Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.stsci.edu/institute/itsd/information/streaming/archive/OSBHM2009/JeremySchnittman033109Hi_supporting/JeremySchnittman033109
Дата изменения: Tue Mar 31 22:20:09 2009
Дата индексирования: Mon Apr 6 14:04:11 2009
Кодировка:

Поисковые слова: quasar
An Overview of Electromagnetic Sources Associated with Black Hole Mergers
Jeremy Schnittman
Johns Hopkins University

STScI March 31, 2009


Motivation

Observing supermassive black hole mergers will teach us about Relativity High-energy Astrophysics Cosmology Galaxy Formation and Evolution Stellar Evolution Dark Matter


Outline

Sources (what we have imagined so far) What we know What we don't know
What we need to know What we will learn What we will not learn

What do we do next


Diversity of Sources
105 galaxy mergers X-shaped occup. fraction radio lobes diffuse gas M-sigma galaxy cores (recoil)

102

galaxy cores (scouring)

10-1 R(pc)

circumbinary disk binary quasar GW's (pulsar timine) variable accretion enhanced accretion

HCSSs off-centered/ Doppler-shifted quasars X-ray/UV/IR afterglows supressed accretion DM annihilation Bondi accretion

10-4

10

-7

delayed quasar GRMHD LISA -106 yr -103 yr 0 yr time since merger 10 3yr 10 6yr 10 9yr

-109 yr


Stellar signatures
105 galaxy mergers e.g. Antennae Galaxies Richstone et al. JS & Buonanno JS Volonteri (1998) occup. fraction (2007) (2007) M-sigma (2007) galaxy cores (recoil) Merritt et al. (2004) Boylan-Kolchin et al. (2004) Gualandris & Merritt (2008) HCSSs Komossa & Merritt (2008a) Merritt, JS, & Komossa (2008) O'Leary & Loeb (2008) 10-4

102

galaxy cores (scouring) Milosavljevic & Merritt (2001) Milosavljevic et al. (2002)

Kormendy & Bender (2009)

10-1 R(pc) 10
-7

-109 yr

-106 yr

-103 yr

0 yr time since merger

10 3yr

10 6yr

10 9yr


Gas/disk signatures
105

102

Escala et al. (2004) Kazantzidis et al. (2005) Dotti et al. (2007) Cuadra et al. (2009) Dotti et al. (2009) circumbinary disk binary quasar

10-1 R(pc)

Komossa et al. (2003) Rodriguez et al. (2006) Bogdanovic et al. (2008) Dotti et al. (2008) Boroson & Lauer (2009) Rodriguez et al. (2009)

Kapoor (1976) Loeb (2007) Bonning et al. (2007) Komossa et al. (2008) Blecha & Loeb (2008) off-centered/ Doppler-shifted quasars

variable accretion 10-4 MacFadyen & Milosavljevic (2008) Kocsis et al. (2008) enhanced accretion Armitage & Natarajan (2002) 10
-7

Lippai et al. (2008) X-ray/UV/IR afterglows Shields & Bonning (2008) JS & Krolik (2008) supressed O'Neill et al. (2008) accretion

delayed quasar Milosavljevic & Phinney (2005) GRMHD JHU, RIT, UMD, GSFC, etc... 0 yr time since merger 10 3yr 10 6yr 10 9yr

-109 yr

-106 yr

-103 yr


Other signatures
105 Merritt & Eckers (2002) X-shaped radio lobes diffuse gas Devecchi et al. (2008) 102

10-1 R(pc)

Jenet et al. (2006) Sesana et al. (2008) Sesana et al. (2009) Mohayaee et al. (2008) Schutz (1986) Holz & Hughes (2005) Kocsis et al. (2006) DM annihilation Bondi accretion Blecha & Loeb (2008)

10-4

GW's (pulsar timing)

10

-7

Kocsis et al. (2008) Kocsis & Loeb (2008) LISA -106 yr -103 yr 0 yr time since merger 10 3yr 10 6yr 10 9yr

-109 yr


What do we know?

galaxy mergers + ubiquitous SMBHs remarkably few AGN pairs phases of BHB evolution
stellar dynamical friction gas dynamical friction (final parsec?) GW loss

post-Newtonian + numerical relativity


What do we need to know?

galaxy merger rates BH parameters
BH masses BH spins: amplitude and orientation

BH environment prior to merger
quantity and quality of gas stellar distribution and age/metallicity properties of circumbinary disk


What we will learn

LISA: merger rates, masses, spins, but only for M LD vs z out to z 1 galaxy environs: gas vs stars high-velocity end of kick distribution time delay between galaxy, BH merger

10

6- 7

M


What we will not learn

BH mass function for M LD vs z for z > 1

107 M

low-velocity end of kick distribution anything about extra-solar planets (probably)


What do we do next--theory

full NR+MHD good initial conditions for circumbinary disk grid-based code vs. geodesics/SPH high-resolution N-body simulations of galactic nuclei cosmological N-body plus hydro


What do we do next--observations

binary AGN: SDSS + long-term spectroscopic followups LISA counterparts/precursors: wide-field time domain surveys pulsar timing: more pulsars, 10 ns resolution afterglows: wide-field multi-band surveys cores/star clusters: HST imaging + hires spectra


Summary/Conclusions

EM signatures of BH mergers are valuable as: Probes of strong-field GR (mass loss, kicks) Probes of accretion disk properties Cosmological observations
SMBH growth (mergers vs. accretion) mass/spin distribution functions MBH , Mbulge , bulge relationships

LISA counterparts
distance ladder in a single step luminosity-redshift to 1%