Документ взят из кэша поисковой машины. Адрес
оригинального документа
: http://www.sai.msu.su/~megera/wiki/knngist
Дата изменения: Unknown Дата индексирования: Sun Apr 10 14:31:29 2016 Кодировка: Поисковые слова: hst |
Update: See 2009-11-25 for recent tests.
Support: The Open Planning Project, Inc.
Module knngist provides:
- KNNGiST access method is an extension of GiST, which implements k-nearest neighbourhood search - Operator class for KNNGiST for data type points with capability of knn-search - Operator class for KNNGiST for data type tsvector without capability of knn-search
KNNGiST is inherited from GiST and use the same write methods, so, that KNNGiST has recovery (WAL-logged) and concurrency support.
KNNGiST supports all queries executable by GiST, but with possible performance loss. KNNGiST keeps all features of GiST, such as multicolumn indexes with support of any subset of the index's columns, indexing and searching of NULL values.
The KNNGiST differs from GiST in: - search traversal algorithm on tree. While GiST uses depth-first search algorithm of KNN version uses traversal priority queue - consistent user-defined method should return distance of tuple to the query, instead of a boolean value as in GiST. However, KNNGiST can use GiST's consistent method for additional filtering of result or GiST-alike search, but not for knn-search (for example, tsvector_ops). - KNNGiST doesn't have amgetbitmap method, because of nature of knn-search.
consistent user-defined method for KNNGiST can return:
- negative value, which means tuple doesn't match query (like false in GiST's consistent) - 0.0 means one of: - a zero distance (exact match) - a match for filtering clause, like a <@ or @> for point. KNNGist doesn't distinguish these two cases and relies on user-defined methods - positive value, which means the method returns distance. In this case keyRecheck should be false!, since it's impossible to make right order with lossy values.
Distance between tuple and query is calculated as a sum of all distances (on all keys). Notice, that distance is a numerical (non-negative) description of how tuple is different from a query and KNNGiST doesn't require, that it should follow triangle rule.
Caveats:
Currently, it's impossible to specify the number of closest neighbourhood points returned, use LIMIT clause for this. Index ALWAYS returns ALL rows in the order of closiness to the given point, so it can be very slow without LIMIT clause.
The module also provides index support for k-nn search for points data type using KNNGiST access method.
Operator:
point >< point - fake operator, which always returns TRUE
Indexed support for operators:
point <@ box - returns TRUE if point contains in box box @> point - returns TRUE if box contains point point <@ polygon - returns TRUE if point contains in polygon polygon @> point - returns TRUE if polygon contains point point <@ circle - returns TRUE if point contains in circle circle @> point - returns TRUE if circle contains point
Also, knngist provides support full-text search operator @@ for tsvector data type.
Examples:
We use test database of POI (point of interests), which has 1034170 spots.
First, compare performance of traditional approach and k-nn search.
=# SELECT coordinates, (coordinates <-> '5.0,5.0'::point) AS dist FROM spots order by dist asc LIMIT 10; coordinates | dist -------------------------------------+------------------ (3.57192993164062,6.51727240153665) | 2.08362656457647 (3.49502563476562,6.49134782128243) | 2.11874164636854 (3.4393,6.4473) | 2.12848814420001 (3.31787109375,6.50089913799597) | 2.25438592075067 (2.6323,6.4779) | 2.79109148900569 (2.66349792480469,6.53159856871478) | 2.79374947392946 (1.84102535247803,6.27874198581057) | 3.4079762161672 (1.2255,6.1228) | 3.93796014327215 (1.22772216796875,6.15693947094637) | 3.94570513108469 (9.6977,4.044503) | 4.79388775494473 (10 rows) Time: 1024.242 ms =# SELECT coordinates, (coordinates <-> '5.0,5.0'::point) AS dist FROM spots WHERE coordinates >< '5.0,5.0'::point LIMIT 10; coordinates | dist -------------------------------------+------------------ (3.57192993164062,6.51727240153665) | 2.08362656457647 (3.49502563476562,6.49134782128243) | 2.11874164636854 (3.4393,6.4473) | 2.12848814420001 (3.31787109375,6.50089913799597) | 2.25438592075067 (2.6323,6.4779) | 2.79109148900569 (2.66349792480469,6.53159856871478) | 2.79374947392946 (1.84102535247803,6.27874198581057) | 3.4079762161672 (1.2255,6.1228) | 3.93796014327215 (1.22772216796875,6.15693947094637) | 3.94570513108469 (9.6977,4.044503) | 4.79388775494473 (10 rows) Time: 3.158 ms
This query demonstrates 300x perfomance gain due to k-nn search and the gain will only increases with the growing of table size, both in number of points and row length.
Find 10 most closest points to the Eiffel tower in Paris, which has 'mars' in their address.
=# CREATE INDEX spots_idx ON spots USING knngist (coordinates, to_tsvector('french',address)); =# SELECT id, address, (coordinates <-> '(2.29470491409302,48.858263472125)'::point) AS dist FROM spots WHERE coordinates >< '(2.29470491409302,48.858263472125)'::point AND to_tsvector('french',address) @@ to_tsquery('french','mars') LIMIT 10; id | address | dist ---------+-------------------------------------------------------------+--------------------- 366096 | 1st Floor Tour Eiffel | Champs de Mars, Paris 75007, France | 2.32488941293945e-05 4356328 | r Champ de Mars 75007 PARIS | 0.00421854756964406 5200167 | Champ De Mars 75007 Paris | 0.00453564562587288 9301676 | Champ de Mars, 75007 Paris, | 0.00453564562587288 2152213 | 16, ave Rapp, Champ de Mars, Tour Eiffel, Paris, France | 0.00624152097590896 1923818 | Champ de Mars Paris, France | 0.00838214733539654 5165953 | 39 Rue Champ De Mars Paris, France | 0.00874410234569529 7395870 | 39 Rue Champ De Mars Paris, France | 0.00874410234569529 4358671 | 32 Rue Champ De Mars Paris, France | 0.00876089659276339 1923742 | 12 rue du Champ de Mars Paris, France | 0.00876764731845995 (10 rows) Time: 7.859 ms =# EXPLAIN (COSTS OFF) SELECT id, address FROM spots WHERE coordinates >< '(2.29470491409302,48.858263472125)'::point AND to_tsvector('french',address) @@ to_tsquery('french','mars') LIMIT 10; QUERY PLAN -------------------------------------------------------------------------------------------------------------------------------------- Limit -> Index Scan using spots_idx on spots Index Cond: ((coordinates >< '(2.29470491409302,48.858263472125)'::point) AND (to_tsvector('french'::regconfig, address) @@ '''mar'''::tsquery)) (3 rows)
Plan of query is consists of only index scan.
Find 10 most closest points to the Eiffel tower from the 1st arrondissement of Paris (Paris 1), which addresses contains 'place'. See PARIS1 polygon in the Appendix.
=# SELECT id, address, (coordinates <-> '(2.29470491409302,48.858263472125)'::point) AS dist FROM spots WHERE coordinates >< '(2.29470491409302,48.858263472125)'::point AND coordinates <@ :PARIS1::polygon AND to_tsvector('french',address) @@ to_tsquery('french','place') LIMIT 10; id | address | dist ---------+-------------------------------------------------+------------------- 4832659 | 1, Place de la Concorde Paris, France | 0.0295206872672182 411437 | Place de la Concorde Paris, France | 0.0302147996937845 378340 | 1, Place de la Concorde Paris, France | 0.0307854422609629 4831330 | Place Maurice Barrs Paris, France | 0.0325866682024178 376250 | 1, Place de la Madeleine Paris, France | 0.0331104655425048 474301 | Place de la Madeleine, 75009 PARIS 9eme, France | 0.0345299306576103 5344357 | 15, Place Vendme 75001 Paris | 0.0347800149417034 1655967 | 23, Place Vendme Paris, France | 0.0349331087313895 5189448 | 21 Place Vendome 75001 Paris | 0.0349739602806271 1645248 | 17 Place Vendome Paris, France | 0.035054516779252 (10 rows) Time: 26.061 ms
See other examples of usage in sql/knngist.sql file.
Appendix:
PARIS1 is
\set PARIS1 '''' '((2.34115348312647,48.8657428523236), (2.34118074365616,48.8657338586581),(2.34124889530144,48.8657158708278), (2.34507895327157,48.8647984137371),(2.34664637351338,48.8644206007538), (2.35092599260214,48.8633949969132),(2.35018963361274,48.8620911379807), (2.35013508709759,48.86198323148),(2.34942603926653,48.860724328187), (2.34934422651062,48.8605714606062),(2.348198918621,48.8585122428713), (2.34818528403175,48.8584852660126),(2.34754450116443,48.8573432499501), (2.34748998045578,48.8573072839752),(2.34727190749839,48.8572083834273), (2.34716287044605,48.8571544366361),(2.34702657180341,48.8570735139172), (2.34695841648506,48.8570015779684),(2.34678119248757,48.8567048330991), (2.34607232885619,48.8555807999441),(2.34594964833223,48.8554099476641), (2.34588149215383,48.8553110329086),(2.34584060107095,48.8552660723913), (2.34457303943998,48.8540431508262),(2.34282882150308,48.8548525947756), (2.34277431496994,48.8548885683273),(2.34265167596398,48.8549785014457), (2.34191584194969,48.8556170173375),(2.34082568197206,48.8565523000639), (2.34045773722682,48.8567681364201),(2.34036234349704,48.8568220954177), (2.34033508714246,48.856822096164),(2.33752769217743,48.8583778791875), (2.33658731599251,48.8585757177307),(2.33288025427342,48.8593400183869), (2.32988178792963,48.8601222319092),(2.32982726892706,48.8601402138378), (2.32978637897676,48.8601581966286),(2.3295001526867,48.8602570975859), (2.32830070631995,48.8607246317809),(2.32828707545679,48.8607336234383), (2.32704673093708,48.8611381921984),(2.32607897177943,48.8614708326283), (2.32526114627639,48.8617135534289),(2.32520662603102,48.861722540429), (2.32471592483796,48.8618753640429),(2.32091289641744,48.8630349455836), (2.32087200086194,48.8630529251833),(2.32155322584936,48.8639073294346), (2.32243884665493,48.8650405307146),(2.32252059466181,48.8651574466784), (2.3232972488748,48.8661647291047),(2.32341988057605,48.8663266130246), (2.32354251307602,48.8664884968134),(2.3235152464625,48.8665064789925), (2.3245644587385,48.8679274505231),(2.32464621421731,48.8680533576953), (2.32500049864077,48.8685749741703),(2.32530028589861,48.8690066566296), (2.32513660273671,48.8694382902038),(2.32566821564096,48.8695282724636), (2.32580452605167,48.8695552643448),(2.32581815771984,48.8695552657067), (2.32797189268413,48.869924162148),(2.32798552779567,48.8699061778024), (2.32993507578488,48.8685034538095),(2.33027588164409,48.8683505987317), (2.33063031789587,48.8681887507006),(2.33169358579805,48.8679460035635), (2.33170721702503,48.8679460042226),(2.33365651409609,48.8675054382284), (2.33583750536962,48.8669929002209),(2.33585113633529,48.8669929003854), (2.33735054165431,48.8666421923058),(2.34115348312647,48.8657428523236))' ''''