Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.sao.ru/precise/Midas_doc/doc/94NOV/vol2/node322.html
Дата изменения: Fri Feb 23 14:02:30 1996
Дата индексирования: Tue Oct 2 18:50:37 2012
Кодировка:

Поисковые слова: http www.arcetri.astro.it
The continuous wavelet transform



next up previous contents
Next: Examples of Wavelets Up: The Wavelet Transform Previous: Introduction

The continuous wavelet transform

The Morlet-Grossmann definition of the continuous wavelet transform [17] for a 1D signal is:

 

where denotes the complex conjugate of z, is the analyzing wavelet, a (>0) is the scale parameter and b is the position parameter. The transform is characterized by the following three properties:

  1. it is a linear transformation,
  2. it is covariant under translations:

  3. it is covariant under dilations:

The last property makes the wavelet transform very suitable for analyzing hierarchical structures. It is like a mathematical microscope with properties that do not depend on the magnification.

In Fourier space, we have:

When the scale a varies, the filter is only reduced or dilated while keeping the same pattern.

Now consider a function which is the wavelet transform of a given function . It has been shown [,] that can be restored using the formula:

where:

Generally , but other choices can enhance certain features for some applications.

The reconstruction is only available if is defined (admissibility condition). In the case of , this condition implies , i.e. the mean of the wavelet function is 0.



Pascal Ballester
Tue Mar 28 16:52:29 MET DST 1995