Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.sao.ru/hq/grb/workshop_2009/talks/Budnik_rrms1.pdf
Дата изменения: Wed Feb 24 16:32:36 2010
Дата индексирования: Tue Oct 2 11:47:26 2012
Кодировка:

Поисковые слова: m 17
Radiation Mediated Shocks Ranny Budnik Outline Introduction

Radiation Mediated Shocks
R a nny B udni k Boaz Katz Amir Sagiv Eli Waxman
Weizmann Institute of Science

Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model

Summary

Octob er 10, 2009


Radiation Mediated Shocks Ranny Budnik

Introduction Structure of NR RMS Application to X-ray Breakout RRM S Introduction Numerical results Analytic model Summary

Outline Introduction Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model

Summary


Existence of Radiation Mediated Shocks

Radiation Mediated Shocks Ranny Budnik Outline



Fast shocks' downstream pressure: 4 2nd Td (particles) ; aBB Td /3 (radiation) For fast enough shocks, 1/6 , 3 в 10-4 1020 n m-3 c the DS pressure is dominated by radiation, if 1 (i.e. optically thick system) RMS. The DS equilibrium temp erature: 315 nu 3 c 4 2
1/4 3

Introduction Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model



Summary



Td =

0.16

nu 10MeV 1015

1/4

keV


Existence of Radiation Mediated Shocks

Radiation Mediated Shocks Ranny Budnik Outline



Fast shocks' downstream pressure: 4 2nd Td (particles) ; aBB Td /3 (radiation) For fast enough shocks, 1/6 , 3 в 10-4 1020 n m-3 c the DS pressure is dominated by radiation, if 1 (i.e. optically thick system) RMS. The DS equilibrium temp erature: 315 nu 3 c 4 2
1/4 3

Introduction Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model



Summary



Td =

0.16

nu 10MeV 1015

1/4

keV


Existence of Radiation Mediated Shocks

Radiation Mediated Shocks Ranny Budnik Outline



Fast shocks' downstream pressure: 4 2nd Td (particles) ; aBB Td /3 (radiation) For fast enough shocks, 1/6 , 3 в 10-4 1020 n m-3 c the DS pressure is dominated by radiation, if 1 (i.e. optically thick system) RMS. The DS equilibrium temp erature: 315 nu 3 c 4 2
1/4 3

Introduction Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model



Summary



Td =

0.16

nu 10MeV 1015

1/4

keV


Shock Breakout

Radiation Mediated Shocks Ranny Budnik Outline



Shocks running in CC SN are exp ected to b e RMS. Close to the photosphere Td 200eV exp ected SN precursor in thermal UV/X-ray.1 XRF060218/SN2006aj2 and SN 2008d3 found early after the explosion, non thermal > 10keV sp ectrum. Is the difference related to the structure of the shock?
4

Introduction Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model





Summary

Other explanations: photon acceleration [Wang et al. 07, 08], not a breakout [Li 08, Mazzali et al. 09]

1 2 3 4

Colgate 74, Falk 78, Klein & Chevalier 78 Campana et al. 06 Soderb erg et al. 08 Katz, Budnik & Waxman 09


Shock Breakout

Radiation Mediated Shocks Ranny Budnik Outline



Shocks running in CC SN are exp ected to b e RMS. Close to the photosphere Td 200eV exp ected SN precursor in thermal UV/X-ray.1 XRF060218/SN2006aj2 and SN 2008d3 found early after the explosion, non thermal > 10keV sp ectrum. Is the difference related to the structure of the shock?
4

Introduction Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model





Summary

Other explanations: photon acceleration [Wang et al. 07, 08], not a breakout [Li 08, Mazzali et al. 09]

1 2 3 4

Colgate 74, Falk 78, Klein & Chevalier 78 Campana et al. 06 Soderb erg et al. 08 Katz, Budnik & Waxman 09


RMS velocity transition
Radiation dominated Downstream Cold Upstream

Radiation Mediated Shocks Ranny Budnik Outline Introduction Structure of NR RMS Application to X-ray Breakout RRMS

v, ,




U U
rad rad

np mp c or

U

pl 2

Introduction Numerical results Analytic model

Summary

12 Urad 2 u mp c s s c s s te t c v v

2

Ldec = (T n )

-1


RMS velocity transition
Radiation dominated Downstream Cold Upstream

Radiation Mediated Shocks Ranny Budnik Outline Introduction Structure of NR RMS Application to X-ray Breakout RRMS

v, ,




U U
rad rad

np mp c or

U

pl 2

Introduction Numerical results Analytic model

Summary

12 Urad 2 u mp c s s c s s te t c v v

2

Ldec = (T n )

-1


Physical Assumptions


Radiation Mediated Shocks Ranny Budnik Outline

Steady state shock p, e -, e
+

Introduction Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model

treated as one fluid (plasma) tpl n 1/2 10-11 n15 tscat ne



Radiation mechnisms:


Summary

Compton scattering Bremsstrahlung Pair production and annihilation

Scaling relations:
Only Bremsstrahlung self absorption dep ends on nu !


Physical Assumptions


Radiation Mediated Shocks Ranny Budnik Outline

Steady state shock p, e -, e
+

Introduction Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model

treated as one fluid (plasma) tpl n 1/2 10-11 n15 tscat ne



Radiation mechnisms:


Summary

Compton scattering Bremsstrahlung Pair production and annihilation

Scaling relations:
Only Bremsstrahlung self absorption dep ends on nu !


Physical Assumptions


Radiation Mediated Shocks Ranny Budnik Outline

Steady state shock p, e -, e
+

Introduction Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model

treated as one fluid (plasma) tpl n 1/2 10-11 n15 tscat ne



Radiation mechnisms:


Summary

Compton scattering Bremsstrahlung Pair production and annihilation

Scaling relations:
Only Bremsstrahlung self absorption dep ends on nu !


NR RMS

Radiation Mediated Shocks Ranny Budnik Outline



Steady state, 1D, self consistent solutions of: Radiation transp ort and conservation of P , F and np . Numerical solutions, analytic estimates NR: Numerical solution by Weaver (1976): diffusion approximation, Wien sp ectrum. Shock structure:


Introduction Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model





Summary

Deceleration on a scale of -1 c Production of downstream equilibrium radiation:


High density, low velocity: all in equilibrium Low density, high velocity: T increases inside the shock velocity transition, Slow thermalization follows until T = Td


NR RMS

Radiation Mediated Shocks Ranny Budnik Outline



Steady state, 1D, self consistent solutions of: Radiation transp ort and conservation of P , F and np . Numerical solutions, analytic estimates NR: Numerical solution by Weaver (1976): diffusion approximation, Wien sp ectrum. Shock structure:


Introduction Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model





Summary

Deceleration on a scale of -1 c Production of downstream equilibrium radiation:


High density, low velocity: all in equilibrium Low density, high velocity: T increases inside the shock velocity transition, Slow thermalization follows until T = Td


Shock structure

5

Radiation Mediated Shocks Ranny Budnik Outline Introduction Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model

Summary

Low nu , high u

High nu , low u

5

Weaver 1976


Analytic estimates: thermalization width
n : Production/Diffusion (Wein equilibrium) Thermalization length: LT c n ,eq ;Q Q ,eff .
,eff

Radiation Mediated Shocks Ranny Budnik Outline Introduction Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model

= e np ne T c

me c 2 eff geff T

High temp eratures inside the shock transition: u > 0.07n
1/30 15

Summary

(

eff geff

)

4/15

LT > s Ts > T
eff log a (@Nc

d

oll

T = me c 2 /4T )


Analytic estimates: thermalization width
n : Production/Diffusion (Wein equilibrium) Thermalization length: LT c n ,eq ;Q Q ,eff .
,eff

Radiation Mediated Shocks Ranny Budnik Outline Introduction Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model

= e np ne T c

me c 2 eff geff T

High temp eratures inside the shock transition: u > 0.07n
1/30 15

Summary

(

eff geff

)

4/15

LT > s Ts > T
eff log a (@Nc

d

oll

T = me c 2 /4T )


Analytic estimates: T

s

6

Radiation Mediated Shocks Ranny Budnik Outline

n

,s

Q (Ts , nd ) Ts

1 (Diffusion) 3nd T d c

Introduction Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model

n

,s

12 nu (Momentum cons.) 7

Velocity - temperature relation: s 0.2 eff geff 10 2
1 /4

Summary

Ts 10keV

1 /8

n = 1015 cm-3 ; = 30 MeV ( = 0.25)

6

Katz, Budnik & Waxman 2009


Analytic estimates: T

s

6

Radiation Mediated Shocks Ranny Budnik Outline

n

,s

Q (Ts , nd ) Ts

1 (Diffusion) 3nd T d c

Introduction Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model

n

,s

12 nu (Momentum cons.) 7

Velocity - temperature relation: s 0.2 eff geff 10 2
1 /4

Summary

Ts 10keV

1 /8

n = 1015 cm-3 ; = 30 MeV ( = 0.25)

6

Katz, Budnik & Waxman 2009


Analytic estimates: T

s

6

Radiation Mediated Shocks Ranny Budnik Outline

n

,s

Q (Ts , nd ) Ts

1 (Diffusion) 3nd T d c

Introduction Structure of NR RMS Application to X-ray Breakout RRMS
T/keV Tdown Tanalytic /s

n

,s

12 nu (Momentum cons.) 7
10 T/keV, /betas
1

Velocity - temperature relation: s 0.2 eff geff 10 2
1 /4

Introduction Numerical results Analytic model

Summary

Ts 10keV

1 /8

10

0

10

-1

10

0

10 (x-xmin)Tnuu

1

10

2

n = 1015 cm-3 ; = 30 MeV ( = 0.25)

6

Katz, Budnik & Waxman 2009


Application to X-ray Breakout8


Radiation Mediated Shocks Ranny Budnik

(n=3, 3/2 for radiative (BSG, WR), convective (RSG) )


Envelop e density n , = (1 - r /R )
E 1/2 -0.2n M 46 2 R 2 4 в 10 s 12

Outline Introduction Structure of NR RMS Application to X-ray Breakout

Shock velocity (interp olating ST-Sakurai)7 : E vs (/T )-1
0.5



erg
12

RRMS cm
Introduction Numerical results Analytic model

BSG, M = M , R = 10

Post-shock thermal 8 energy Urad = 17 v
10
E51 M 1 /2

Summary

2 s

Ts > 10keV

0.24c
Optical depth

7 8

Colgate 74; Falk 78; Klein & Chevalier 78 Katz, Budnik & Waxman 09


Application to X-ray Breakout8


Radiation Mediated Shocks Ranny Budnik

(n=3, 3/2 for radiative (BSG, WR), convective (RSG) )


Envelop e density n , = (1 - r /R )
E 1/2 -0.2n M 46 2 R 2 4 в 10 s 12

Outline Introduction Structure of NR RMS Application to X-ray Breakout

Shock velocity (interp olating ST-Sakurai)7 : E vs (/T )-1
0.5



erg
12

RRMS cm
Introduction Numerical results Analytic model

BSG, M = M , R = 10

Post-shock thermal 8 energy Urad = 17 v
10
E51 M 1 /2

Summary

2 s

Ts > 10keV

0.24c
Optical depth

7 8

Colgate 74; Falk 78; Klein & Chevalier 78 Katz, Budnik & Waxman 09


Application to X-ray Breakout8


Radiation Mediated Shocks Ranny Budnik Outline Introduction Structure of NR RMS Application to X-ray Breakout

(n=3, 3/2 for radiative (BSG, WR), convective (RSG) )


Envelop e density n , = (1 - r /R )
E 1/2 -0.2n M 46 2 R 2 4 в 10 s 12

Shock velocity (interp olating ST-Sakurai)7 : E vs (/T )-1
12



0.5

erg
12

RRMS
Introduction Numerical results Analytic model

BSG, M = M , R = 10

cm

Post-shock thermal 8 energy Urad = 17 v
10
E51 M 1 /2

Summary
A
v

2 s

s

/(=1) 10

8

6

Ts > 10keV

0.24c

4

2

0

0

5

10

15

20

25

30

Optical depth

7 8

Colgate 74; Falk 78; Klein & Chevalier 78 Katz, Budnik & Waxman 09


Existence of RRMS

Radiation Mediated Shocks Ranny Budnik Outline Introduction



SN shock breakout can reach mildly relativistic ( 1) velocities: GRB980425/SN1998bw9 , GRB030329/SN2003dh10 , GRB031203/SN2003lw11 , XRF060218/SN2006aj12 . A relativistic jet p enetrating through a stellar mantl s j /2 (decelerating shock) h 2 (forward shock into the mantle) e13 :

Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model



Summary

9 10 11 12 13

Galama et. al. 98 Hjorth 03,Stanek 03 Tagliaferri et al. 04 Campana et al 06 e.g. Woosley 1993; Waxman & Meszaros 2001,2003


Existence of RRMS

Radiation Mediated Shocks Ranny Budnik Outline Introduction



SN shock breakout can reach mildly relativistic ( 1) velocities: GRB980425/SN1998bw9 , GRB030329/SN2003dh10 , GRB031203/SN2003lw11 , XRF060218/SN2006aj12 . A relativistic jet p enetrating through a stellar mantl s j /2 (decelerating shock) h 2 (forward shock into the mantle) e13 :

Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model



Summary

9 10 11 12 13

Galama et. al. 98 Hjorth 03,Stanek 03 Tagliaferri et al. 04 Campana et al 06 e.g. Woosley 1993; Waxman & Meszaros 2001,2003


Solving RRMS structure1


4

Radiation Mediated Shocks Ranny Budnik

Anisotropy Diffusion Approximation full transp ort. Relativistic corrections to the Scattering (KN) transp ort is frequency dep endent. e
+e-

Outline Introduction Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model



pairs.

Relativistic corrections to production mechanisms.
+

Assumptions: p , e - a nd e

are coupled and equilibrated.

Summary

Complications of the solution


Full transp ort with hydrodynamics, no definite b oundary conditions Sonic p oints crossings Solution by iterations of radiation/hydro



14

Budnik et al. 2010, in prep


Solving RRMS structure1


4

Radiation Mediated Shocks Ranny Budnik

Anisotropy Diffusion Approximation full transp ort. Relativistic corrections to the Scattering (KN) transp ort is frequency dep endent. e
+e-

Outline Introduction Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model



pairs.

Relativistic corrections to production mechanisms.
+

Assumptions: p , e - a nd e

are coupled and equilibrated.

Summary

Complications of the solution


Full transp ort with hydrodynamics, no definite b oundary conditions Sonic p oints crossings Solution by iterations of radiation/hydro



14

Budnik et al. 2010, in prep


Solving RRMS structure1


4

Radiation Mediated Shocks Ranny Budnik

Anisotropy Diffusion Approximation full transp ort. Relativistic corrections to the Scattering (KN) transp ort is frequency dep endent. e
+e-

Outline Introduction Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model



pairs.

Relativistic corrections to production mechanisms.
+

Assumptions: p , e - a nd e

are coupled and equilibrated.

Summary

Complications of the solution


Full transp ort with hydrodynamics, no definite b oundary conditions Sonic p oints crossings Solution by iterations of radiation/hydro



14

Budnik et al. 2010, in prep


Structure of the shock
30 25 20 10
0

Radiation Mediated Shocks Ranny Budnik
10
1

Outline Introduction
T/(mec2)
u=6 u=10 10
-1

15 10 5 0 -60

u=6 u=10 u=20 u=30

Structure of NR RMS Application to X-ray Breakout RRMS



u=20 u=30

-50

-40

*/u

-30

-20

-10

0

10 -60

-2

-50

-40

*/u

-30

-20

-10

0

Introduction Numerical results Analytic model

Summary


Structure of the shock
30 25 20 10
0

Radiation Mediated Shocks Ranny Budnik
10
1

Outline Introduction
u=6 u=10 10
-1

T/(mec2)

15 10 5 0 -60

u=6 u=10 u=20 u=30

u=20 u=30

Structure of NR RMS Application to X-ray Breakout RRMS
0



-50

-40

*/u

-30

-20

-10

0

10 -60

-2

-50

-40

*/u

-30

-20

-10

Introduction Numerical results Analytic model

Summary
2 =6
u

1.2 1 0.8 0.6 0.4

=6
u

1.5

u=10 u=20

u=10 u=20 u=30

1

0.5 0.2 0 -2 0 -2

0

2

*

4

6

8

T/(mec2)

u=30



0

2

*

4

6

8


Pair domination and subsonic regime

Radiation Mediated Shocks Ranny Budnik Outline Introduction

5000

15 u=6 u=10 10 u=20 u=30

4000

Structure of NR RMS Application to X-ray Breakout RRMS

2000

u=6 u=10 u=20 u=30

Fpair/Frad

3000

x

+

5

1000

Introduction Numerical results Analytic model

0 -2

0

2

*

4

6

8

0

Summary
0.2 0.4

/(uu)

0.6

0.8



n+ np T me c 2 relativistic sp eed of sound ; css c / 3 > vd


Radiation spectrum within the shock
u = 10:
10
5

Radiation Mediated Shocks Ranny Budnik Outline

µ =-0.974
sh sh sh sh sh sh

10

2

µ =-1
re re re re re re

µ =-0.679 µ =0.176

10

0

µ =-0.996 µ =-0.971

Introduction Structure of NR RMS Application to X-ray Breakout RRMS

10

0

µ =0.95

I

µ =0.999 10
-5

I

µ =0.998

10

-2

µ =-0.431 µ =0.781

10

-4

µ =0.947

10

-6

10

-10

10

-4

10

-2

h/m c
e

2 10

0

10

2

10

-8

10

-2

10

0

h/m c
e

2

10

2

10

4

Introduction Numerical results Analytic model

u = 30:
sh sh sh sh sh sh

Shock frame
µ =-0.986 µ =-0.827

Rest frame of the plasma

Summary

10

2

µ =-1
re re re re re re

10

0

µ =-1 10
0

µ =-0.108 µ =0.762

µ =-0.998 µ =-0.984 µ =0.492 µ =0.962

I

µ =1 10
-5

I

µ =0.999

10

-2

10

-4

10

-6

10

-6

10

-4

10

-2

h/m c
e

10 2

0

10

2

10

4

10

-8

10

-2

10

0

h/m c2
e

10

2

10

4


Radiation spectrum in the DS
u = 10
10
4

Radiation Mediated Shocks Ranny Budnik Outline Introduction Structure of NR RMS Application to X-ray Breakout

u = 30
µ =-0.986
sh sh sh sh sh sh

µ =-0.974
sh sh sh sh sh sh

10

2

µ =-0.679 µ =0.176 10
0

µ =-0.827 µ =-0.108 µ =0.762

10

0

µ =0.95

I

10

-2

µ =0.999

I

µ =0.998

µ =0.999 µ =1

10

-4

10 10
-6

-5

10

-4

10

-2

h/m c
e

10 2

0

10

2

10

-4

10

-2

h/m c2
e

10

0

10

2

10

4

RRMS
Introduction Numerical results Analytic model

Integrated sp ectrum:
0.07 10
-1

Summary

=10
u u u

=20 =30
sh sh sh sh

0.06 0.05 0.04 0.03 0.02 0.01 0

= 0 = 1 = 2 = 3

I

10

-2

10

0



10

2

I

10

0

sh



10

2

10

4

sh


Analytic model for the Immediate DS
The immediate DS supplies the photons stopping the plasma: Diffusion/Production Compton-Pair of 's ( 1/3): equilibrium: n 2.5 nl eff 15
2

Radiation Mediated Shocks Ranny Budnik Outline Introduction Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model

(3d )

-2

n me c 0.5 nl T

2

Ts 200keV (average over 3 optical depths!)
Num. results compared to CPE

Summary


Analytic model for the Immediate DS
The immediate DS supplies the photons stopping the plasma: Diffusion/Production Compton-Pair of 's ( 1/3): equilibrium: n 2.5 nl eff 15
2

Radiation Mediated Shocks Ranny Budnik Outline Introduction Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model

(3d )

-2

n me c 0.5 nl T

2

Ts 200keV (average over 3 optical depths!)
Num. results compared to CPE

Summary


Analytic model for the Immediate DS
The immediate DS supplies the photons stopping the plasma: Diffusion/Production Compton-Pair of 's ( 1/3): equilibrium: n 2.5 nl eff 15
2

Radiation Mediated Shocks Ranny Budnik Outline Introduction Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model

(3d )

-2

me c n 0.5 nl T

2

Ts 200keV (average over 3 optical depths!)
Num. results compared to CPE
4000 3500 3000 2500
e

Summary

0.8 0.7 0.6 0.5 ne/n of CE ne/n after jump ne/n of DS

2000 1500 1000 500 0 0.1 0.2 0.3 0.4 0.5 2 0.6 0.7 0.8 x+ of CE x+ after jump x+ of DS

n /n

+



0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 2 0.6 0.7 0.8

x

T/m c
e

T/m c
e


Analytic model for the transition

Radiation Mediated Shocks Ranny Budnik Outline Introduction



The structure is set by photons from the immediate DS (h me c 2 in the shock frame) p enetrating deep into t he U S . KN correction for Compton: /T - Corrections for b ehave the same (- ) -


Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model



In the transition T me c 2 (Compton "equilibrated")
2

Summary


Analytic model for the transition

Radiation Mediated Shocks Ranny Budnik Outline Introduction



The structure is set by photons from the immediate DS (h me c 2 in the shock frame) p enetrating deep into t he U S . KN correction for Compton: /T - Corrections for b ehave the same (- ) -


Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model



In the transition T me c 2 (Compton "equilibrated")
2

Summary


Analytic model for the non thermal beam

Radiation Mediated Shocks Ranny Budnik Outline Introduction

The b eam originates from Compton scattering of US going h me c 2 photons on the deceleration profile. In the shock frame: h 2 me c 2 (since T me c 2 ) A simplifies expression: sh IB (sh , sh ) sh 1 ( ^ ^ ^1-
1 1, h /me c 2 ^

Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model

Summary

-1 sh

^ ^ - sh )(max - sh ) ^

1/2


Analytic model for the non thermal beam

Radiation Mediated Shocks Ranny Budnik Outline Introduction

The b eam originates from Compton scattering of US going h me c 2 photons on the deceleration profile. In the shock frame: h 2 me c 2 (since T me c 2 ) A simplifies expression: sh IB (sh , sh ) sh 1 ( ^ ^ ^1-
1 1, h /me c 2 ^

Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model

Summary

-1 sh

^ ^ - sh )(max - sh ) ^

1/2


Summary

Radiation Mediated Shocks Ranny Budnik Outline



NR RMS


Introduction

High T within the shock transition s 0.2 SN breakout: s 0.1 X-ray emission 10keV Expected high energy photon component from early breakouts We derived the numerical steady state solution + analytical approximations Immediate DS: T me c 2 Subsonic regime, weak subshock High energy power law beam, I 0 , hmax 2 me c 2 , u - beamed towards the DS B u 1

1 /8 Ts 10keV

Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model



RRM S


Summary




Summary

Radiation Mediated Shocks Ranny Budnik Outline



NR RMS


Introduction

High T within the shock transition s 0.2 SN breakout: s 0.1 X-ray emission 10keV Expected high energy photon component from early breakouts We derived the numerical steady state solution + analytical approximations Immediate DS: T me c 2 Subsonic regime, weak subshock High energy power law beam, I 0 , hmax 2 me c 2 , u - beamed towards the DS B u 1

1 /8 Ts 10keV

Structure of NR RMS Application to X-ray Breakout RRMS
Introduction Numerical results Analytic model



RRM S


Summary