн нннн нннн 2334-00540-1 нннн нннн нннн нннн нннн нннн 3318-01840-1 нннн нннн нннн нннн нннн нннн 16209 нннн


Table 2--Continued
New data Dec (J2000.0) T P
a

Luyten's original data
b

Ep o ch ╡ POSS I POSS I I mr ed e mblue e Tycho-2/HIPf

LHS No.

RA (J2000.0)

a





b

Dist.

c

Com.

d

RA (J2000.0)

Dec (J2000.0)

Tcdms cdms b H P c b dm b dm

b b T

P TBb cs T P TP TP P c

P c

d d

HNP P

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 205a 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

03 03 03 03 03 03 03 03 03 03 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 05 05 05 05 05 05 05 05 05 05 05 05 05 05 06 06 06 06 06 06 06 06 06 06

31 35 35 42 44 47 47 50 50 53 01 03 06 09 25 25 26 30 32 37 38 42 46 52 55 00 03 07 08 13 17 19 28 38 37 44 44 48 56 00 00 10 14 21 37 45 49 54 57

17.40 38.53 52.16 29.55 34.98 02.11 2.88 13.98 44.45 19.76 36.68 38.38 11.78 15.91 38.52 38.51 20.00 52.70 29.24 47.49 23.17 55.77 18.65 34.79 57.98 49.00 23.89 57.74 35.05 05.28 0.08 56.78 14.70 12.58 9.55 3.54 32.14 0.26 25.52 46.72 49.68 19.59 1.55 10.41 58.12 08.93 5.58 4.30 46.81

66 -08 41 12 18 41 41 43 -06 -37 18 -05 32 -53 -06 -06 03 28 -38 -08 -65 18 48 40 -61 -05 53 -53 -18 -59 -78 20 02 79 -80 40 -70 08 05 68 68 82 15 65 34 -16 37 60 -44

43 29 42 31 26 25 25 25 05 03 43 08 57 22 52 52 36 11 59 49 24 57 44 42 09 45 07 01 10 38 17 10 58 31 28 56 08 22 21 08 09 06 09 59 30 42 06 52 17

49.0 22.1 17.4 33.3 8.3 38.1 39.1 39.3 45.3 59.1 38.8 5.5 1.5 25.7 39.4 39.4 35.1 57.3 47.8 12.1 58.6 29.3 50.1 22.9 45.2 13.2 42.5 43.9 19.3 44.3 19.6 50.4 13.5 18.8 9.0 48.8 42.2 12.5 47.4 28.8 22.1 23.9 54.1 34.1 19.6 58.0 49.0 18.2 28.4

1.60 1.58 1.06 1.62 1.24 1.38 1.46 1.46 1.60 1.16 1.19 1.17 1.13 1.23 1.43 1.43 1.05 1.09 0.10 1.66 1.54 1.30 1.25 1.68 1.10 1.24 2.02 1.17 1.49 1.07 1.11 1.08 1.16 1.21 1.10 1.21 1.01 1.27 1.04 1.18 1.19 1.35 1.45 0.63 1.26 1.34 1.65 1.15 1.00

131.79 102.40 83.33 151.33 158.40 154.47 152.95 164.53 190.10 200.65 162.23 167.90 140.41 63.48 143.21 143.70 185.87 142.37 164.63 167.19 39.79 149.59 122.71 132.70 123.00 153.63 139.70 27.50 160.15 61.39 176.10 153.03 195.68 136.06 16.90 147.90 349.12 136.37 204.79 159.19 159.15 177.83 149.38 349.12 170.11 204.06 171.59 152.30 265.27

27.0 52.5 6.9 8.5 14.1 20.1 18.0 13.8 11.5 9.1 10.2 10.8 14.4 95.4 81.0 80.9 15.8 4.8 21.3 22.4 21.1 17.5 11.8 15.5 53.2 4.8 1.1 130.2 1.5 28.3 21.2 11.2 10.6 122.7 66.3 16.6 34.3 65.6 7.2 26.1 25.6 7.4 8.0 98.2 2.1 2.2 7.1 6.6 86.1

03 03 03 03 03 03 03 03 03 03 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 05 05 05 05 05 05 05 05 05 05 05 05 05 05 06 06 06 06 06 06 06 06 06 06

31 35 35 42 44 47 47 50 50 53 01 03 06 09 25 25 26 30 32 37 38 42 46 52 56 00 03 08 08 13 16 19 28 37 37 44 44 47 56 00 00 10 14 21 37 45 49 54 57

13 35 52 29 34 2 2 13 44 19 36 39 11 7 38 38 21 53 31 49 20 57 18 36 3 49 24 12 35 9 54 56 14 32 36 5 37 56 26 49 52 16 1 15 58 9 6 4 39

66 -08 41 12 18 41 41 43 -06 -37 18 -05 32 -53 -06 -06 03 28 -38 -08 -65 18 48 40 -61 -05 53 -53 -18 -59 -78 20 02 79 -80 40 -70 08 05 68 68 82 15 65 34 -16 37 60 -44

43 29 42 31 26 25 25 25 05 04 43 08 57 23 54 54 36 12 59 49 25 57 45 42 10 45 07 01 10 38 17 10 58 32 28 56 09 22 21 08 09 06 09 58 30 43 06 52 17

42 18 24 36 6 18 24 48 36 0 42 0 12 18 0 0 30 0 42 12 6 30 0 30 24 18 42 24 18 42 30 48 12 12 0 48 6 30 48 6 0 24 54 0 18 0 54 12 48

1.591 1.582 1.012 1.572 1.204 1.370 1.370 1.439 1.428 1.144 1.174 1.166 1.093 1.211 1.223 1.223 1.033 1.038 1.023 1.520 1.486 1.286 1.204 1.633 1.102 1.223 1.989 1.174 1.376 1.030 1.108 1.024 1.186 1.192 1.100 1.229 1.321 1.218 1.056 1.174 1.174 1.337 1.399 1.148 1.264 1.323 1.618 1.147 1.134

132.8 102.4 83.5 151.5 159.4 154.6 154.6 161.0 196.8 199.4 166.8 167.9 140.8 60.4 148.0 148.0 186.4 143.3 44.5 171.2 29.2 146.7 122.5 133.2 123.0 153.1 139.4 27.5 156.6 60.3 176.1 153.2 198.1 141.2 16.9 147.2 346.6 135.4 207.0 161.4 161.4 180.7 152.8 156.8 176.7 204.0 172.3 152.3 265.0

1954.08252 1982.79346 1953.02490 1954.00598 1951.91577 1953.02490 1953.02490 1953.02490 1982.70874 1980.93860 1950.93762 1982.80725 1955.86121 1978.77441 1982.71704 1982.71704 1953.86121 1955.80933 1983.03406 1982.78271 1979.86743 1955.94324 1953.77112 1953.02502 1980.78613 1984.88147 1954.97339 1986.97107 1980.93872 1980.78613 1978.02612 1953.02246 1953.91333 1955.03894 1978.02612 1953.02515 1975.93591 1955.89697 1950.94324 1953.12378 1953.12378 1955.07739 1955.89612 1953.12378 1954.84241 1979.88135 1954.84241 1954.83972 1980.11877

1991.76831 нннн 1989.74353 1988.94312 1991.78198 1989.75720 1989.75720 1989.75171 1987.87122 1991.90955 1991.78198 нннн 1993.70789 1994.98901 1989.89038 1989.89038 1986.76831 1989.89661 1992.07373 1990.89319 1989.98083 1991.77930 1988.84790 1989.74634 нннн 1985.05200 1989.89941 нннн нннн нннн нннн 1989.75195 1990.81763 1997.18115 нннн 1989.76550 1987.90686 1991.85864 1989.84753 1996.79358 1996.79358 1997.18115 1997.10168 1989.97339 1996.77722 нннн 1989.83679 нннн 1994.92871

9.9 14.9 12.2 12.2 15.0 8.2 9.1 13.6 12.0 12.2 15.6 14.3 9.9 10.8 14.0 14.5 17.5 16.6 11.5 13.1 9.7 10.2 16.5 14.6 12.0 6.3 10.1 11.8 10.5 9.5 12.1 18.1 12.3 18.5 5.5 14.9 8.5 13.5 14.2 13.1 12.9 11.2 14.8 15.0 13.8 -1.1 13.2 11.5 11.4

10.7 16.8 13.9 14.2 15.2 9.1 10.4 15.3 13.6 нн 16.9 15.8 11.2 12.3 15.6 16.2 19.8 18.2 13.0 13.6 10.3 11.8 18.3 15.7 13.5 7.6 11.7 13.4 12.0 10.0 13.6 21.0 14.2 20.3 6.4 16.4 9.1 16.0 14.8 14.6 14.2 12.8 16.4 16.3 15.8 нн 15.1 13.0 13.2

4074-01384-1 нннн нннн нннн нннн 2871-00392-2 нннн нннн нннн 1818нннн нннн нннн нннн нннн нннн нннн нннн нннн нннн нннн нннн 1275-02034-1 нннн нннн нннн 4762-01490-1 3734-00270-1 нннн 5905-01336-1 8517-02144-1 нннн нннн нннн нннн нннн нннн нннн нннн нннн нннн нннн нннн нннн нннн нннн 32349 нннн нннн нннн


Table 2--Continued
New data Dec (J2000.0)
a

Luyten's original data
b

Ep o ch ╡ POSS I POSS I I mr ed e mblue e Tycho-2/HIPf

LHS No.

RA (J2000.0)

a





b

Dist.

c

Com.

d

RA (J2000.0)

Dec (J2000.0)

c T b Pd Pd P PWs Bb d Bb d Tcs N TP d d N Tcs Bb TBcs T Ts Ts

b bs Tdms Tdms

Tcdms Tdms

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 237a 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 T B s P cs

06 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 09 09 09 09 09 09 09 09 09 09 09 09

59 03 04 10 13 16 30 30 33 35 39 40 40 43 45 45 48 50 50 53 00 03 13 18 25 28 29 32 35 36 41 41 54 55 55 55 59 00 14 14 15 17 17 17 20 20 24 29 32

28.93 55.88 45.94 01.84 40.55 27.40 42.57 47.23 52.82 46.31 19.72 20.79 20.85 24.79 34.99 38.00 16.39 14.83 15.59 33.00 32.13 6.27 27.80 23.95 52.97 22.14 49.47 51.50 49.28 25.46 20.25 32.56 12.50 7.93 24.82 24.90 5.42 52.21 22.77 24.69 56.20 6.07 30.50 46.01 22.04 57.99 22.33 18.79 51.36

19 52 -38 38 -13 23 48 48 22 03 05 -17 -17 72 -34 -33 20 07 07 30 29 34 -09 -12 69 35 26 -31 68 67 59 -32 -08 01 70 70 -31 48 52 52 53 -77 77 58 26 03 -80 25 51

20 42 36 31 27 42 11 10 23 29 13 24 24 48 10 47 22 11 11 55 12 56 27 37 01 00 46 30 04 17 29 56 05 32 47 47 13 25 41 41 25 49 14 25 43 22 31 58 40

53.3 5.8 9.2 46.1 58.1 15.8 58.8 26.6 30.1 37.3 18.0 39.3 50.9 48.8 20.8 48.0 5.4 47.3 35.4 6.0 44.5 52.9 57.1 55.8 59.8 59.2 32.2 3.0 9.0 42.3 49.6 34.9 1.7 43.8 39.2 38.5 27.1 23.6 11.8 10.9 22.8 25.1 40.7 21.7 40.7 6.4 24.6 34.5 36.2

1.33 1.17 1.30 1.04 1.28 1.28 1.29 1.29 1.14 1.02 1.25 0.96 2.01 1.24 1.71 1.69 1.76 1.84 1.85 1.97 1.18 1.61 1.67 1.03 1.44 1.05 1.27 1.35 0.97 1.06 1.32 1.60 1.35 1.27 1.41 1.37 1.16 1.08 1.66 1.69 1.56 1.11 1.07 1.17 1.13 1.18 1.15 1.09 1.14

135.40 141.89 102.81 205.28 157.64 338.70 189.80 189.80 125.93 170.20 214.70 120.73 128.31 165.47 350.77 350.30 124.13 170.76 170.77 158.80 188.38 196.72 131.27 164.18 206.81 252.03 238.45 304.42 236.23 272.62 190.11 322.05 129.00 166.31 254.55 255.20 139.33 191.69 249.88 247.06 222.89 141.26 270.27 177.82 123.23 161.73 16.69 254.80 240.06

13.2 31.8 65.7 14.1 7.7 34.3 5.8 4.1 12.8 4.8 26.4 14.3 3.8 6.3 3.2 нн 5.5 12.4 8.8 нн 8.6 3.5 4.2 4.2 20.1 5.4 22.0 7.0 83.0 3.1 2.5 22.5 7.6 2.1 16.7 12.7 11.8 13.3 9.1 5.7 7.5 63.5 8.9 27.4 14.0 0.5 10.6 121.9 3.4

06 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 09 09 09 09 09 09 09 09 09 09 09 09

59 03 04 10 13 16 30 30 33 35 39 40 40 43 45 45 48 50 50 53 00 03 13 18 25 28 29 32 36 36 41 41 54 55 55 55 59 00 14 14 15 16 17 17 20 20 24 29 32

28 57 50 2 41 27 42 47 52 46 18 20 21 24 35 38 16 14 15 33 32 6 28 24 50 22 48 52 4 26 20 31 12 8 22 23 6 51 22 25 56 55 32 45 21 58 19 10 51

19 52 -38 38 -13 23 48 48 22 03 05 -17 -17 72 -34 -33 20 07 07 30 29 34 -09 -12 69 35 26 -31 68 67 59 -32 -08 01 70 70 -31 48 52 52 53 -77 77 58 26 03 -80 25 51

20 42 35 32 27 41 12 10 23 29 13 24 24 48 10 47 22 11 11 55 12 56 28 38 02 00 46 30 04 17 29 56 05 32 47 47 13 25 41 41 25 50 14 25 43 22 31 58 40

54 36 24 0 54 42 0 30 36 36 24 48 54 54 24 48 6 48 36 6 36 54 0 0 12 54 42 6 0 42 48 24 0 42 30 30 18 18 6 6 30 18 48 48 42 6 18 6 36

1.225 1.166 1.206 1.052 1.277 1.123 1.295 1.295 1.104 1.022 1.251 1.252 1.252 1.246 1.688 1.688 1.728 1.778 1.778 1.973 1.177 1.571 1.480 1.017 1.377 1.102 1.290 1.350 1.010 1.030 1.310 1.709 1.240 1.066 1.394 1.394 1.005 1.130 1.690 1.690 1.550 1.023 1.050 1.134 1.007 1.178 1.253 1.086 1.093

137.3 141.7 100.9 207.9 153.3 122.0 189.8 189.8 122.8 170.2 214.7 116.6 116.6 170.2 350.3 350.3 124.2 173.2 173.2 158.8 187.4 198.3 141.5 164.8 205.4 251.5 242.2 304.3 233.1 273.5 191.2 322.0 130.8 176.7 255.2 255.2 136.6 193.3 248.1 248.1 223.5 139.3 269.7 180.6 120.8 163.2 8.5 254.8 240.1

1951.85327 1954.07458 1980.20605 1953.86157 1981.17651 1956.26819 1953.12122 1953.12122 1954.97363 1955.95715 1955.95715 1983.01807 1983.01807 1953.13220 1977.06445 1977.06445 1955.94629 1955.95715 1955.95715 1955.19495 1955.19495 1954.15405 1983.10559 1983.10559 1953.13220 1953.02551 1955.21692 1977.21204 1954.89722 1954.89722 1954.90540 1979.97168 1982.07849 1982.06189 1955.06958 1955.06958 1979.23950 1954.17871 1954.14868 1954.14868 1954.14868 1978.10571 1953.18433 1954.90540 1955.22522 1949.91357 1978.10571 1949.89990 1953.13232

1989.84229 1989.92700 1995.06580 1989.85596 1986.19177 1997.02539 нннн нннн 1991.18127 нннн нннн 1984.97266 1984.97266 1991.93274 1991.87402 1991.87402 нннн 1990.90808 1990.90808 1989.08276 1989.83691 1988.94910 1986.18359 1986.18359 1995.09387 1989.85889 1989.91626 1991.26025 1995.09387 1995.09387 1996.20813 1994.24390 1991.13696 1990.96277 1995.09387 1995.09387 1993.20825 1991.11853 1991.25525 1991.25525 1991.25525 1996.13391 1997.11023 1997.10486 1987.24695 1991.09949 1996.13391 нннн 1995.24426

14.1 12.9 12.4 11.8 14.2 15.1 12.9 14.6 15.4 13.6 0.4 15.9 13.1 13.0 5.4 16.0 11.8 17.0 16.9 8.1 7.1 15.4 13.6 6.0 15.5 11.1 14.4 6.5 12.4 9.5 14.1 12.2 16.4 9.6 8.8 9.1 14.0 12.9 7.8 7.9 13.7 13.4 10.4 14.2 14.7 12.3 10.6 15.8 3.2

15.9 14.7 13.5 13.1 15.5 16.8 15.1 15.5 17.6 14.7 0.7 17.6 13.0 14.5 6.0 18.0 13.4 18.1 17.8 8.8 7.9 17.6 15.4 6.9 17.0 12.7 16.0 7.4 13.7 11.1 16.3 11.9 17.9 11.1 10.4 10.8 15.3 14.2 9.4 9.5 13.8 14.9 12.1 15.8 17.6 13.8 11.0 17.3 3.6

нннн нннн нннн 2944-01956-1 нннн нннн нннн нннн нннн нннн нннн нннн нннн нннн 7114-02950-1 нннн 1370-02407-1 нннн нннн нннн 1938-00445-1 нннн нннн 5435-02991-1 нннн 2489-00672-1 нннн 7135-02774-1 нннн 4133-00241-1 нннн нннн нннн нннн 4378-02162-1 4378-02162-2 нннн нннн 3806-01814-1 3806-01819-1 нннн нннн 4541-00108-1 нннн нннн нннн нннн нннн нннн


Table 2--Continued
New data Dec (J2000.0)
a

Luyten's original data ╡
b

Ep o ch ╡ POSS I POSS I I mr ed e mblue e Tycho-2/HIPf

LHS No.

RA (J2000.0)

a



b

Dist.

c

Com.

d

RA (J2000.0)

Dec (J2000.0)

bc T

Tcs b P Bb P

2N Tdm dm Bb P

P Tb cs Bb

T T b P Tcds cdms Tcds T cdms Hb P

271 272 273 274 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 Tcs

09 09 09 09 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12

42 43 44 51 00 01 02 09 11 14 25 35 36 37 37 41 44 45 45 45 48 49 50 52 01 10 11 11 11 21 23 23 24 28 31 32 34 34 42 46 46 46 46 47 50 53 56 57 02

46.28 46.18 47.40 9.98 44.28 10.73 21.86 17.09 22.14 51.90 23.93 26.75 3.91 1.92 28.96 37.81 32.00 39.09 39.05 59.69 12.75 45.36 52.12 4.35 19.75 8.30 10.70 22.70 13.66 38.50 8.10 44.58 13.06 27.75 8.36 45.13 29.49 29.74 11.10 31.07 35.15 31.11 42.90 44.33 57.81 12.47 54.82 56.21 33.74

-68 -17 -18 -12 32 -30 48 35 49 -47 00 69 -14 71 30 37 -61 -19 -19 59 -11 35 06 13 03 28 -10 -06 -41 06 25 08 21 07 -14 43 -32 -32 26 -40 50 -40 -14 00 48 -31 26 -27 08

53 47 12 19 18 23 05 14 27 09 43 27 42 10 11 36 11 06 06 04 20 32 48 59 00 56 57 31 05 08 53 33 21 31 57 59 49 49 42 30 52 30 00 48 22 23 39 42 25

9.0 6.6 48.7 56.9 34.3 24.5 17.4 53.5 15.2 26.5 2.0 1.7 18.4 55.7 9.1 39.7 42.0 51.8 52.9 50.5 11.4 50.0 27.6 49.7 15.9 51.6 3.2 58.3 35.2 26.0 35.2 48.6 34.8 2.2 22.9 41.5 52.8 56.6 23.8 1.3 54.7 1.9 51.8 17.4 37.8 57.2 56.1 25.4 48.8

1.02 1.47 1.61 2.56 1.22 1.27 1.65 1.28 1.45 0.99 1.27 1.75 0.74 2.00 1.00 1.52 1.66 1.97 1.94 1.78 2.91 1.23 1.19 1.10 1.20 1.03 1.11 2.16 1.26 1.77 1.03 1.02 1.01 1.25 1.57 1.15 1.06 0.94 1.22 1.58 1.03 1.58 1.06 1.35 1.80 1.13 1.39 1.24 1.18

353.77 278.65 265.61 143.39 236.85 300.28 201.70 210.74 249.60 289.31 175.01 250.50 135.43 254.20 231.86 258.00 348.10 251.99 251.14 213.29 145.34 213.20 224.15 278.77 111.72 242.80 302.28 159.81 259.44 205.63 249.52 281.01 268.24 192.73 163.67 167.00 320.93 321.03 132.23 284.74 237.96 287.40 137.77 152.00 237.15 259.66 154.49 240.10 217.19

36.4 2.6 8.6 16.9 3.9 120.0 60.6 1.2 11.6 17.1 4.2 7.8 17.6 63.4 29.5 21.8 нн 103.0 101.9 52.1 3.7 16.7 3.0 9.2 11.4 9.9 18.4 11.3 108.3 7.7 1.6 9.1 1.4 11.8 20.3 1.5 6.5 18.4 83.1 56.2 17.5 79.8 18.8 12.0 8.3 7.5 4.6 3.1 63.4

09 09 09 09 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12

42 43 44 51 00 01 02 09 11 14 25 35 36 36 37 41 44 45 45 45 48 49 50 52 01 10 11 11 11 21 23 23 24 28 31 32 34 34 42 46 46 46 46 47 50 53 56 57 02

53 46 48 9 44 20 22 17 21 51 24 27 3 49 27 36 32 33 33 58 13 44 52 4 19 9 10 22 22 39 8 45 13 27 7 45 30 31 9 36 37 38 44 45 57 13 55 56 38

-68 -17 -18 -12 32 -30 48 35 49 -47 00 69 -14 71 30 37 -61 -19 -19 59 -11 35 06 13 03 28 -10 -06 -41 06 25 08 21 07 -14 43 -32 -32 26 -40 50 -40 -14 00 48 -31 26 -27 08

53 47 12 19 18 23 06 14 27 09 43 26 42 11 10 36 11 07 07 04 20 32 48 59 00 56 56 31 04 08 53 33 21 31 57 59 49 50 43 30 52 29 00 48 22 23 40 42 25

12 6 48 48 36 24 18 54 12 12 6 54 30 6 54 36 42 48 48 0 12 48 30 42 18 48 48 54 42 24 36 42 36 6 18 42 54 6 42 0 54 48 42 24 36 54 0 24 54

1.120 1.426 1.633 1.807 1.197 1.297 1.571 1.277 1.455 1.137 1.101 1.752 1.120 1.997 1.011 1.505 1.657 1.980 1.980 1.770 1.644 1.231 1.150 1.126 1.103 1.035 1.067 1.107 1.277 1.749 1.059 1.036 1.050 1.189 1.393 1.146 1.063 1.063 1.080 1.592 1.036 1.592 1.035 1.348 1.821 1.140 1.380 1.246 1.116

356.8 280.0 264.0 143.5 236.0 297.9 203.8 212.4 249.5 292.2 184.6 250.5 297.9 254.2 233.1 256.1 348.1 250.5 250.5 214.3 158.5 213.2 225.1 279.6 112.3 242.8 302.4 202.5 264.5 206.0 252.0 278.4 270.2 192.6 164.0 167.0 320.3 320.3 135.5 284.4 238.1 284.4 132.6 152.0 237.5 263.1 154.6 239.5 219.9

1976.25256 1977.07019 1977.07019 1983.35437 1955.19788 1980.20068 1953.12146 1955.19788 1955.21167 1978.17139 1983.17957 1953.17883 1984.08105 1953.17883 1955.28259 1953.34583 1987.05127 1980.20093 1980.20093 1954.01221 1984.18188 1953.34583 1953.28552 1954.11072 1953.28552 1955.21997 1983.28625 1984.17651 1975.19055 1955.28821 1955.21997 1950.27734 1955.21997 1955.28821 1983.35730 1953.28296 1975.19336 1975.19336 1955.27466 1977.07043 1950.21741 1977.07043 1983.35461 1984.39172 1955.16272 1979.17432 1955.27466 1978.13062 1955.28284

1991.13147 1996.13110 1996.13110 1987.31238 1988.94934 1995.15063 1989.93005 1988.94934 1989.93005 1992.24585 1991.27173 нннн 1986.25208 нннн 1990.00110 1990.21960 нннн 1995.09045 1995.09045 1991.28540 1986.02466 нннн 1991.06409 1993.22253 1995.15417 нннн 1992.03821 1985.05481 1990.09595 1996.27368 1992.32288 1989.26355 1995.23071 1989.26355 1991.27942 нннн 1991.12061 1991.12061 1996.37207 1996.21313 1991.10522 1996.21313 1991.27942 нннн 1991.11072 1995.10413 1996.37207 1993.20825 1996.30408

13.5 12.5 12.4 9.9 10.7 11.9 10.2 15.2 6.8 13.6 18.0 12.0 16.4 16.4 17.8 11.8 13.8 11.2 16.2 17.2 14.8 11.8 10.8 11.7 13.1 12.3 9.4 13.6 12.8 13.0 14.0 11.2 13.9 10.3 13.6 13.9 6.0 15.0 10.8 5.0 9.9 15.0 11.7 11.1 12.7 12.8 14.8 7.1 13.0

15.2 14.8 14.4 11.4 12.5 12.9 11.8 16.8 8.3 14.7 17.5 13.3 17.7 17.3 19.4 13.8 15.3 13.0 16.5 17.6 16.7 13.9 12.5 13.5 14.7 14.0 10.7 15.5 13.9 14.3 16.2 12.3 14.3 11.6 15.3 15.6 7.0 17.0 12.6 5.7 10.6 нн нн 12.8 14.3 14.8 16.1 8.4 14.3

нннн нннн нннн нннн нннн 7169-02072-1 нннн нннн 3437-00811-1 нннн нннн нннн нннн нннн нннн нннн нннн 6078-01934-1 нннн нннн нннн нннн нннн нннн нннн нннн 5504-00085-1 нннн нннн нннн нннн 0855-00836-1 нннн 0856-01259-1 нннн нннн 7220-00866-1 нннн нннн 7745-01381-1 3454-02098-1 нннн 57459 нннн нннн нннн нннн 6674-00576-1 нннн


Table 2--Continued
New data Dec (J2000.0)
a

Luyten's original data ╡
b

Ep o ch ╡ POSS I POSS I I mr ed e mblue e Tycho-2/HIPf

LHS No.

RA (J2000.0)

a



b

Dist.

c

Com.

d

RA (J2000.0)

Dec (J2000.0)

b cs

P bd bd d d

T

H H

cs

Tcs cs

s

T d d Tcs

321 322 323 324 325 325a 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 b Bb

12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14

02 15 17 18 21 23 24 25 28 28 29 29 29 33 34 34 37 38 38 40 40 47 50 56 04 08 09 10 11 18 22 29 29 30 30 30 37 40 41 45 46 48 48 49 06 15 15 18 19

40.21 10.97 30.28 59.49 32.93 56.31 26.84 50.90 40.34 43.24 14.28 14.52 34.58 17.50 15.76 53.25 52.23 49.19 52.55 24.31 46.46 56.64 7.85 23.83 57.38 39.67 20.51 1.88 52.39 24.29 56.83 21.29 59.85 2.78 13.62 31.17 17.43 8.87 11.50 05.08 55.60 3.08 13.48 44.81 55.66 16.10 32.69 20.77 11.06

36 -10 -29 11 28 -27 -04 -24 -71 -71 53 53 -55 09 20 05 -52 -38 11 -23 -43 09 54 15 -52 08 -40 22 27 -18 24 11 10 -08 -08 19 35 43 30 17 05 23 23 -22 38 47 04 -52 -07

36 18 02 07 54 57 43 33 27 27 33 32 59 01 37 03 00 22 41 17 33 45 47 41 26 04 09 30 52 18 28 26 22 42 34 09 01 46 01 47 42 34 36 06 36 47 39 24 18

5.8 50.7 22.0 32.8 21.1 47.8 37.0 19.4 54.2 59.5 5.0 43.8 38.8 14.1 5.6 52.6 5.3 55.7 44.7 44.5 59.0 5.0 4.9 43.0 36.7 21.4 29.4 3.8 41.5 42.3 2.6 26.6 38.1 25.4 29.4 33.0 0.5 37.2 24.6 7.6 55.8 45.0 47.4 39.9 54.4 25.3 29.9 14.4 13.0

1.05 1.41 1.05 1.26 1.03 1.22 1.31 0.93 0.95 0.94 1.21 1.22 1.22 1.73 1.37 1.14 1.02 1.51 1.16 1.06 1.05 1.11 1.31 1.42 1.14 1.01 1.34 1.17 1.19 1.51 1.06 1.24 1.63 1.21 1.21 1.36 1.20 1.10 1.54 1.89 1.13 1.46 1.46 1.82 1.11 1.40 1.07 0.95 1.54

203.82 162.87 263.05 278.51 251.94 282.61 241.40 258.13 338.78 331.39 275.52 274.59 224.14 275.94 167.38 256.77 271.75 202.07 256.68 219.97 311.57 245.42 190.83 198.32 222.98 282.09 142.79 230.60 317.77 222.89 213.76 165.29 131.19 248.60 249.54 198.75 253.46 285.29 275.27 166.04 220.79 274.03 273.82 254.21 159.48 236.01 220.99 233.98 206.43

2.5 2.7 4.2 8.0 46.5 9.2 12.6 1.9 40.3 39.7 2.7 6.3 51.4 8.4 3.4 4.0 5.7 31.8 7.4 4.9 16.8 5.4 1.7 16.9 31.9 5.6 24.1 4.1 5.2 4.2 3.5 10.7 3.1 12.4 142.8 3.9 9.5 9.5 36.0 1.9 6.2 3.2 6.6 3.4 101.9 22.7 12.0 20.7 1.4

12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14

02 15 17 19 21 23 24 25 28 28 29 29 29 33 34 34 37 38 38 40 40 47 50 56 04 08 09 10 11 18 22 29 30 30 30 30 37 40 41 45 46 48 48 49 06 15 15 18 19

40 11 30 0 32 57 26 51 32 35 14 14 29 17 16 53 52 49 53 24 48 57 8 25 55 40 20 2 52 24 57 22 0 2 4 31 18 8 11 5 56 3 13 45 55 16 32 23 11

36 -10 -29 11 28 -27 -04 -24 -71 -71 53 53 -56 09 20 05 -52 -38 11 -23 -43 09 54 15 -52 08 -40 22 27 -18 24 11 10 -08 -08 19 35 43 30 17 05 23 23 -22 38 47 04 -52 -07

36 18 02 07 55 57 43 33 27 27 33 32 00 01 37 03 00 22 41 17 34 45 47 41 27 04 09 30 52 18 28 26 22 42 34 09 00 46 02 47 42 34 36 06 38 47 39 24 18

6 48 24 30 6 48 36 18 48 54 6 48 0 18 6 54 0 24 48 42 0 6 6 42 0 24 6 0 42 42 0 24 36 30 24 30 54 36 0 6 54 48 48 42 36 48 36 18 12

1.053 1.024 1.145 1.301 1.042 1.293 1.311 1.013 1.170 1.170 1.232 1.232 1.250 1.811 1.338 1.163 1.035 1.487 1.163 1.102 1.047 1.077 1.286 1.440 1.151 1.026 1.196 1.140 1.186 1.521 1.080 1.228 1.525 1.202 1.188 1.397 1.232 1.144 1.599 1.898 1.142 1.484 1.484 1.805 1.046 1.436 1.060 1.118 1.355

207.6 178.2 265.9 279.1 253.9 284.4 241.4 264.0 338.1 338.1 275.1 275.1 231.9 277.4 167.6 258.8 271.4 207.2 258.5 219.9 311.7 246.8 192.2 200.5 224.9 281.0 142.4 229.5 317.5 225.0 215.6 165.0 134.2 246.2 247.7 200.5 252.9 285.2 273.7 166.7 222.2 275.6 275.6 254.4 159.7 237.5 225.3 248.4 235.5

1956.35022 1984.25842 1975.35461 1955.28284 1955.29382 1975.35461 1984.17664 1979.45032 1987.18799 1987.18799 1953.28857 1953.28857 1976.47913 1956.19226 1955.38684 1956.18958 1979.15515 1982.37109 1956.19226 1979.45032 1976.30469 1950.12988 1953.28857 1956.20325 1976.31030 1956.18970 1979.15808 1956.21130 1955.28833 1976.49011 1950.38147 1955.37036 1955.37036 1983.19360 1983.19360 1950.29395 1950.37061 1950.46362 1950.42529 1954.24756 1950.29956 1950.27771 1950.27771 1977.15259 1955.28308 1950.37878 1950.30505 1988.46826 1983.49695

1989.04236 1989.18079 1993.38904 1991.26917 1993.21729 1993.38904 нннн 1994.29041 1994.10132 1994.10132 1996.35046 1996.35046 1991.12061 1991.20911 1996.36401 1996.27112 1994.41638 1995.39453 1991.20911 1994.29041 1991.41370 1991.20911 1996.35046 1991.13538 1993.46851 1995.15442 1994.25757 1991.37036 1993.28845 1993.21375 1991.37036 1997.27771 1997.27771 1995.40552 1995.40552 1992.19507 1989.18457 1994.42249 1996.51965 1992.19507 1993.35950 1996.38330 1996.38330 1993.29041 1995.31299 1989.17639 1989.26941 1993.46570 1985.22192

12.2 6.0 16.6 12.9 16.7 17.9 14.2 12.3 13.8 15.7 17.2 14.0 14.1 12.4 16.9 16.0 10.9 12.7 11.2 16.7 12.3 11.4 17.1 13.3 9.2 15.0 13.1 12.5 4.3 4.7 12.2 11.7 9.5 14.0 12.6 13.7 15.7 12.3 16.5 10.0 14.2 14.9 14.3 8.4 13.3 15.5 13.2 14.4 13.4

13.3 6.5 18.1 15.4 18.3 21.0 15.8 13.4 15.1 17.3 19.7 15.5 15.4 14.1 19.7 17.5 13.6 14.2 12.8 16.5 нн нн 18.6 14.6 10.5 16.9 14.6 13.8 4.9 5.5 13.8 13.4 10.6 15.6 12.1 15.4 17.2 13.4 18.3 11.6 16.0 16.5 16.3 9.8 14.9 17.1 15.3 15.0 15.2

нннн нннн нннн нннн нннн нннн нннн нннн нннн нннн нннн нннн нннн нннн нннн нннн 8244-03175-1 нннн нннн нннн 61874 62452 нннн нннн нннн нннн нннн нннн 1996-02400-1 нннн нннн нннн нннн нннн нннн нннн нннн нннн нннн 1463-00985-1 нннн нннн нннн 6135-00445-1 нннн нннн нннн нннн нннн


Table 2--Continued
New data Dec (J2000.0) Bb Tds ds T TBcs
a

Luyten's original data ╡
b

Ep o ch ╡ POSS I POSS I I mr ed e mblue e Tycho-2/HIPf

LHS No.

RA (J2000.0)

a



b

Dist.

c

Com.

d

RA (J2000.0)

Dec (J2000.0)

d d Bb b Tcs Tcs b cds Tcds T H T T b Tb cs TP d d dm dm T Tb cs m c d d P P b dm b dm Ts

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417

14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16

20 20 25 25 29 30 31 35 39 47 49 49 50 50 51 55 55 57 57 57 03 06 07 11 13 19 21 23 32 34 35 35 39 40 40 41 43 43 45 56 57 57 02 08 13 14 20 20 24

7.45 53.00 43.48 46.76 29.71 47.72 38.37 8.96 0.44 25.43 31.53 33.34 28.89 41.80 40.47 11.05 35.98 26.60 28.00 32.29 24.67 14.35 23.59 50.62 50.90 27.22 48.15 51.20 12.93 27.90 20.58 20.36 39.28 3.80 3.81 16.63 03.10 18.48 40.41 27.20 13.12 14.74 51.03 15.07 48.63 26.42 2.53 2.53 09.32

-09 36 23 23 15 -08 -25 16 18 -17 -26 -26 -08 -16 -24 53 -15 -21 -21 31 03 -37 24 -10 -01 -07 -48 17 -41 02 17 17 -55 43 43 75 -10 -20 -20 15 05 05 20 -10 -57 02 -37 -37 48

37 57 37 37 31 38 25 53 39 42 06 06 38 56 18 40 33 24 24 23 46 25 56 14 21 43 19 27 16 16 42 43 09 29 29 59 56 15 36 39 05 07 35 26 34 14 31 31 21

14.8 16.1 1.5 14.5 57.5 46.8 33.9 53.1 37.5 16.7 32.4 21.6 38.2 35.0 14.9 49.2 48.6 43.7 55.8 44.8 55.8 20.4 7.9 18.6 5.0 22.5 3.5 56.1 32.1 45.6 46.4 3.8 11.8 37.4 37.4 34.0 0.6 34.6 17.5 39.8 59.1 2.3 19.6 14.2 14.1 47.2 27.7 27.7 10.5

1.58 1.35 1.37 1.37 1.68 1.29 1.32 1.55 1.25 1.06 1.14 1.14 1.73 1.16 1.04 1.08 1.91 2.10 2.02 1.35 1.10 1.16 0.98 0.96 1.37 0.95 1.64 1.34 1.56 1.10 1.21 1.22 1.14 1.26 1.28 1.10 1.16 1.21 1.22 1.38 1.39 1.39 1.59 1.35 1.64 1.55 3.70 3.70 1.23

184.72 278.97 144.59 143.19 321.15 259.25 269.51 253.74 178.54 247.42 260.32 257.85 182.82 218.94 245.48 296.21 202.11 147.89 149.16 210.58 306.87 200.52 300.73 252.84 248.43 256.73 260.37 196.24 228.75 257.17 261.70 261.54 184.87 104.95 104.80 132.47 254.87 190.30 241.99 166.95 177.84 177.43 215.85 195.10 209.40 244.15 326.78 326.81 111.50

7.2 7.9 8.0 11.0 5.5 4.3 6.3 11.1 7.7 7.7 12.0 9.6 2.8 15.9 7.8 1.3 14.2 9.5 7.8 9.5 6.5 43.6 8.3 20.4 298.5 21.0 9.2 4.8 44.5 2.8 8.4 5.6 65.0 11.4 16.0 14.1 1.6 12.9 5.8 8.7 5.4 4.5 27.7 13.9 34.0 8.2 21.1 26.9 3.5

14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16

20 20 25 25 29 30 31 35 39 47 49 49 50 50 51 55 55 57 57 57 03 06 07 11 13 19 21 23 32 34 35 35 39 40 40 41 43 43 45 56 57 57 02 08 13 14 20 20 24

7 53 43 46 30 48 38 9 0 25 31 33 29 41 41 11 35 27 28 33 25 18 23 52 31 26 49 51 9 28 20 20 32 3 3 17 3 19 40 27 13 15 53 16 49 26 3 3 9

-09 36 23 23 15 -08 -25 16 18 -17 -26 -26 -08 -16 -24 53 -15 -21 -21 31 03 -37 24 -10 -01 -07 -48 17 -41 02 17 17 -55 43 43 75 -10 -20 -20 15 05 05 20 -10 -57 02 -37 -37 48

37 57 37 37 31 38 25 53 39 42 06 06 38 56 18 40 33 24 24 23 47 25 56 14 21 43 19 28 16 16 42 43 09 29 29 59 56 15 36 39 05 07 35 26 34 14 31 31 21

12 24 6 18 54 48 30 42 42 12 42 30 36 24 12 48 48 36 48 42 0 24 6 18 0 12 0 0 36 48 48 6 30 30 24 48 0 24 18 48 54 0 18 12 48 42 48 54 12

1.062 1.363 1.376 1.376 1.711 1.269 1.386 1.555 1.230 1.177 1.217 1.217 1.589 1.451 1.020 1.083 1.736 1.994 1.994 1.374 1.136 1.114 1.004 1.005 1.375 1.224 1.645 1.302 1.539 1.196 1.219 1.219 1.152 1.225 1.225 1.141 1.187 1.143 1.375 1.328 1.398 1.398 1.571 1.354 1.635 1.570 1.222 1.222 1.231

215.2 279.6 144.9 144.9 321.8 260.0 268.6 255.5 180.3 252.6 260.7 260.7 190.1 242.7 245.0 295.3 209.6 149.2 149.2 211.1 308.3 201.9 299.3 257.6 248.8 256.3 260.1 196.8 228.5 262.7 263.0 263.0 190.3 106.3 106.3 133.8 254.2 194.4 243.5 166.4 177.3 177.3 217.6 195.1 209.4 247.3 324.5 324.5 111.6

1984.24231 1950.38428 1950.21777 1950.21777 1955.35962 1984.24231 1976.40295 1955.35962 1955.35962 1983.36035 1983.29199 1983.29199 1983.34937 1983.36035 1983.29199 1953.27783 1982.52441 1978.43701 1978.43701 1955.28308 1955.37048 1975.19373 1950.29688 1982.54077 1955.29956 1981.33594 1987.31409 1950.29968 1988.30237 1982.52161 1950.29419 1950.29419 1975.51343 1955.24768 1955.24768 1953.52380 1982.55164 1976.40857 1976.40857 1950.29443 1954.39539 1954.39539 1950.36816 1982.60376 1988.43054 1980.23157 1986.41248 1986.41248 1955.24512

1985.22192 1992.33423 1996.29895 1996.29895 1994.33765 1985.22192 1992.24585 1993.36230 1992.19250 1994.18628 1996.28687 1996.28687 1986.48218 1987.41638 1996.28687 1991.43896 1987.41638 1993.29858 1993.29858 1994.58411 1994.41724 1991.44934 1991.36792 1996.22949 1994.36511 1991.21094 1992.57654 1992.49231 нннн 1993.45264 1992.49231 1992.49231 1992.55188 1989.18481 1989.18481 1994.43909 1990.32874 1991.60828 1991.60828 1994.43652 1994.33789 1994.33789 1987.30518 нннн нннн 1994.42822 1991.27942 1991.27942 1992.42151

12.8 15.3 9.9 9.7 10.9 9.6 14.8 14.1 17.1 16.0 12.2 11.9 14.4 14.5 7.9 7.8 14.2 8.6 5.9 11.7 11.6 12.8 10.2 13.6 6.7 10.6 5.7 13.1 9.5 14.1 11.9 14.0 13.7 12.0 13.0 12.4 7.3 13.1 15.8 3.8 14.6 12.3 12.4 14.0 9.1 14.1 10.4 14.3 10.4

14.6 17.2 11.7 11.3 12.5 11.3 16.8 15.6 20.2 16.6 13.5 13.2 15.9 15.8 9.1 8.8 15.7 10.2 7.2 13.0 13.2 нн 12.0 15.2 7.5 12.3 6.4 15.0 11.2 15.7 13.8 15.7 15.0 13.6 14.5 14.1 7.8 14.4 18.0 4.2 16.3 14.7 14.1 16.1 10.0 15.8 12.0 16.0 12.2

нннн нннн 2008-00790-1 нннн 1476-01306-1 5563-00779-1 нннн нннн нннн нннн нннн нннн нннн нннн 6747-01787-1 3861-00376-1 нннн нннн 6180-00855-1 2555-01164-3 нннн 73903 2024-01358-1 нннн 5001-00567-1 нннн 8298-01229-1 нннн 7844-01976-1 нннн нннн нннн нннн нннн нннн 4560-03069-1 5601-00694-1 нннн нннн нннн нннн нннн нннн нннн нннн нннн нннн нннн 3495-00601-1


Table 2--Continued
New data Dec (J2000.0)
a

Luyten's original data
b

Ep o ch ╡ POSS I POSS I I mr ed e mblue e Tycho-2/HIPf

LHS No.

RA (J2000.0)

a





b

Dist.

c

Com.

d

RA (J2000.0)

Dec (J2000.0)

b cs Tcs d d Bb bm Hcs Bb d TBb cds Bb d Tb cd b cds Tdms dms T PWdm PWdm TPW P PWdm PW TPWdm PWdm Tcs Tb Ts NPW Ts b BNb Tdms Hdms dm dm b

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 P

16 16 16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18

25 30 30 34 34 35 37 42 52 55 55 55 04 05 05 12 12 12 14 15 15 16 18 18 18 18 19 19 20 25 27 28 36 37 37 39 46 48 50 02 05 05 17 18 18 20 22 22 35

14.03 18.67 28.46 20.40 21.62 40.39 5.68 4.42 58.80 25.32 28.77 35.35 22.47 03.40 13.69 07.82 7.91 55.09 8.81 20.91 20.91 13.36 29.00 32.67 57.00 58.70 03.86 3.71 46.43 45.23 40.02 39.94 25.91 3.00 53.35 51.48 34.81 8.12 55.00 46.26 27.37 27.42 15.73 4.07 4.15 57.43 6.81 27.28 43.12

15 -12 04 57 57 -30 -01 10 -00 -08 -08 -08 16 -05 -05 45 45 42 60 -26 -26 -26 -43 32 -34 -34 -46 -46 49 02 14 -46 68 -44 18 51 -57 70 -56 37 02 02 68 38 38 -01 06 62 -08

40 39 10 09 10 51 32 25 01 19 20 23 55 03 05 39 39 19 47 36 36 32 25 25 59 59 38 38 15 06 29 53 20 19 35 27 19 52 34 31 29 29 33 46 46 02 20 03 16

53.4 54.5 41.6 42.8 7.1 20.3 1.6 57.6 35.1 21.9 11.0 42.3 54.7 59.4 40.5 57.8 59.9 54.5 28.6 7.5 8.6 46.1 33.7 37.3 24.1 48.4 10.2 9.4 19.1 41.1 0.6 42.7 20.9 6.0 30.1 16.0 9.7 34.9 54.0 3.1 59.3 56.4 36.5 34.2 33.8 58.7 37.1 0.8 6.4

1.24 1.79 1.46 1.60 1.61 1.30 1.06 1.26 1.64 1.15 1.21 1.24 1.17 1.46 1.57 1.59 1.60 1.08 0.97 1.23 1.23 1.22 1.06 0.03 1.18 1.18 1.06 1.00 1.34 1.32 1.13 1.05 1.31 1.16 1.35 0.98 1.62 1.65 1.26 1.15 1.13 1.33 1.37 1.08 1.08 0.99 1.14 1.56 1.25

173.31 164.27 197.30 314.95 315.24 199.20 217.59 198.56 205.55 212.12 222.17 204.67 171.19 218.79 216.86 170.87 169.54 251.62 236.41 203.00 203.00 203.15 225.30 62.02 98.30 98.30 82.22 77.30 155.24 206.08 252.00 146.84 194.16 216.30 43.33 300.22 207.28 310.64 237.60 171.99 165.80 160.57 352.79 201.27 200.34 197.79 274.77 216.11 229.80

5.4 11.8 9.4 32.5 37.3 20.8 10.3 7.2 5.9 14.1 6.0 21.0 13.2 51.1 111.6 19.5 20.9 1.1 59.5 7.5 2.9 6.3 82.5 118.2 6.2 7.4 18.4 17.1 4.3 7.7 0.7 25.7 3.0 нн 5.0 23.2 30.1 7.4 нн 4.4 8.7 11.5 50.7 13.2 4.2 9.8 7.6 33.9 5.9

16 16 16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18

25 30 30 34 34 35 37 42 52 55 55 55 04 05 05 12 12 12 14 15 15 16 18 18 18 18 19 19 20 25 27 28 36 37 37 39 46 48 50 02 05 05 17 18 18 20 22 22 35

14 18 28 17 18 42 5 4 59 26 29 34 22 0 7 6 6 55 1 21 21 13 35 40 57 59 3 3 46 45 40 41 26 3 53 49 33 7 55 46 27 27 13 3 4 57 7 24 43

15 -12 04 57 57 -30 -01 10 -00 -08 -08 -08 16 -05 -05 45 45 42 60 -26 -26 -26 -43 32 -34 -34 -46 -46 49 02 14 -46 68 -44 18 51 -57 70 -56 37 02 02 68 38 38 -01 06 62 -08

40 39 10 10 10 51 32 25 01 19 20 23 56 03 06 39 39 19 47 36 36 32 26 24 59 59 37 37 15 06 29 54 20 19 35 27 19 52 34 31 30 30 32 46 46 03 20 02 16

48 48 48 0 30 18 0 54 30 12 6 36 6 54 30 54 54 54 12 0 6 42 24 24 18 42 54 54 18 48 0 6 18 6 30 18 36 30 54 0 6 6 48 30 30 6 30 36 12

1.196 1.175 1.467 1.620 1.620 1.189 1.227 1.252 1.673 1.190 1.190 1.190 1.136 1.461 1.461 1.572 1.572 1.083 1.007 1.232 1.232 1.232 1.056 1.055 1.180 1.180 1.000 1.000 1.304 1.334 1.142 1.044 1.311 1.155 1.381 1.011 1.739 1.651 1.256 1.158 1.127 1.127 1.740 1.091 1.091 1.082 1.158 1.544 1.251

173.5 183.4 197.3 316.0 316.0 225.3 227.0 202.1 205.3 222.5 222.5 222.5 174.5 219.2 219.2 170.8 170.8 250.1 238.4 203.0 203.0 203.0 225.3 173.8 98.3 98.3 77.3 77.3 155.5 205.8 254.4 147.0 195.2 216.3 42.8 301.4 219.2 311.0 237.6 171.9 166.6 166.6 203.5 197.8 197.8 207.9 272.7 217.1 229.8

1950.20679 1983.49707 1950.29712 1955.32178 1955.32178 1988.28625 1980.59119 1955.23413 1950.46387 1984.25330 1984.25330 1984.25330 1950.37915 1982.61475 1982.61475 1955.22876 1955.22876 1954.51587 1955.32178 1987.65039 1987.65039 1987.65039 1987.69702 1950.45850 1988.28906 1988.28906 1987.69702 1987.69702 1953.52405 1981.27051 1952.39709 1987.69702 1953.43665 1987.29810 1951.51587 1954.49121 1987.70239 1953.67163 1987.70239 1950.60339 1953.52686 1953.52686 1952.63159 1950.60339 1950.60339 1981.33337 1950.44189 1952.40247 1986.65332

1989.26965 1988.52734 1993.38989 1991.50464 1991.50464 1992.27600 1988.60657 1992.42969 1988.44812 1988.31152 1988.31152 1988.31152 1989.26147 1988.61475 1988.61475 1991.45288 1991.45288 1992.55518 1993.30530 нннн нннн нннн нннн 1993.45544 нннн нннн нннн нннн 1987.31348 1992.35083 1992.41626 1992.58191 1993.62512 нннн 1986.44739 1987.31348 1991.66577 1993.61157 1991.66577 1993.60876 1988.59021 1988.59021 1993.61157 1992.48438 1992.48438 1986.65479 1993.40100 1994.52393 нннн

12.7 9.9 7.3 13.2 15.3 12.8 14.0 14.1 6.6 11.7 9.2 15.5 11.8 7.9 9.7 9.6 9.7 10.3 16.9 5.1 5.1 6.5 14.0 5.2 5.8 9.7 5.6 8.1 14.0 7.7 13.5 9.6 9.3 11.3 9.7 17.5 11.3 13.6 12.1 14.1 4.2 6.2 14.6 13.8 12.2 13.2 12.2 13.7 14.1

15.2 12.2 7.9 14.7 15.7 14.1 15.1 15.6 7.6 13.4 11.1 17.7 13.3 9.2 11.2 11.2 11.3 11.6 18.6 6.3 6.3 7.8 14.6 5.8 7.1 11.3 6.5 9.6 15.6 9.3 15.1 11.4 11.1 12.8 11.5 19.8 12.8 14.7 13.6 15.8 5.2 нн 16.2 15.3 13.7 14.5 13.9 15.3 15.2

нннн нннн 0390-01618-1 нннн нннн нннн нннн нннн 82588 нннн 5642-01503-1 нннн нннн 5072-00408-1 нннн 3501-01952-1 нннн 3081-01154-1 нннн нннн нннн 6820-00293-1 нннн нннн нннн нннн 8341-04366-1 нннн нннн 0405-00956-1 нннн 8346-00037-1 4428-01943-1 нннн 1555-01029-1 нннн нннн нннн нннн нннн 0434-05213-1 88601B нннн нннн нннн нннн нннн нннн нннн


Table 2--Continued
New data Dec (J2000.0)
a

Luyten's original data ╡
b

Ep o ch ╡ POSS I POSS I I mr ed e mblue e Tycho-2/HIPf

LHS No.

RA (J2000.0)

a



b

Dist.

c

Com.

d

RA (J2000.0)

Dec (J2000.0)

Bb Bb Tcs H Td d

Tcs N

Tcs H Bb Tcs Tcs Tcds dms Tcs Ts

cs

Bb d Bb d Tb Tcs gm T T Tb cs Hb b P

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515

18 18 18 18 19 19 19 19 19 19 19 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 21 21 21 21 21 21 21 21 21 21 21 21

41 48 53 58 07 12 16 16 20 21 32 46 46 54 03 05 05 05 08 11 11 15 19 23 27 27 28 33 40 42 42 43 51 55 55 56 57 05 11 13 21 29 30 30 31 38 39 40 55

36.59 44.91 39.98 00.14 43.09 14.59 55.26 57.66 54.85 38.79 21.59 45.00 48.75 0.34 52.13 02.67 37.03 32.77 43.61 11.94 12.08 17.39 4.63 35.84 29.23 42.34 4.17 40.40 33.99 18.79 57.28 19.41 41.97 37.19 37.81 46.60 40.07 14.09 57.97 34.09 34.94 36.81 02.75 47.74 18.59 43.71 1.14 53.39 47.95

00 -02 -38 05 32 02 05 05 -82 20 69 27 12 -47 23 54 -10 -67 -66 -36 -36 -27 12 -21 35 -56 -76 61 15 -52 -18 55 -79 -14 -14 -10 -44 -24 -31 -19 -19 17 -12 -40 -09 -33 -24 78 -11

55 33 36 54 32 53 10 09 33 52 39 07 04 48 20 26 55 19 10 06 06 01 35 22 59 27 40 45 29 41 55 20 18 03 02 26 07 46 03 19 03 38 30 42 47 39 09 49 21

13.2 46.8 45.7 29.2 41.8 11.1 8.0 0.4 14.9 2.5 40.3 24.0 56.0 39.8 26.5 3.3 51.1 15.2 55.4 4.3 6.5 58.7 2.2 14.2 23.4 27.0 16.4 11.9 58.3 58.5 8.5 52.0 41.1 55.7 8.8 54.9 45.7 52.6 17.5 46.3 40.0 35.8 36.3 31.3 26.4 55.0 30.9 20.6 42.1

2.04 1.43 2.07 1.23 1.69 1.86 1.45 1.52 1.26 1.75 1.84 1.23 1.55 1.13 1.36 1.47 6.82 1.08 1.66 1.63 1.77 1.25 1.26 1.19 1.31 1.41 1.51 1.02 1.56 1.06 1.16 1.91 1.30 3.31 3.15 1.13 1.10 1.14 1.15 1.12 1.08 1.08 1.05 1.83 1.16 1.17 1.43 1.16 1.09

172.21 169.68 133.17 189.14 48.47 106.21 203.39 202.91 162.48 212.53 160.94 181.50 196.99 184.22 227.65 232.32 242.49 128.56 133.04 163.72 162.84 98.28 181.83 153.03 228.50 158.81 149.18 32.17 63.43 173.21 143.81 27.99 143.98 132.41 128.63 182.10 207.88 197.24 126.24 192.60 208.61 69.58 104.27 143.53 92.67 113.69 126.03 64.36 120.10

15.9 13.7 25.1 7.1 38.4 6.2 5.5 11.3 97.3 10.0 2.8 нн 11.7 43.1 4.0 6.7 69.7 26.2 12.3 4.4 11.1 7.0 9.5 3.1 6.1 49.4 55.6 2.8 4.3 32.5 201.3 4.0 96.8 3.3 4.0 8.9 12.1 1.9 0.6 13.0 13.9 11.6 3.7 54.6 7.0 25.0 5.4 15.4 0.7

18 18 18 18 19 19 19 19 19 19 19 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 21 21 21 21 21 21 21 21 21 21 21 21

41 48 53 58 07 12 16 16 20 21 32 46 46 54 03 05 05 05 08 11 11 15 19 23 27 27 28 33 40 42 42 43 51 55 55 56 57 05 11 13 21 29 30 30 31 38 39 40 55

36 44 42 0 42 15 55 57 5 39 22 45 48 2 52 2 35 37 42 12 13 17 4 36 29 46 4 40 34 21 56 19 54 37 38 46 39 14 58 35 34 36 3 49 19 42 1 49 48

00 -02 -38 05 32 02 05 05 -82 20 69 27 12 -47 23 54 -10 -67 -66 -36 -36 -27 12 -21 35 -56 -76 61 15 -52 -18 55 -79 -14 -14 -10 -44 -24 -31 -19 -19 17 -12 -40 -09 -33 -24 78 -11

55 33 36 54 32 53 10 09 33 52 39 07 05 48 20 26 56 19 10 06 06 01 35 22 59 26 41 45 29 42 51 20 20 03 02 26 07 46 03 19 03 38 30 43 47 39 09 49 21

0 48 54 36 6 12 12 6 24 12 42 24 0 0 30 0 54 6 48 0 6 54 0 12 18 48 12 12 54 24 48 54 12 54 6 54 42 54 18 48 36 36 36 24 30 42 36 12 42

1.990 1.116 1.011 1.239 1.635 1.853 1.461 1.461 1.261 1.751 1.838 1.226 1.482 1.072 1.368 1.455 1.081 1.097 1.651 1.632 1.632 1.251 1.213 1.205 1.328 1.283 1.430 1.052 1.487 1.069 1.016 1.915 1.216 1.486 1.486 1.155 1.098 1.091 1.060 1.112 1.064 1.058 1.056 1.730 1.194 1.190 1.208 1.147 1.088

178.6 234.9 161.1 189.5 48.9 106.8 203.1 203.1 165.0 212.6 161.2 181.5 205.1 186.2 227.6 232.7 94.9 129.1 133.2 163.8 163.8 98.0 184.7 152.8 228.9 161.4 152.9 30.5 63.3 176.4 150.3 27.6 144.6 107.5 107.5 182.8 208.5 198.4 125.0 192.2 213.4 69.8 104.4 143.7 90.8 116.5 124.4 63.0 120.1

1980.60779 1986.66699 1987.69446 1951.50757 1950.45862 1951.64429 1950.61169 1950.61169 1976.57788 1953.62256 1954.57324 1950.54065 1953.61438 1975.36914 1951.53247 1952.58020 1982.53308 1979.70520 1979.70520 1976.56982 1976.56982 1977.55225 1953.68274 1977.68616 1951.52991 1975.36646 1975.68347 1952.70813 1953.68274 1977.52783 1976.70886 1952.71082 1976.65991 1983.76819 1983.76819 1982.69714 1976.70618 1976.41187 1974.45947 1977.54968 1977.54968 1954.52161 1981.74377 1974.63440 1981.74109 1979.63171 1983.44580 1954.74854 1979.72192

1990.63062 1987.57812 1989.51233 1987.57593 1987.47217 1987.57593 1992.58533 1992.58533 1993.76709 1991.52954 1991.60071 1996.52832 1991.53235 1990.72327 1992.71899 1989.64160 1984.64209 1995.64929 1995.64929 1990.71509 1990.71509 1992.42627 1990.63623 1993.38086 1991.74561 1990.69312 1992.42346 1991.52698 1990.62805 1992.56287 1990.72607 1991.67456 1992.63660 1984.58472 1984.58472 1988.75134 1990.78076 1994.50134 1989.75610 1991.74243 1991.74243 1991.52979 1986.75073 1990.71777 1988.77051 1994.81091 1991.59448 1993.56250 нннн

11.5 13.2 12.7 9.4 11.6 11.1 9.3 17.9 12.9 13.8 4.8 12.7 14.8 12.2 7.4 12.0 16.4 6.1 3.6 5.4 11.2 5.8 14.8 8.7 14.3 12.7 14.2 12.1 12.8 9.8 10.5 14.8 11.7 13.6 11.8 11.7 6.6 17.1 15.1 11.6 14.5 10.5 9.3 12.9 11.9 12.1 12.7 14.2 16.9

12.8 14.3 13.8 11.0 13.3 нн 11.0 19.4 14.4 15.1 5.7 14.4 15.9 14.0 8.3 нн 17.7 6.8 4.5 6.4 13.0 6.9 16.8 9.3 15.6 14.2 15.7 14.4 14.9 11.0 12.0 16.4 13.2 15.2 13.7 13.9 7.2 18.8 16.4 14.3 16.4 11.8 10.8 14.4 нн 13.6 14.4 15.3 19.4

нннн нннн нннн 0461-00366-1 нннн 94349 0472-01252-1 нннн нннн нннн 4448-02481-1 нннн нннн нннн 2141-00881-1 98906 нннн 9098-01638-1 9098-01918-1 7453-01391-1 нннн 6914-01943-1 нннн 6340-00637-1 нннн нннн нннн нннн нннн нннн нннн нннн нннн нннн нннн 5774-01598-1 7976-01340-1 нннн нннн 6355-01470-1 нннн 1668-00637-1 5794-00888-1 нннн 106255 нннн нннн нннн нннн


Table 2--Continued
New data Dec (J2000.0) b Tb cs P Tcs Ts
a

Luyten's original data ╡
b

Ep o ch ╡ POSS I POSS I I mr ed e mblue e Tycho-2/HIPf

LHS No.

RA (J2000.0)

a



b

Dist.

c

Com.

d

RA (J2000.0)

Dec (J2000.0)

b

b cs

Ts

b

PWd PWd c H m N b

b cs Ts

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 543a 544 545 546 547 548 549 550 551 552

21 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23

56 09 20 22 24 27 28 28 29 32 34 41 42 51 53 55 56 56 06 07 08 09 10 15 17 17 19 21 25 30 34 35 36 36 41 49 57 59

55.44 40.35 26.99 35.86 36.89 59.21 49.12 54.59 49.12 56.96 53.76 41.07 38.87 23.14 16.81 45.01 24.97 34.80 36.12 30.16 26.14 33.26 42.18 51.64 4.96 5.00 9.63 37.46 39.59 23.00 3.75 10.54 52.60 52.05 55.17 12.58 44.23 27.89

-01 -04 -24 -50 -72 -30 05 -13 41 53 -01 -32 17 29 -14 -75 -60 16 71 68 31 00 -19 -37 -13 -13 -06 17 53 59 00 -02 -36 01 44 02 23 -16

54 38 21 48 15 09 48 25 28 47 04 58 40 39 15 27 03 33 43 40 40 42 13 33 51 51 12 17 08 09 10 23 28 09 10 24 18 56

11.1 26.6 48.9 26.9 19.5 34.5 13.2 21.4 47.5 40.4 59.0 49.0 8.3 42.5 52.0 34.2 50.4 12.3 24.6 4.7 22.5 39.9 36.3 30.9 4.2 4.1 51.4 25.4 5.9 54.0 48.1 22.9 54.2 53.3 38.0 2.0 15.7 40.9

1.52 1.14 1.05 1.07 1.47 1.06 1.67 1.14 1.29 1.43 1.14 1.21 1.26 1.30 1.37 1.64 1.10 1.07 1.36 1.16 1.52 1.27 1.52 1.41 1.28 1.28 1.74 1.49 0.94 1.10 0.96 1.28 1.48 1.45 1.62 1.44 1.52 1.13

69.67 91.10 154.50 171.29 117.24 138.75 161.16 185.62 70.95 86.04 79.91 105.75 66.99 86.27 126.71 223.46 203.38 254.62 72.82 87.31 78.50 176.50 176.93 78.18 204.20 204.20 195.45 201.17 70.08 84.30 219.20 138.41 91.71 89.44 175.17 134.45 135.35 92.54

9.8 26.4 13.8 17.9 16.9 5.2 17.3 9.3 6.6 17.9 3.8 5.1 12.9 1.9 17.8 22.5 55.3 2.9 6.6 4.8 15.3 4.4 36.4 19.5 1.9 37.0 6.5 7.9 21.7 нн 26.6 8.2 19.3 1.0 2.7 24.1 3.9 12.8

21 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23

56 09 20 22 24 27 28 28 29 32 34 41 42 51 53 55 56 56 06 07 08 09 10 15 17 17 19 21 25 30 34 35 36 36 41 49 57 59

56 42 28 34 34 59 48 54 49 55 54 41 38 23 18 46 28 35 36 30 25 33 42 50 5 6 10 38 42 23 3 10 51 52 55 11 44 27

-01 -04 -24 -50 -72 -30 05 -13 41 53 -01 -32 17 29 -14 -75 -60 16 71 68 31 00 -19 -37 -13 -13 -06 17 53 59 00 -02 -36 01 44 02 23 -16

54 38 21 48 15 09 48 25 28 47 05 58 40 39 15 27 03 33 43 40 40 42 13 33 51 50 12 17 08 09 10 23 28 09 10 24 18 56

6 36 48 24 30 30 18 18 54 36 0 54 12 42 48 12 0 12 18 0 18 42 0 30 6 30 48 24 6 54 24 24 54 54 36 6 18 42

1.426 1.037 1.055 1.080 1.470 1.012 1.638 1.083 1.293 1.318 1.135 1.124 1.240 1.269 1.143 1.420 1.060 1.051 1.320 1.125 1.390 1.301 1.421 1.306 1.282 1.282 1.728 1.483 1.071 1.104 1.388 1.157 1.155 1.205 1.617 1.374 1.460 1.162

64.2 91.5 154.5 176.8 117.4 136.7 162.4 196.5 68.5 86.1 78.3 105.0 63.9 83.2 123.5 225.6 209.0 252.2 71.5 88.5 77.2 192.2 178.4 78.2 204.2 204.2 201.7 201.0 71.2 84.3 227.8 137.4 87.9 94.9 177.0 134.5 135.0 93.0

1981.71912 1982.77930 1980.47742 1980.77173 1977.78186 1977.62891 1954.57922 1982.53882 1952.55298 1952.70007 1951.68848 1984.63818 1953.76770 1954.60095 1983.76306 1977.76562 1980.77454 1954.58459 1952.63477 1952.62939 1954.65576 1983.53345 1977.76843 1976.50208 1982.85046 1982.85046 1982.84497 1951.61475 1952.70837 1954.60120 1982.84766 1983.54175 1985.54980 1982.84766 1952.63220 1951.90991 1953.60938 1983.53906

1989.66028 1991.67126 нннн 1995.64661 1996.77319 1995.77808 1990.62830 1989.66028 1989.67188 1990.64478 1995.58716 1996.60925 1991.70215 1989.52991 1989.82190 1993.76709 1995.65479 1990.70483 1992.59668 1992.59668 1989.52991 1990.77869 1991.74524 1996.75684 нннн нннн 1988.83606 1990.81152 1990.78955 1991.60107 1987.72961 1989.83289 1996.71313 1987.72961 1990.63940 1987.72961 1990.66125 1995.65759

14.0 10.5 12.7 8.8 5.4 13.9 13.5 16.1 12.8 10.6 14.0 17.0 11.2 15.5 10.8 11.6 13.9 8.9 11.9 12.4 14.7 9.8 11.8 14.8 8.1 14.8 17.6 11.7 14.5 6.6 11.0 14.1 13.4 12.5 12.7 8.8 11.0 9.0

15.3 11.9 14.0 9.8 6.0 15.7 14.8 18.3 14.7 12.2 15.7 нн 12.9 16.0 12.4 12.7 15.4 10.5 13.4 13.9 16.0 10.6 13.6 нн 8.5 16.8 18.9 нн 16.2 7.8 12.6 15.7 15.2 14.2 14.5 10.4 12.3 9.9

нннн 5227-01521-1 нннн 8445-01479-1 9340-02962-1 нннн нннн нннн нннн нннн нннн нннн нннн нннн нннн нннн нннн 1711-02453-1 нннн нннн нннн нннн нннн нннн нннн нннн нннн 115332 нннн нннн нннн нннн нннн нннн нннн нннн нннн 6405-00775-1

a Equatorial co ordinates for ep o ch and equinox 2000.0 using our astrometry and prop er motion measurements. If none of the digital scans of POSS plates were available, or the difference b etween the ep o chs was not sufficient, prop er motions from Luyten were accepted. If star was not found, b oth co ordinates and prop er motions were taken from Luyten.

b is in degrees, ╡ is in

/y r.

c Distance b etween predicted J2000.0 p osition of LHS and our measurements. If co ordinates of the LHS Catalogue were accepted, the distance is flagged as a "--" dash.

d Comments are the following: 1 н POSS I DSS image has p o or quality, 2 н POSS I I DSS image has p o or quality, from LHS Catalogue is taken, H н co ordinates, prop er motion and magnitudes are from the Tycho-2 Supplement-1 search, P н POSS I I DSS frame was not available, W н finder chart would have b een needed for manual identification, the Tycho-2 catalogue, b н for some reason our prop er motion measurement is not accurate, Luyten's data is used, c or companion of a binary, m н merging, i н identification dubious, s н saturated on at least one of the frames

B н p osition shift b etween the two frames is less than 5 , prop er motion data catalogue, ie. from the Hipparcos catalogue, N н star was not found in manual but was not available, T н co ordinates, prop er motion and magnitudes are from н refitting of p osition was done (due to saturation or merging), d н double star,

e Red and blue magnitudes are Tycho (Hipparcos) V and B if star was found in the Tycho-2 (Supplement-1) catalogue, otherwise LHS red and photographic magnitudes.

f Identification of Tycho-2 catalogue is of the format "tyc1-tyc2-tyc3", while Hipparcos is the single Hipparcos numb er followed by the CCDM comp onent identifier (Dommanget & Nys 1994).

Note. -- Table with refined p ositions for Luyten stars. The printed version of the pap er contains only the high prop er motion subset (╡ > 1 yr-1 ) of the revised LHS Catalogue. The electronic version of the pap er contains the unabridged version of the catalogue, which can also b e retrieved from and http://www.archive.stsci.edu/ksahu/lhs