Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.stsci.edu/~inr/thisweek1/thisweek022.html
Дата изменения: Fri Jun 8 23:36:03 2007
Дата индексирования: Tue Oct 2 13:58:29 2012
Кодировка:

Поисковые слова: m 101
HST this week: 022



This week on HST


HST Programs: January 22 - January 28, 2007

Program Number Principal Investigator Program Title Links
10793 Avishay Gal-Yam, California Institute of Technology A Survey for for Supernovae in Massive High-Redshift Clusters Abstract
10798 Leon Koopmans, Kapteyn Astronomical Institute Dark Halos and Substructure from Arcs & Einstein Rings Abstract
10802 Adam Riess, Space Telescope Science Institute SHOES-Supernovae, HO, for the Equation of State of Dark energy Abstract
10810 Edwin Anthony Bergin, University of Michigan The Gas Dissipation Timescale: Constraining Models of Planet Formation Abstract
10813 David Bowen, Princeton University MgII Absorption Line Systems: Galaxy Halos or the Metal-Enriched IGM? Abstract
10835 Gregory Sivakoff, The Ohio State University Research Foundation Probing The Globular Cluster / Low Mass X-ray Binary Connection in Early-type Galaxies At Low X-ray Luminosities Abstract
10842 Kem Cook, Lawrence Livermore National Laboratory A Cepheid Distance to the Coma Cluster Abstract
10861 David Carter, Liverpool John Moores University An ACS Treasury Survey of the Coma cluster of galaxies Abstract
10862 John Clarke, Boston University Comprehensive Auroral Imaging of Jupiter and Saturn during the International Heliophysical Year Abstract
10874 Wei Zheng, The Johns Hopkins University Search for Extremely Faint z>7 Galaxy Population with Cosmic Lenses Abstract
10878 John O'Meara, The Pennsylvania State University An ACS Prism Snapshot Survey for z~2 Lyman Limit Systems Abstract
10879 I. Neill Reid, Space Telescope Science Institute A search for planetary-mass companions to the nearest L dwarfs - completing the survey Abstract
10881 Graham Smith, University of Birmingham The Ultimate Gravitational Lensing Survey of Cluster Mass and Substructure Abstract
10882 William Sparks, Space Telescope Science Institute Emission Line Snapshots of 3CR Radio Galaxies Abstract
10889 Roelof de Jong, Space Telescope Science Institute The Nature of the Halos and Thick Disks of Spiral Galaxies Abstract
10905 R. Tully, University of Hawaii The Dynamic State of the Dwarf Galaxy Rich Canes Venatici I Region Abstract
10906 Sylvain Veilleux, University of Maryland The Fundamental Plane of Massive Gas-Rich Mergers: II. The QUEST QSOs Abstract
10915 Julianne Dalcanton, University of Washington ACS Nearby Galaxy Survey Abstract
10918 Wendy Freedman, Carnegie Institution of Washington Reducing Systematic Errors on the Hubble Constant: Metallicity Calibration of the Cepheid PL Relation Abstract
11011 C. S. Kochanek, The Ohio State University Research Foundation Dissecting An Accretion Disk Abstract

Some selected highlights

GO 10802: SHOES-Supernovae, HO, for the Equation of State of Dark energy

WFPC2 image of NGC 4639, one of the spirals targeted in this program The cosmic distance scale and dark energy are two key issues in modern astrophysics, and HST has played a vital role in probing both. On the one hand, HST has been involved in cosmic distance measurements since its inception, largely through the H0 Key Project, which used WFPC2 to identify and photometer Cepheids in 31 spiral galaxies at distances from 60 to 400 Mpc. On the other, HST is the prime instrument for investigating cosmic acceleration by searching for and following Type Ia supernovae at moderate and high redshift. These two cosmological parameters are directly related, and recent years have seen renewed interest in improving the accuracy of H0 with the realization that such measurements, when coupled with the improved constraints from the Cosmic Microwave Background, provide important constraints on cosmic acceleration and the nature of Dark Energy. The present HST program combines observations that are designed to tackle both questions. NICMOS will be used to observe known Cepheids in several Key Project spirals that have hosted Type Ia supernovae; the near-infrared data will provide more accurate distance estimates for those galaxies, tying together the Cepheid and SN Ia distance scales. At the same time, the ACS/WFC will be used for parallel observations designed to search for high-redshift supernovae. Follow-up observations of those discoveries will add further weight to the measurement of cosmic acceleration.

GO 10810: The Gas Dissipation Timescale: Constraining Models of Planet Formation

HST ACS image of the face-on debris disk around the nearby G dwarf, HD 107146 While much debate has raged in recent months over exactly how to define a planet, there is very little debate in the astronomical community about where planets form: they form in circumstellar disks. During the earliest stages of their existence, the disks are dusty, gas-rich and high opacity; for example, see NICMOS images of T Tauri stars and IRAS sources and current HST proposals 10540 and 10864. After only ~10 million years, however, most of the gas dissipates, leaving a young planetary system with a rich content of dust, rocks, planetoids and planets. This period corresponds to the high bombardment phase in earth's history, when the Moon was formed. To the outside observer, the dusty disk has low surface brightness, and is much less prominent than the gaseous disk. HST can image these disks via scattered light at near-infrared and, in a few cases, optical wavelengths - probably the most spectacular example is Beta Pic (see the recent HST ACS images ). Recent models suggest that, while these debris disks have a much lower gaseous content than classic T Tauri disks, they should retain some gas content, which can be crucial in influencing planet formation. The aim of the present program is to use the prism on the UV-sensitive ACS Solar Blind Channel SBC) to search for molecular hydrogen absorption at 1600 Angstroms. The program targets 11 systems with ages between 10 and 50 Myrs, incluyding two members of the TW Hydrae association.

GO 10842 A Cepheid Distance to the Coma Cluster

NGC 4911, from DSS scans of POSS II IIIaJ plate material Cepheid variable stars have been the prime extragalactic distance indicator since Henrietta Leavitt's discovery of the period-luminosity relation described by Cepheids in the Small Magellanic Cloud. It was Hubble's identification of Cepheids in NGC 6822 that finally established that at least some nebulae were island universes. Cepheids and the extragalactic distance scale figure largely in HST's history, notably through the Hubble Constant Program, one of the initial Key Projects. Hubble has accumulated WFPC2 and NICMOS observations of Cepheids in 31 galaxies. All of those galaxies lie within 25 Mpc; thus, both the Key Project's derivation of H0 = 72 +/- 8 km/sec/Mpc and the competing value, H0 = 56 +/- 7 km/sec/Mpc, (an offset of 1.5 sigma), rely on secondary indicators to take measurements to the far-field Hubble flow. The aim of the present project is to use the higher sensitivity and higher resolution of ACS to push the Cepheid measurements to the Coma cluster. The program will target two spiral galaxies in the cluster, NGC 4911 and NGC 4921. If Coma lies at a distance of 100 Mpc ( (m-M)=35.0), then long-period Cepheids (P~50 days) have mean apparent magnitudes of V~29 - challenging observatons even for ACS.

GO 10915: ACS Nearby Galaxy Survey

SIRTF image of NGC 2976 (from the SINGS program) Colour-magnitude diagrams derived from photometric surveys have proven invaluable in achieving an understanding of the main properties of the galactic stellar populations. Large ground-based telescopes allowed extension of this type of analysis to the principal satellites of the Milky Way and, to a limited extent, the Andromeda spiral. With the advent of HST, particularly following SM3B and the installation of the Advance Camera for Surveys, those fundamental CMD studies can be extended to higher-density star fields, fainter magnitudes and intrinsically lower luminosity stars. Until recently, those studies have concentrated on Local Group galaxies; the ambitious aim of the current program is to conduct a systematic survey of all major star-forming galaxies within ~3.5Mpc of the Milky Way, together with a number of galaxies in the M81 group at a distance of ~4 Mpc. The program includes a total of 45 galaxies, ranging from massive spiral systems to dwarf galaxies. The observations are being made using the wide-field camera on ACS, sampling selected fields in the wide-V (F606W) and I (F814W) passbands. Observations of the dwarf galaxy, GR8, are scheduled during the coming week.

Past weeks:
page by Neill Reid, updated 21/12/2006