Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.ssau.ru/resources/ump/aslanov-timbaj/1/
Дата изменения: Fri Apr 10 15:00:00 2015
Дата индексирования: Mon Apr 11 03:10:02 2016
Кодировка: Windows-1251

Поисковые слова: р п р п р п п р п п р п п р п п р п п р п р п п р п р п п р п р п п р п р п п р п р п п р п р п п р п р п п р п р п п р п р п п р п р п п р п р п п р п р п п р п п р п р р п р п п р п р п п р п п р п р п п р п
УРАВНЕНИЯ ДВИЖЕНИЯ
Новости

УРАВНЕНИЯ ДВИЖЕНИЯ

К содержанию

1. УРАВНЕНИЯ ДВИЖЕНИЯ

1.1. Динамические и кинематические уравнения Эйлера

Рассмотрим движение свободного твердого тела относительно прямоугольной неподвижной системы координат . Согласно известной теореме Шаля, любое движение твердого тела можно рассматривать как совокупность поступательного движения, определяемого движением произвольной точки тела (полюса), и движением тела вокруг этой точки как неподвижной. Из основных теорем динамики следует, что за полюс удобно взять центр масс, поскольку в этом случае движение определяется наиболее просто. Действительно, согласно теореме о движении центра масс, последний движется как материальная точка, к которой приложены все внешние силы системы, а теоремы об изменении кинетического момента и кинетической энергии для движения относительно центра масс (относительно поступательно движущейся прямоугольной системы координат с началом в центре масс - кениговой системы координат ) формулируется точно так же, как и для движения вокруг неподвижной точки.

Пусть - масса тела, - скорость центра масс, - кинетический момент тела в его движении относительно центра масс, и - главный вектор и главный момент внешних сил относительно точки . Тогда из теоремы о движении центра масс и теоремы об изменении кинетического момента имеем два векторных дифференциальных уравнения

, (1.1)
. (1.2)
Если , , - координаты центра масс тела в неподвижной системе координат , а , , - проекции вектора на оси , , , то уравнение (1.1) запишется в виде трех скалярных уравнений

, , . (1.3)
Кинетический момент тела относительно центра масс, точки , определяется по формуле

, (1.4)
где векторы и обозначают соответственно радиус-вектор и скорость произвольной точки твердого тела с массой ( - вектор мгновенной угловой скорости). Преобразуя правую часть формулы (1.4), можно представить кинетический момент в виде произведения тензора инерции на вектор мгновенной угловой скорости /1/

. (1.5)
Введем прямоугольную систему координат , оси которой жестко свяжем с движущимся телом и расположим по его главным осям инерции для точки . Абсолютная производная связана с локальной производной (вычисляемой в подвижной системе координат ) формулой

. (1.6)
Учитывая формулу (1.6), запишем уравнение (1.2) в виде

. (1.7)
В подвижных осях координат тензор , вектор и вектор можно записать в следующем виде

,

, (1.8)
,

где постоянные , , - главные моменты инерции тела для центра ;
, , - единичные орты осей , , .

Проектируя теперь уравнение (1.7) на подвижные оси , получим три скалярных уравнения

,

, (1.9)
.

Уравнения (1.9) называются динамическими уравнениями Эйлера.

В общем случае правые части уравнений (1.3) и (1.9) могут зависеть от ориентации твердого тела в пространстве. Ориентация твердого тела в пространстве в каждый момент времени определяется положением подвижной системы координат относительно кениговой системы координат и может быть задана тремя углами Эйлера , , . На рис.1 показан угол прецессии как угол между осью и линией узлов , угол нутации - как угол между осями и , угол собственного вращения - как угол между линией узлов и осью .

Получим выражения проекций мгновенной угловой скорости твердого тела через углы Эйлера и их производные. Введем в дополнение к ортам , , осей , , орт , направленный по оси , и орт , направленный по линии узлов . Спроектируем вектор угловой скорости

(1.10)
на оси и получим следующие соотношения

,

, (1.11)
.

Из ортогональности осей следует, что

, .

Проектируя орт на ось и на плоскость , а затем на оси и , получим

, , . (1.12)
Кроме того, заметим, что

, .

После подстановки найденных выражений в соотношения (1.11) получим следующие кинематические уравнения Эйлера

,

, (1.13)
.

Систему уравнений (1.13) можно разрешить относительно производных углов Эйлера. Умножим первое уравнение на , второе на , сложим их и получим уравнение для угловой скорости прецессии . Уравнение для угловой скорости нутации получим, умножая первое уравнение на , второе на и вычитая второе уравнение из первого. Уравнение для угловой скорости собственного вращения получим из третьего уравнения, учитывая полученное выражение для . Таким образом

,

, (1.14)
.

Уравнения (1.3), (1.9), (1.13) или (1.14) образуют замкнутую систему дифференциальных уравнений, описывающую движение свободного твердого тела.

1.2. Уравнения движения в обобщенном случае Лагранжа