Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.stsci.edu/stsci/meetings/irw/proceedings/cogginsj.dir/cogginsj.html
Дата изменения: Fri Jun 3 00:19:56 1994
Дата индексирования: Sun Dec 23 19:31:58 2007
Кодировка:

Поисковые слова: m 63
Iterative/Recursive Deconvolution with Application to HST Data



Next: Introduction

Iterative/Recursive Deconvolution with Application to HST Data

James M. Coggins

Department of Computer Science, CB 3175 Sitterson Hall, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3175

Laura Kellar Fullton and Bruce W. Carney

Department of Physics and Astronomy, CB 3255 Phillips Hall, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255

Abstract:

A new deblurring algorithm has been developed involving both iteration and recursion and that is linear, flux-conserving, noise resistant, and faster to converge than extant iterative deblurring methods. Mathematical analysis shows that the recursive component of the algorithm provides the accelerated convergence. A demonstration is provided using a simulated star field image blurred using an approximation to the point spread function of the Hubble Space Telescope.

Keywords: iterative deconvolution, recursion, linear, flux-conserving, noise-resistant



rlw@
Thu Jun 2 16:01:49 EDT 1994