Документ взят из кэша поисковой машины. Адрес
оригинального документа
: http://www.sao.ru/precise/Midas_doc/doc/95NOV/vol2/node331.html
Дата изменения: Fri Feb 23 12:58:05 1996 Дата индексирования: Tue Oct 2 17:59:25 2012 Кодировка: Поисковые слова: п п п п п п п п п п п п п п п п |
Let us consider a measured wavelet coefficient at the scale i. We assume that its value, at a given scale and a given position, results from a noisy process, with a Gaussian distribution with a mathematical expectation , and a standard deviation :
Now, we assume that the set of expected coefficients for a given scale also follows a Gaussian distribution, with a null mean and a standard deviation :
The null mean value results from the wavelet property:
We want to get an estimate of knowing . Bayes' theorem gives:
We get:
where:
the probability follows a Gaussian distribution with a mean:
and a variance:
The mathematical expectation of is .
With a simple multiplication of the coefficients by the constant , we get a linear filter. The algorithm is: