Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.ssau.ru/resources/sotrudniki/other/3/lection12/
Дата изменения: Fri Apr 10 15:00:00 2015
Дата индексирования: Mon Apr 11 03:52:05 2016
Кодировка: Windows-1251

Поисковые слова: equinox
Лекция12
Новости

Лекция12

Лекции: 1 2 3 4 5 6 7 8 9 10 11 12 13


5. Взаимное пересечение поверхностей вращения.

Линией пересечения поверхностей вращения является пространственная кривая, иногда распадающаяся на плоские кривые или прямые.

В более общих случаях проекции линии пересечения строятся по точкам, определяемым с помощью поверхностей-посредников.

Идею способа можно кратко записать так:

(A)(Ail)[Ai=(i)(i)]

Любая i-я точка линии пересечения поверхностей и определяется как общая точка пересечения линий пересечения i-й поверхности-посредника (i) с поверхностями и .

В качестве поверхностей-посредников выбирают такие, которые дают простые линии пересечения - прямые или окружности. Поэтому в качестве поверхностей-посредников выбирают либо сферы, либо плоскости.

Линии пересечения имеют характерные точки:

  1. точки, принадлежащие фронтальному и горизонтальному очерку поверхностей;
  2. высшие и низшие точки относительно плоскости, перпендикулярной к оси вращения.

Характерные точки позволяют определять границы изменения положений поверхностей-посредников.

Определение линий пересечения поверхностей вращения с помощью секущих плоскостей.

Вспомогательные плоскости частного положения применяются в тех случаях, если соответствующие оси поверхностей либо параллельны, либо перпендикулярны к тем или иным плоскостям проекций.

Пример 1. Дано: 2 цилиндра вращения, у которых оси скрещиваются в пространстве. Ось большого цилиндра перпендикулярна к W, малого - к H.

Нужно: Построить линию пересечения.

Отметим точки, не требующие специального построения. Введем плоскости-посредники P1, P2, P3, P4 V (так, чтобы оба цилиндра пересекались с ними по своим образующим).

На профильной плоскости проекций мы видим, что точки:

  • 1 - низшая точка видимой части линии пересечения
  • 2 - низшая точка невидимой части линии пересечения
  • 3, 4 - высшие точки линии пересечения
  • 5, 6 - точки, определяющие границу видимости на плоскости V.
  • Вводя плоскости-посредники SH, найдем дополнительные точки сечения, например, 7 и 8.


Рис.1

Рис.2

Если цилиндры разных диаметров, но оси пересекаются, то получим совпадение видимой и невидимой частей линии пересечения. d < D.


Рис.3

Рис.4

Если d=D, то фронтальная проекция линии пересечения представляет собой две пересекающиеся прямые, которые являются фронтальными проекциями плоских кривых - эллипсов.


Рис.5

Рис.6

Пример 2. Дано: Прямой круговой усеченный конус, расположенный вертикально (на H) и цилиндр, расположенный горизонтально (на W). Оси цилиндра и конуса пересекаются в точке O.

Нужно: Построить их линию пересечения.

Как и в предыдущем примере, определяем сначала характерные точки линии пересечения:

  • A и B - высшая и низшая точки
  • C и D - точки, определяющие видимость линии пересечения на плоскости проекций H.
  • Если взять в качестве вспомогательных плоскостей фронтальные или профильные плоскости, то они пересекут конус по гиперболам, а не по простым линиям, как требуется для построения. Следовательно, такие плоскости неудобны. Вспомогательные горизонтальные плоскости T пересекают конус по окружностям, а цилиндр - по образующим. Та и другая линия - простые. Искомые точки (E, F, K, L) находим на пересечении образующих с окружностями.


Рис.7

Рис.8

Определение линии пересечения поверхностей с помощью вспомогательных сферических поверхностей.

Вспомогательные сферические поверхности применяются, когда оси поверхностей вращения пересекаются друг с другом и параллельны какой-либо плоскости проекций.

Метод основывается на известном свойстве:
"Две любые соосные поверхности вращения пересекаются по окружностям, проходящим через точки пересечения меридианов поверхностей".

Плоскости окружностей сечения перпендикулярны оси поверхности вращения, а центры окружностей принадлежат этой оси. Поэтому, если оси поверхностей вращения параллельны плоскости проекции, то на эту плоскость окружности сечения проецируются в отрезки прямых, перпендикулярных проекциям оси вращения.

В качестве вспомогательной секущей поверхности вращения используют сферу, т.к. ее просто вычертить.


Рис.9

Рис.10

Пример. Дано: 2 поверхности вращения - цилиндр и конус, оси которых пересекаются и параллельны плоскости проекций V.

Нужно: Найти (построить) линию пересечения этих поверхностей вращения с помощью вспомогательных концентрических сфер.

Точки, наиболее удаленные от оснований малого конуса, найдем, вписав сферу в большой конус.

Проекции линии пересечения представляют собой кривые 2-го порядка. Это следует из теоремы:
"Если пересекающиеся поверхности 2-го порядка имеют общую плоскость симметрии, то линии их пересечения проецируются на эту плоскость (или параллельную ей) в кривую 2-го порядка."


Рис.11

Рис.12






Заметили ошибку в тексте? Выделите ее мышкой и нажмите Ctrl+Enter
Содержание Интернет-портала СГАУ:
тел. +7 (846) 267-45-60,
e-mail: webmaster@ssau.ru
Центр по связям с общественностью
Тел.: (846) 267-44-99
e-mail: pr@ssau.ru
Работа электронной почты и беспроводных сетей:
тел.: +7 (846) 267-48-21,
e-mail: tech@ssau.ru
Работа корпоративной сети университета:
тел. +7 (846) 267-44-35,
e-mail: tech@ssau.ru
Система Orphus