Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.stsci.edu/spst/UnixTransition/doc/random.html
Дата изменения: Thu Nov 5 13:46:17 2015
Дата индексирования: Sun Apr 10 20:09:26 2016
Кодировка:

Поисковые слова: europa
Python: module random
 
 
random
index
/usr/local/Python-2.5/lib/python2.5/random.py
Module Docs

Random variable generators.
 
    integers
    --------
           uniform within range
 
    sequences
    ---------
           pick random element
           pick random sample
           generate random permutation
 
    distributions on the real line:
    ------------------------------
           uniform
           normal (Gaussian)
           lognormal
           negative exponential
           gamma
           beta
           pareto
           Weibull
 
    distributions on the circle (angles 0 to 2pi)
    ---------------------------------------------
           circular uniform
           von Mises
 
General notes on the underlying Mersenne Twister core generator:
 
* The period is 2**19937-1.
* It is one of the most extensively tested generators in existence.
* Without a direct way to compute N steps forward, the semantics of
  jumpahead(n) are weakened to simply jump to another distant state and rely
  on the large period to avoid overlapping sequences.
* The random() method is implemented in C, executes in a single Python step,
  and is, therefore, threadsafe.

 
Modules
       
_random

 
Classes
       
_random.Random(__builtin__.object)
Random
SystemRandom
WichmannHill

 
class Random(_random.Random)
    Random number generator base class used by bound module functions.
 
Used to instantiate instances of Random to get generators that don't
share state.  Especially useful for multi-threaded programs, creating
a different instance of Random for each thread, and using the jumpahead()
method to ensure that the generated sequences seen by each thread don't
overlap.
 
Class Random can also be subclassed if you want to use a different basic
generator of your own devising: in that case, override the following
methods:  random(), seed(), getstate(), setstate() and jumpahead().
Optionally, implement a getrandombits() method so that randrange()
can cover arbitrarily large ranges.
 
 
Method resolution order:
Random
_random.Random
__builtin__.object

Methods defined here:
__getstate__(self)
__init__(self, x=None)
Initialize an instance.
 
Optional argument x controls seeding, as for Random.seed().
__reduce__(self)
__setstate__(self, state)
betavariate(self, alpha, beta)
Beta distribution.
 
Conditions on the parameters are alpha > -1 and beta} > -1.
Returned values range between 0 and 1.
choice(self, seq)
Choose a random element from a non-empty sequence.
expovariate(self, lambd)
Exponential distribution.
 
lambd is 1.0 divided by the desired mean.  (The parameter would be
called "lambda", but that is a reserved word in Python.)  Returned
values range from 0 to positive infinity.
gammavariate(self, alpha, beta)
Gamma distribution.  Not the gamma function!
 
Conditions on the parameters are alpha > 0 and beta > 0.
gauss(self, mu, sigma)
Gaussian distribution.
 
mu is the mean, and sigma is the standard deviation.  This is
slightly faster than the normalvariate() function.
 
Not thread-safe without a lock around calls.
getstate(self)
Return internal state; can be passed to setstate() later.
lognormvariate(self, mu, sigma)
Log normal distribution.
 
If you take the natural logarithm of this distribution, you'll get a
normal distribution with mean mu and standard deviation sigma.
mu can have any value, and sigma must be greater than zero.
normalvariate(self, mu, sigma)
Normal distribution.
 
mu is the mean, and sigma is the standard deviation.
paretovariate(self, alpha)
Pareto distribution.  alpha is the shape parameter.
randint(self, a, b)
Return random integer in range [a, b], including both end points.
randrange(self, start, stop=None, step=1, int=<type 'int'>, default=None, maxwidth=9007199254740992L)
Choose a random item from range(start, stop[, step]).
 
This fixes the problem with randint() which includes the
endpoint; in Python this is usually not what you want.
Do not supply the 'int', 'default', and 'maxwidth' arguments.
sample(self, population, k)
Chooses k unique random elements from a population sequence.
 
Returns a new list containing elements from the population while
leaving the original population unchanged.  The resulting list is
in selection order so that all sub-slices will also be valid random
samples.  This allows raffle winners (the sample) to be partitioned
into grand prize and second place winners (the subslices).
 
Members of the population need not be hashable or unique.  If the
population contains repeats, then each occurrence is a possible
selection in the sample.
 
To choose a sample in a range of integers, use xrange as an argument.
This is especially fast and space efficient for sampling from a
large population:   sample(xrange(10000000), 60)
seed(self, a=None)
Initialize internal state from hashable object.
 
None or no argument seeds from current time or from an operating
system specific randomness source if available.
 
If a is not None or an int or long, hash(a) is used instead.
setstate(self, state)
Restore internal state from object returned by getstate().
shuffle(self, x, random=None, int=<type 'int'>)
x, random=random.random -> shuffle list x in place; return None.
 
Optional arg random is a 0-argument function returning a random
float in [0.0, 1.0); by default, the standard random.random.
uniform(self, a, b)
Get a random number in the range [a, b).
vonmisesvariate(self, mu, kappa)
Circular data distribution.
 
mu is the mean angle, expressed in radians between 0 and 2*pi, and
kappa is the concentration parameter, which must be greater than or
equal to zero.  If kappa is equal to zero, this distribution reduces
to a uniform random angle over the range 0 to 2*pi.
weibullvariate(self, alpha, beta)
Weibull distribution.
 
alpha is the scale parameter and beta is the shape parameter.

Data descriptors defined here:
__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)

Data and other attributes defined here:
VERSION = 2

Methods inherited from _random.Random:
__getattribute__(...)
x.__getattribute__('name') <==> x.name
getrandbits(...)
getrandbits(k) -> x.  Generates a long int with k random bits.
jumpahead(...)
jumpahead(int) -> None.  Create new state from existing state and integer.
random(...)
random() -> x in the interval [0, 1).

Data and other attributes inherited from _random.Random:
__new__ = <built-in method __new__ of type object at 0xfdc62330>
T.__new__(S, ...) -> a new object with type S, a subtype of T

 
class SystemRandom(Random)
    Alternate random number generator using sources provided
by the operating system (such as /dev/urandom on Unix or
CryptGenRandom on Windows).
 
 Not available on all systems (see os.urandom() for details).
 
 
Method resolution order:
SystemRandom
Random
_random.Random
__builtin__.object

Methods defined here:
getrandbits(self, k)
getrandbits(k) -> x.  Generates a long int with k random bits.
getstate = _notimplemented(self, *args, **kwds)
jumpahead = _stub(self, *args, **kwds)
random(self)
Get the next random number in the range [0.0, 1.0).
seed = _stub(self, *args, **kwds)
setstate = _notimplemented(self, *args, **kwds)

Methods inherited from Random:
__getstate__(self)
__init__(self, x=None)
Initialize an instance.
 
Optional argument x controls seeding, as for Random.seed().
__reduce__(self)
__setstate__(self, state)
betavariate(self, alpha, beta)
Beta distribution.
 
Conditions on the parameters are alpha > -1 and beta} > -1.
Returned values range between 0 and 1.
choice(self, seq)
Choose a random element from a non-empty sequence.
expovariate(self, lambd)
Exponential distribution.
 
lambd is 1.0 divided by the desired mean.  (The parameter would be
called "lambda", but that is a reserved word in Python.)  Returned
values range from 0 to positive infinity.
gammavariate(self, alpha, beta)
Gamma distribution.  Not the gamma function!
 
Conditions on the parameters are alpha > 0 and beta > 0.
gauss(self, mu, sigma)
Gaussian distribution.
 
mu is the mean, and sigma is the standard deviation.  This is
slightly faster than the normalvariate() function.
 
Not thread-safe without a lock around calls.
lognormvariate(self, mu, sigma)
Log normal distribution.
 
If you take the natural logarithm of this distribution, you'll get a
normal distribution with mean mu and standard deviation sigma.
mu can have any value, and sigma must be greater than zero.
normalvariate(self, mu, sigma)
Normal distribution.
 
mu is the mean, and sigma is the standard deviation.
paretovariate(self, alpha)
Pareto distribution.  alpha is the shape parameter.
randint(self, a, b)
Return random integer in range [a, b], including both end points.
randrange(self, start, stop=None, step=1, int=<type 'int'>, default=None, maxwidth=9007199254740992L)
Choose a random item from range(start, stop[, step]).
 
This fixes the problem with randint() which includes the
endpoint; in Python this is usually not what you want.
Do not supply the 'int', 'default', and 'maxwidth' arguments.
sample(self, population, k)
Chooses k unique random elements from a population sequence.
 
Returns a new list containing elements from the population while
leaving the original population unchanged.  The resulting list is
in selection order so that all sub-slices will also be valid random
samples.  This allows raffle winners (the sample) to be partitioned
into grand prize and second place winners (the subslices).
 
Members of the population need not be hashable or unique.  If the
population contains repeats, then each occurrence is a possible
selection in the sample.
 
To choose a sample in a range of integers, use xrange as an argument.
This is especially fast and space efficient for sampling from a
large population:   sample(xrange(10000000), 60)
shuffle(self, x, random=None, int=<type 'int'>)
x, random=random.random -> shuffle list x in place; return None.
 
Optional arg random is a 0-argument function returning a random
float in [0.0, 1.0); by default, the standard random.random.
uniform(self, a, b)
Get a random number in the range [a, b).
vonmisesvariate(self, mu, kappa)
Circular data distribution.
 
mu is the mean angle, expressed in radians between 0 and 2*pi, and
kappa is the concentration parameter, which must be greater than or
equal to zero.  If kappa is equal to zero, this distribution reduces
to a uniform random angle over the range 0 to 2*pi.
weibullvariate(self, alpha, beta)
Weibull distribution.
 
alpha is the scale parameter and beta is the shape parameter.

Data descriptors inherited from Random:
__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)

Data and other attributes inherited from Random:
VERSION = 2

Methods inherited from _random.Random:
__getattribute__(...)
x.__getattribute__('name') <==> x.name

Data and other attributes inherited from _random.Random:
__new__ = <built-in method __new__ of type object at 0xfdc62330>
T.__new__(S, ...) -> a new object with type S, a subtype of T

 
class WichmannHill(Random)
    
Method resolution order:
WichmannHill
Random
_random.Random
__builtin__.object

Methods defined here:
getstate(self)
Return internal state; can be passed to setstate() later.
jumpahead(self, n)
Act as if n calls to random() were made, but quickly.
 
n is an int, greater than or equal to 0.
 
Example use:  If you have 2 threads and know that each will
consume no more than a million random numbers, create two Random
objects r1 and r2, then do
    r2.setstate(r1.getstate())
    r2.jumpahead(1000000)
Then r1 and r2 will use guaranteed-disjoint segments of the full
period.
random(self)
Get the next random number in the range [0.0, 1.0).
seed(self, a=None)
Initialize internal state from hashable object.
 
None or no argument seeds from current time or from an operating
system specific randomness source if available.
 
If a is not None or an int or long, hash(a) is used instead.
 
If a is an int or long, a is used directly.  Distinct values between
0 and 27814431486575L inclusive are guaranteed to yield distinct
internal states (this guarantee is specific to the default
Wichmann-Hill generator).
setstate(self, state)
Restore internal state from object returned by getstate().
whseed(self, a=None)
Seed from hashable object's hash code.
 
None or no argument seeds from current time.  It is not guaranteed
that objects with distinct hash codes lead to distinct internal
states.
 
This is obsolete, provided for compatibility with the seed routine
used prior to Python 2.1.  Use the .seed() method instead.

Data and other attributes defined here:
VERSION = 1

Methods inherited from Random:
__getstate__(self)
__init__(self, x=None)
Initialize an instance.
 
Optional argument x controls seeding, as for Random.seed().
__reduce__(self)
__setstate__(self, state)
betavariate(self, alpha, beta)
Beta distribution.
 
Conditions on the parameters are alpha > -1 and beta} > -1.
Returned values range between 0 and 1.
choice(self, seq)
Choose a random element from a non-empty sequence.
expovariate(self, lambd)
Exponential distribution.
 
lambd is 1.0 divided by the desired mean.  (The parameter would be
called "lambda", but that is a reserved word in Python.)  Returned
values range from 0 to positive infinity.
gammavariate(self, alpha, beta)
Gamma distribution.  Not the gamma function!
 
Conditions on the parameters are alpha > 0 and beta > 0.
gauss(self, mu, sigma)
Gaussian distribution.
 
mu is the mean, and sigma is the standard deviation.  This is
slightly faster than the normalvariate() function.
 
Not thread-safe without a lock around calls.
lognormvariate(self, mu, sigma)
Log normal distribution.
 
If you take the natural logarithm of this distribution, you'll get a
normal distribution with mean mu and standard deviation sigma.
mu can have any value, and sigma must be greater than zero.
normalvariate(self, mu, sigma)
Normal distribution.
 
mu is the mean, and sigma is the standard deviation.
paretovariate(self, alpha)
Pareto distribution.  alpha is the shape parameter.
randint(self, a, b)
Return random integer in range [a, b], including both end points.
randrange(self, start, stop=None, step=1, int=<type 'int'>, default=None, maxwidth=9007199254740992L)
Choose a random item from range(start, stop[, step]).
 
This fixes the problem with randint() which includes the
endpoint; in Python this is usually not what you want.
Do not supply the 'int', 'default', and 'maxwidth' arguments.
sample(self, population, k)
Chooses k unique random elements from a population sequence.
 
Returns a new list containing elements from the population while
leaving the original population unchanged.  The resulting list is
in selection order so that all sub-slices will also be valid random
samples.  This allows raffle winners (the sample) to be partitioned
into grand prize and second place winners (the subslices).
 
Members of the population need not be hashable or unique.  If the
population contains repeats, then each occurrence is a possible
selection in the sample.
 
To choose a sample in a range of integers, use xrange as an argument.
This is especially fast and space efficient for sampling from a
large population:   sample(xrange(10000000), 60)
shuffle(self, x, random=None, int=<type 'int'>)
x, random=random.random -> shuffle list x in place; return None.
 
Optional arg random is a 0-argument function returning a random
float in [0.0, 1.0); by default, the standard random.random.
uniform(self, a, b)
Get a random number in the range [a, b).
vonmisesvariate(self, mu, kappa)
Circular data distribution.
 
mu is the mean angle, expressed in radians between 0 and 2*pi, and
kappa is the concentration parameter, which must be greater than or
equal to zero.  If kappa is equal to zero, this distribution reduces
to a uniform random angle over the range 0 to 2*pi.
weibullvariate(self, alpha, beta)
Weibull distribution.
 
alpha is the scale parameter and beta is the shape parameter.

Data descriptors inherited from Random:
__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)

Methods inherited from _random.Random:
__getattribute__(...)
x.__getattribute__('name') <==> x.name
getrandbits(...)
getrandbits(k) -> x.  Generates a long int with k random bits.

Data and other attributes inherited from _random.Random:
__new__ = <built-in method __new__ of type object at 0xfdc62330>
T.__new__(S, ...) -> a new object with type S, a subtype of T

 
Functions
       
betavariate(self, alpha, beta) method of Random instance
Beta distribution.
 
Conditions on the parameters are alpha > -1 and beta} > -1.
Returned values range between 0 and 1.
choice(self, seq) method of Random instance
Choose a random element from a non-empty sequence.
expovariate(self, lambd) method of Random instance
Exponential distribution.
 
lambd is 1.0 divided by the desired mean.  (The parameter would be
called "lambda", but that is a reserved word in Python.)  Returned
values range from 0 to positive infinity.
gammavariate(self, alpha, beta) method of Random instance
Gamma distribution.  Not the gamma function!
 
Conditions on the parameters are alpha > 0 and beta > 0.
gauss(self, mu, sigma) method of Random instance
Gaussian distribution.
 
mu is the mean, and sigma is the standard deviation.  This is
slightly faster than the normalvariate() function.
 
Not thread-safe without a lock around calls.
getrandbits(...)
getrandbits(k) -> x.  Generates a long int with k random bits.
getstate(self) method of Random instance
Return internal state; can be passed to setstate() later.
jumpahead(...)
jumpahead(int) -> None.  Create new state from existing state and integer.
lognormvariate(self, mu, sigma) method of Random instance
Log normal distribution.
 
If you take the natural logarithm of this distribution, you'll get a
normal distribution with mean mu and standard deviation sigma.
mu can have any value, and sigma must be greater than zero.
normalvariate(self, mu, sigma) method of Random instance
Normal distribution.
 
mu is the mean, and sigma is the standard deviation.
paretovariate(self, alpha) method of Random instance
Pareto distribution.  alpha is the shape parameter.
randint(self, a, b) method of Random instance
Return random integer in range [a, b], including both end points.
random(...)
random() -> x in the interval [0, 1).
randrange(self, start, stop=None, step=1, int=<type 'int'>, default=None, maxwidth=9007199254740992L) method of Random instance
Choose a random item from range(start, stop[, step]).
 
This fixes the problem with randint() which includes the
endpoint; in Python this is usually not what you want.
Do not supply the 'int', 'default', and 'maxwidth' arguments.
sample(self, population, k) method of Random instance
Chooses k unique random elements from a population sequence.
 
Returns a new list containing elements from the population while
leaving the original population unchanged.  The resulting list is
in selection order so that all sub-slices will also be valid random
samples.  This allows raffle winners (the sample) to be partitioned
into grand prize and second place winners (the subslices).
 
Members of the population need not be hashable or unique.  If the
population contains repeats, then each occurrence is a possible
selection in the sample.
 
To choose a sample in a range of integers, use xrange as an argument.
This is especially fast and space efficient for sampling from a
large population:   sample(xrange(10000000), 60)
seed(self, a=None) method of Random instance
Initialize internal state from hashable object.
 
None or no argument seeds from current time or from an operating
system specific randomness source if available.
 
If a is not None or an int or long, hash(a) is used instead.
setstate(self, state) method of Random instance
Restore internal state from object returned by getstate().
shuffle(self, x, random=None, int=<type 'int'>) method of Random instance
x, random=random.random -> shuffle list x in place; return None.
 
Optional arg random is a 0-argument function returning a random
float in [0.0, 1.0); by default, the standard random.random.
uniform(self, a, b) method of Random instance
Get a random number in the range [a, b).
vonmisesvariate(self, mu, kappa) method of Random instance
Circular data distribution.
 
mu is the mean angle, expressed in radians between 0 and 2*pi, and
kappa is the concentration parameter, which must be greater than or
equal to zero.  If kappa is equal to zero, this distribution reduces
to a uniform random angle over the range 0 to 2*pi.
weibullvariate(self, alpha, beta) method of Random instance
Weibull distribution.
 
alpha is the scale parameter and beta is the shape parameter.

 
Data
        __all__ = ['Random', 'seed', 'random', 'uniform', 'randint', 'choice', 'sample', 'randrange', 'shuffle', 'normalvariate', 'lognormvariate', 'expovariate', 'vonmisesvariate', 'gammavariate', 'gauss', 'betavariate', 'paretovariate', 'weibullvariate', 'getstate', 'setstate', ...]