Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.sao.ru/hq/grb/conf_2015/participants.html
Дата изменения: Unknown
Дата индексирования: Sun Apr 10 09:10:03 2016
Кодировка: Windows-1251

Поисковые слова: supernova remnant
Workshop 2015
Workshop_2015

The International Workshop on
Quark Phase Transition in Compact Objects and Multimessenger Astronomy:
Neutrino Signals, Supernovae and Gamma-Ray Bursts

English / Русский

Home page
Key dates
Registration
Participants and presentations
Program
Committees
Venue
Fee and accomodation
Poster
Gallery
Proceedings

Contacts
katya@sao.ru
ts@sao.ru

Organizers

SAO main page
Special Astrophysical Observatory of RAS


BNO page
Baksan Neutrino Observatory of INR RAS

Participants and presentations

Book of abstracts


AVRORIN, Aleksander Dmitrievich (INR RAS, Moscow)
A. Avrorin for the Baikal Collaboration. "Baikal-GVD: status and plans"

The future next-generation neutrino telescope Baikal-GVD will be a km3-scale array aimed at detection of astrophysical neutrino fluxes. It will have a modular structure and consist of functionally independent sub-arrays - clusters of strings of optical modules. The prototyping phase of the project has been completed in 2015 with deployment of the first cluster of Baikal-GVD in the Lake Baikal. We discuss current status and prospects of the Baikal-GVD project.

AKHMATOV, Zeitun Anuarovich (KBSU, Nalchik)
Z.A.Akhmatov, A.Kh.Khokonov "Cryostatting, modulation and measurement of neutron fluxes in the low background experiments"

Streams of ultracold neutrons are used in experiments on measurement of the dipole moment of the neutron, and to test the hypothesis of the existence of neutron-antineutron oscillations with non-conservation of baryon quantum number ΔB = 2. We tested the possibility of cooling and formation of thermal neutron flux by a constructive neutron monitor NM - 64 [1] cooled by liquid nitrogen vapors. For neutron detection in the installation may be used the scintillation method [2] or proportional counters [3] . We also presented a helium cryostat for cooling and formation of neutron fluxes. Calculations have been done for cold neutron flux density by using a cascade generator and reaction t (d, n) 4He at a deuteron energy of 130 keV and for signal/background ratio for various lengths of neutron-antineutron oscillations in vacuumed vertically placed pipe with length L ≈ 10 m.
  1. Khokonov A.Kh., Savoiskii Yu.V., Ilgashev V.S., et.al. Initial Results from Neutron Monitoring at Terskol Peak.Seriya Fizicheskaya, 2011,Vol.75, p.915.
  2. Alekseenko V.V., Gavriluk U.M., Kuzminov V.V. " Features of scintillation detector of thermal neutrons [ZnS (Ag) + 6LiF] in different measurement conditions." Moscow, Preprint INR RAS 1303/2011, October 2011.
  3. Khokonov A.Kh., Savoiskii Yu.V., Kamarzaev A.V. Neutron sensitivity and detection efficiency of 3He and 10BF3 counters. Physics of Atomic Nuclei, 2010, Vol. 73, ? 79, pp. 1481 - 1485.

ALVAREZ-CASTILLO, D.E. (Joint Institute for Nuclear Research, Dubna, Russia)
Energy bursts from deconfinement in high-mass twin stars

We estimate the energy reservoir available in the deconfinement phase transition induced collapse of a neutron star to its hybrid star mass twin on the "third family" branch, using a recent equation of state of dense matter. The available energy corresponding to the mass-energy difference between configurations is comparable with energies of the most violent astrophysical burst processes. An observational outcome of such a dynamical transition might be fast radio bursts, specifically a recent example of a FRB with a double-peak structure in its light curve.

ASHIKHMIN, Vsevolod Vasilievich (INR RAS, Moscow)
The search for coincidences of rare events with LVD and BPST detectors

Results of the search for coincidences of rare events in LVD and Baksan Underground Scintillation Telescope (BUST) detectors are presented. We developed a procedure of the search for events in LVD and BUST detectors which could be induced by interaction between neutrinos and matter contained in them. It was shown that from 2011 to 2014 the coincidences are of random character and their sum quantity remains practically invariable.

BAIRAMUKOV, Roman Rashitovich (SAO RAS, Nizhnij Arkhyz )


BARYSHEV, Yury Viktorovich (SPbSU, StPetersburg)
Yu.V. Baryshev, G.Paturel, V.V.Sokolov, "Sidereal time analysis as a tool for detection of gravitational waves and neutrino SN- bursts in the inhomogeneous Local Universe"

   Core-collapse of massive stars produces both neutrino signal and gravitational wave (tensor-transversal plus scalar-longitudinal) bursts. In the case of GW detectors having low angular resolution the method of sidereal time analysis of output signals was applied for extraction of GW-bursts from high level noise. This method was suggested by J.Weber, Phys. Rev. Letters 22, 1320, 1969 for signal analysis of his bar detector and developed for the case of existing GW detectors in papers by Y.Baryshev and G.Paturel, A&A, 371, 378, 2001 (arXiv: astro-ph/0104115), P.Astone et al., CQG, 19,5449, 2002 (arXiv: gr-qc/0210053), G.Paturel and Y.Baryshev, A&A, 398, 377, 2003 (arXiv: astro-ph/0104115), G.Paturel and Y.Baryshev, ApJ Lett., 592, L99, 2003.
   The same sidereal time approach can be also applied for low energy neutrino detectors having many years of observational time (e.g. Super-Kamiokande, LVD, Baksan). This method uses following basic things: 1) difference between sidereal and mean solar time (which help to delete noises related to day-night solar time), 2) directivity diagram (antenna pattern) of the detector (which chooses a particular sky region in particular sidereal time), and 3) known position on the sky the inhomogeneous distribution of the possible sources of SN signals, such as Galactic plane, Galaxy center, closest galaxies, Virgo galaxy cluster, Super-galactic plane, Great Attractor. Main idea is calculation of the expected number of neutrino events as a function of sidereal time (scanning the sky by Earth rotation) produced by possible sources within fixed depth of the survey. The summation of all output signals within one Earth’s revolution (∼23h 56m 04s of mean solar day) during several years of observations will reveal certain structure at predicted sidereal hours (by using directivity pattern of a detector), so the detection has statistical sense.

BOLIEV, M.M. ( BNO INR RAS )


CHUGUNOV A. (Ioffe Institute, StPetersburg)
A.Chugunov, M.E. Gusakov, E.M. Kantor (Ioffe Institute) Neutron star recycling scenario and constraints on the r-mode instability

    Recycling scenario imposes important constraints on r-mode instability in neutron stars and thus on neutron star microphysics. Recent Ref. [1] concluded that ungapped interacting quark matter model is consistent with recycling scenario, including radio and x-ray data. However, this model leads to very high neutrino luminosity, thus high temperatures observed for neutron stars in low mass X-ray binaries can hardly be explained. On the contrary, our recent model [2] agrees with these observations, furthermore it is also consistent with neutron star cooling data, because it appeals to the same microphysical parameters as the minimal cooling model does [3]. Within our model, r-mode instability is suppressed because of the resonant interaction of oscillation modes at some internal temperatures ("resonant temperatures"). Here we demonstrate that this model agrees as well with observations of millisecond pulsars and provides observational evidences that the coupling parameter for resonant mode interaction at low temperatures should be rather large, in agreement with theoretical expectations [2].
    This study was partially supported by RFBR (grants 14-02-00868-a and 14-02- 31616-mol-a), and by RF president programme (grants MK-506.2014.2 and NSh-294.2014.2).
References
[1] M.G. Alford and K. Schwenzer, Phys. Rev. Lett. 113, 251102 (2014).
[2] M.E. Gusakov, A.I. Chugunov, and E.M. Kantor, Phys. Rev. Lett. 112, 151101 (2014); Phys. Rev. D 90, 063001 (2014).
[3] M.E. Gusakov et al, A&A 423, 1063 (2004); Mon. Not. R. Astron. Soc. 363, 555 (2005).

DANILENKO, Andrej Andreevich (Ioffe Institute, StPetersburg)
Restriction on parameters of the pulsar nebula DA 495 and its pulsar by data of the space observatories Chandra and XMM-Newton

We present spectral and timing analyses of the X-ray emission from the pulsar wind nebula DA 495 and its central object, J1952.2+2925, suggested to be the pulsar, using archival Chandra and XMM-Newton data. J1952.2+2925 has a pure thermal spectrum which is equally well fitted either by the blackbody model with a temperature of 215 eV and an emitting area radius of 0.6?km or by magnetized neutron star atmosphere models with temperatures of 80-90 eV. In the latter case, the thermal emission can come from the entire neutron star surface which temperature is consistent with standard neutron star cooling scenarios. We place also an upper limit on the J1952.2+2925 non-thermal flux. The derived spectral parameters are generally compatible with published ones based only on the Chandra data, but they are much more accurate due to the inclusion of XMM-Newton data. No pulsations were found and we placed an upper limit for the J1952.2+2925 pulsed emission fraction of 40 per cent. Utilizing the interstellar absorption-distance relation, we estimated the distance to DA 495, which can be as large as 5 kpc if J1952.2+2925 emission is described by the atmosphere models. We compiled possible multiwavelength spectra of the nebula including radio data; they depend on the spectral model of the central object. Comparing the results with other pulsar plus wind nebula systems, we set reasonable constraints on the J1952.2+2925 spin-down luminosity and age. We suggest that the Fermi source 3FGL J1951.6+2926 is the likely gamma-ray counterpart of J1952.2+2925.

DEMAKOV, Anton Anatolievich (SAO RAS, Nizhnij Arkhyz)


DEMIDOV, Sergei Vladimirovich (INR RAS, Moscow)
Baikal searches for neutrino signal from the Galactic Center and Dwarf Galaxies

We perform the analysis of a data set of Baikal neutrino telescope NT200 to search for neutrino signals from dark matter annihilation in the Galactic Center and in Dwarf Galaxies. From this analysis we set upper limits on dark matter annihilation cross sections for different annihilation channels. Also we discuss sensitivity of the gigaton volume telescope Baikal-GVD to this signal.

DRAGO, Alessandro (University of Ferrara, Italy)
Long and short GRBs in the two-families scenario

I will review the two-families scenario in which hadronic stars having rather small radii and masses not exceeding about 1.5 Ms coexist with quark stars, which can reach masses well above 2 Ms. I will discuss the implications of this scenario in particular for long and short GRBs, using the results of our recent work in which the process of quark deconfinement in compact stars has been revisited.
            Bibliographical references:
1) "Can very compact and very massive neutron stars both exist?"
      by Alessandro Drago, Andrea Lavagno, Giuseppe Pagliara. Phys.Rev. D89 (2014) 4, 043014.
2) "Early appearance of Δ isobars in neutron stars"
      by Alessandro Drago, Andrea Lavagno, Giuseppe Pagliara, Daniele Pigato. Phys.Rev. C90 (2014) 6, 065809.
3) "Combustion of a hadronic star into a quark star: the turbulent and the diffusive regimes"
      by Alessandro Drago, Giuseppe Pagliara. arXiv:1506.08337
4) "Quark deconfinement and the duration of short Gamma Ray Bursts"
      by Alessandro Drago, Andrea Lavagno, Giuseppe Pagliara In preparation

DZHAPPUEV, Dakhir Daniyalovich ( BNO INR RAS)
A search for cosmic gamma-rays at the Carpet-2 EAS array: prospects and preliminary results

We analyze Carpet-2 EAS array data in order to search for events with anomalously low content of muons with energies Eμ > 1 GeV in extensive air showers with energy above 100 TeV. Monte-Carlo simulations of showers induced by primary protons and gammas have been performed using the CORSIKA code. The estimation of the upper limit on the flux primary gamma rays is presented.

DZAPAROVA, I.M. ( BNO INR RAS)


EMELIANOV Eduard Vladimirovich (SAO RAS, Nizhnij Arkhyz)


GANGAPSHEV, A.M. ( BNO INR RAS )


GORBACHEV, Valerij Vladimirovich ( BNO INR RAS)
Radiochemical neutrino experiments today

Radiochemical neutrino detectors have played an important role in the study of neutrinos from the Sun. Features of radiochemical detectors - no external backgrounds and sensitivity only to electron neutrinos - make them a powerful tool for precision measurements of neutrino properties

GORSHKOV Vitaly Valerievich (R&D company for ACS development)