Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.stsci.edu/~mperrin/software/gpidata/usage/primitives.html
Дата изменения: Sat Feb 15 03:42:06 2014
Дата индексирования: Sun Mar 2 06:58:19 2014
Кодировка: IBM-866

Поисковые слова: redshift survey
Primitives, Listed by Category — GPI Data Pipeline 1.0 documentation

Table Of Contents

Previous topic

The Calibration Database

Next topic

Appendix: Recipe File XML Format

This Page

Primitives, Listed by Category€ґ

This page documents all available pipeline primitives, currently 107 in total.

First we list the available primitives in each mode, and below provide the detailed documentation including the parameter arguments for each.

Primitives each have an “order”, which is a floating point number that defines the default ordering when added to a recipe. Smaller numbers come earlier in the execution sequence. You can change the order arbitrarily in the Recipe Editor of course. Notionally, orders <2 are actions on 2D files, orders between 2-4 are actions on datacubes, and orders > 4 are actions on entire observation sequences, but these are not strictly enforced.

(Note: For simplicity, some engineering and software testing related primitives not intended for end users are not listed in the following tables.)

SpectralScience PolarimetricScience Calibration

SpectralScience€ґ

Order Primitives relevant to SpectralScience (49 total)  
0.01 Display raw data with GPItv  
0.50 Load Wavelength Calibration  
0.90 Checks quality of data based on FITS keywords.  
1.10 Subtract Dark Background  
1.20 Subtract Thermal/Sky Background if K band  
1.20 Persistence removal of previous images  
1.23 Clean Cosmic Rays  
1.25 Apply Reference Pixel Correction  
1.30 Destripe science frame  
1.40 Interpolate bad pixels in 2D frame  
1.50 Combine 2D images  
1.51 Combine 2D images and save as Thermal/Sky Background  
1.90 Shift 2D Image  
1.99 Update Spot Shifts for Flexure  
2.00 Assemble Spectral Datacube (bp)  
2.00 Assemble Spectral Datacube  
2.00 Assemble Datacube  
2.10 Noise and Flux Analysis  
2.20 Divide by Spectral Flat Field  
2.30 Interpolate Wavelength Axis  
2.44 Measure satellite spot locations  
2.44 Correct GPI distortion  
2.45 Measure satellite spot peak fluxes  
2.45 Load Satellite Spot locations  
2.50 Divide spectral data by telluric transmission  
2.50 Measure telluric transmission  
2.51 Extract one spectrum via aperture photometry  
2.51 Calibrate Photometric Flux and save convertion in DB  
2.51 Calibrate Photometric Flux of extented object  
2.51 Extract one spectrum, plots  
2.51 Calibrate Photometric Flux  
2.51 Extract telluric transmission from sat. spots  
2.52 Extract telluric transmission from datacube  
2.60 Collapse datacube  
2.61 Simple SSDI  
2.61 Speckle alignment  
2.70 Measure the contrast  
2.70 Plot the satellite spot locations vs. the expected location from wavelength scaling  
2.80 KLIP algorithm noise reduction  
2.90 Update World Coordinates  
3.90 Rotate Field of View Square  
3.90 Rotate North Up  
4.00 Accumulate Images  
4.10 Basic ADI  
4.11 ADI with LOCI  
4.30 Simple SSDI of median ADI residual  
4.50 Median ADI data-cubes  
4.50 Combine 3D cubes  
10.00 Save Output